Sodium Lignosulfonate Effect on Physiological Traits of Cucumis sativus L. Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Substrate Preparation
2.2. Plant Material and Growth Conditions
2.3. Chlorophyll Fluorescence and Chlorophyll Content Parameters
2.4. CO2 Gas Exchange
2.5. Electrolyte Leakage and Leaf Relative Water Content
2.6. Plant Growth Parameters
2.7. Chemical Analyses
2.8. Statistical Analyses
3. Results
3.1. Effect of Nutrient Availability on Plant Biomass Parameters
3.2. Effect of sLS on Plant Biomass Parameters
3.3. Effect of Nutrient Availability and sLS Application on Photosynthetic Parameters, EC and RWC
3.4. Leaf Microelements Content
3.5. Correlation between Leaf Microelement Content and Plant Growth Parameters
3.6. Leaf Trace Element Accumulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, T.; Yang, H.; Zhang, R.; Fan, W.; Xu, Y.; Cao, H.; Ning, L.; Zhou, C.; Wang, L. Effects of lignin on root activity and soil nutrients of Malus hupehensis var. pingyiensis under the use of organic fertilizer. Agric. Sci. 2017, 8, 341–347. [Google Scholar]
- Zhao, H.-T.; Li, T.-P.; Zhang, Y.; Hu, J.; Bai, Y.-C.; Shan, Y.-H.; Ke, F. Effects of vermicompost amendment as a basal fertilizer on soil properties and cucumber yield and quality under continuous cropping conditions in a greenhouse. J. Soil Sediment 2017, 17, 2718–2730. [Google Scholar] [CrossRef]
- Tenic, E.; Ghogare, R.; Dhingra, A. Biochar—A Panacea for Agriculture or Just Carbon? Horticulturae 2020, 6, 37. [Google Scholar] [CrossRef]
- Butphu, S.; Rasche, F.; Cadisch, G.; Kaewpradit, W. Eucalyptus biochar application enhances Ca uptake of upland rice, soil available P, exchangeable K, yield, and N use efficiency of sugarcane in a crop rotation system. J. Plant Nutr. Soil Sci. 2020, 183, 58–68. [Google Scholar] [CrossRef]
- Ikkonen, E.; Chazhengina, S.; Butilkina, M.; Sidorova, V. Physiological response of onion (Allium cepa L.) seedlings to shungite application under two soil water regimes. Acta Physiol. Plant. 2021, 43, 75–88. [Google Scholar] [CrossRef]
- Carrasco, J.; Kovács, K.; Czech, V.; Fodor, F.; Lucena, J.J.; Vértes, A.; Hernández-Apaolaza, L. Influence of pH, iron source, and Fe/ligand ratio on iron speciation in lignosulfonate complexes studied using Mössbauer spectroscopy. Implications on their fertilizer properties. J. Agric. Food Chem. 2012, 60, 3331–3340. [Google Scholar] [CrossRef] [PubMed]
- Jiao, G.; Xu, Q.; Cao, S.; Peng, P.; She, D. Controlled-release fertilizer with lignin used to trap urea/hydroxymethylurea/urea-formaldehyde polymers. BioRes 2018, 13, 1711–1728. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Deng, Y.; Tang, J.; Chen, D.; Li, X.; Lin, Q.; Yin, G.; Zhang, M.; Hu, H. Potassium lignosulfonate as a washing agent for remediating lead and copper co-contaminated soils. Sci. Total Environ. 2019, 658, 836–842. [Google Scholar] [CrossRef]
- Ertani, A.; Francioso, O.; Tugnoli, V.; Righi, V.; Nardi, S. Effect of commercial lignosulfonate-humate on Zea mays L. metabolism. J. Agric. Food Chem. 2011, 59, 11940–11948. [Google Scholar] [CrossRef]
- Rodríguez-Lucena, P.; Tomasi, N.; Pinton, R.; Hernández-Apaolaza, L.; Lucena, J.J.; Cesco, S. Evaluation of 59Fe-lignosulfonate complexes as Fe sources for plants. Plant Soil 2009, 325, 53–63. [Google Scholar] [CrossRef]
- Ta’negonbadi, B.; Noorzad, R. Stabilization of clayey soil using lignosulfonate. Transp. Geotech. 2017, 12, 45–55. [Google Scholar] [CrossRef]
- Gael, A.G.; Smirnova, L.F. Sand and Sandy Soils; GEOS: Moscow, Russia, 1999. [Google Scholar]
- Lambers, H.; Chapin, F.S., III; Pons, T.L. Plant Physiological Ecology; Springer: New York, NY, USA, 1998. [Google Scholar]
- Atkin, O.K.; Scheurwater, I.; Pons, T.L. Respiration as a percentage of daily photosynthesis in whole plants is homeostatic at moderate, but not high growth temperatures. N. Phytol. 2007, 174, 367–380. [Google Scholar] [PubMed]
- Yamori, W.; Noguchi, K.; Hikosaka, K.; Terashima, I. Cold tolerant crop species have greater temperature homeostasis of leaf respiration and photosynthesis than cold-sensitive species. Plant Cell Physiol. 2009, 50, 203–215. [Google Scholar] [CrossRef] [Green Version]
- Atkin, O.K.; Turnbull, M.H.; Zaragoza-Castells, J.; Fyllas, N.M.; Lloyd, J.; Meir, P.; Griffin, K.L. Light inhibition of leaf respiration as soil fertility declines along a post-glacial chronosequence in New Zealand: An analysis using the Kok method. Plant Soil 2013, 367, 163–182. [Google Scholar] [CrossRef]
- Rakhmankulova, Z.F.; Usmanov, I.Y. Morphological and physiological characteristics of wheat cultivars differing in resistance and productivity under normal and stress conditions. Russ. J. Plant Physiol. 2000, 47, 534–539. [Google Scholar]
- Ikkonen, E.N.; Shibaeva, T.K.; Titov, A.F. Influence of Daily Short-Term Temperature Drops on Respiration to Photosynthesis Ratio in Chilling-Sensitive Plants. Russ. J. Plant Physiol. 2018, 65, 94–99. [Google Scholar] [CrossRef]
- Rakhmankulova, Z.F. Physiological aspects of photosynthesis–respiration interrelation. Russ. J. Plant Physiol. 2019, 66, 365–374. [Google Scholar] [CrossRef]
- Docquier, S.; Kevers, C.; Lambe, P.; Gaspar, T.; Dommes, J. Beneficial use of lignosulfonates in in vitro plant cultures: Stimulation of growth, of multiplication and of rooting. Plant Cell Tiss. Organ Cult. 2007, 90, 285–291. [Google Scholar] [CrossRef]
- Low, L.-Y.; Abdullah, J.O.; Wee, C.-Y.; Sekeli, R.; Tan, C.-K.; Loh, J.-Y.; Lai, K.-S. Effects of lignosulfonates on callus proliferation and shoot induction of recalcitrant indica rice. Sains. Malays 2019, 48, 7–13. [Google Scholar] [CrossRef]
- Abdullah, W.M.A.N.; Low, L.-Y.L.; Mumaiyizah, S.B.; Chai, Q.-Y.; Loh, J.Y.; Abdullah, J.O.; Koksong, L. Effect of lignosulphonates on Vanilla planifolia shoot multiplication, regeneration and metabolism. Acta Physiol. Plant. 2020, 42, 1–8. [Google Scholar] [CrossRef]
- Kok, A.D.-X.; Abdullah, W.M.A.N.W.; Tang, C.-N.; Low, L.-Y.; Yuswan, M.H.; Ong-Abdullah, J.; Tan, N.-P.; Lai, K.-S. Sodium lignosulfonate improves shoot growth of Oryza sativa via enhancement of photosynthetic activity and reduced accumulation of reactive oxygen species. Sci. Rep. 2021, 11, 13226. [Google Scholar]
- Stapanian, M.A.; Shea, D.W. Lignosulfonates: Effects on plant growth and survival and migration through the soil profile. Int. J. Environ. Stud. 1986, 27, 45–56. [Google Scholar] [CrossRef]
- Ikkonen, E.; Chazhengina, S.; Jurkevich, M. Photosynthetic Nutrient and Water Use Efficiency of Cucumis sativus under Contrasting Soil Nutrient and Lignosulfonate Levels. Plants 2021, 10, 340. [Google Scholar] [CrossRef] [PubMed]
- Savy, D.; Cozzolino, V.; Vinci, G.; Nebbioso, A.; Piccolo, A. Water-soluble lignins from different bioenergy crops stimulate the early development of maize (Zea mays, L.). Molecules 2015, 20, 19958–19970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants, 3th ed; Academic Press: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Maksimov, V.F.; Stadnitskij, G.V. Introduction to the Specialty: Textbook for Universities; Chemistry: Saint Petersburg, Russia, 1988. [Google Scholar]
- Neiberte, B.; Jablonsky, A.; Shulga, G.; Verovkins, A.; Vitolina, S.; Brovkina, J. Comparative study of industrial lignosulfonates and some their properties. In Proceedings of the 12th International Scientific and Practical Conference, Rezekne, Latvia, June 20–22, 2019; Rezekne Academy of Technologies: Rezekne, Latvia, 2019; pp. 189–192. [Google Scholar]
- Ijaz, N.; Dai, F.; Rehman, Z. Paper and wood industry waste as a sustainable solution for environmental vulnerabilities of expansive soil: A novel approach. J. Environ. Manag. 2020, 262, 110285. [Google Scholar]
- Benedicto, A.; Hernández-Apaolaza, L.; Rivas, I.; Lucena, J.J. Determination of 67Zn distribution in navy bean (Phaseolus vulgaris L.) after foliar application of 67Zn-lignosulfonates using isotope pattern deconvolution. J. Agric. Food Chem. 2011, 59, 8829–8838. [Google Scholar]
- Islas-Valdez, S.; López-Rayo, S.; Hristov-Emilov, H.; Hernández-Apaolaza, L.; Lucena, J.J. Assessing metal–lignosulfonates as fertilizers using gel filtration chromatography and high-performance size exclusion chromatography. Int. J. Biol. Macromol. 2020, 142, 163–171. [Google Scholar] [CrossRef]
- Mortvedt, J.J.; Gilkes, R.J. Zinc fertilizers. In Zinc in Soils and Plants; Robson, A.D., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993; pp. 33–44. [Google Scholar]
- Cieschi, M.T.; Benedicto, A.; Hernández-Apaolaza, L.; Lucena, J.J. EDTA Shuttle Effect vs. Lignosulfonate Direct Effect Providing Zn to Navy Bean Plants (Phaseolus vulgaris L. ‘Negro Polo’) in a Calcareous Soil. Front. Plant Sci. 2016, 7, 1767–1779. [Google Scholar]
- Ikkonen, E.N.; Grabelnykh, O.I.; Sherudilo, E.G.; Shibaeva, T.G. Salicylhydroxamic Acid-Resistant and Sensitive Components of Respiration in Chilling-Sensitive Plants Subjected to a Daily Short-Term Temperature Drop. Russ. J. Plant Physiol. 2020, 67, 60–67. [Google Scholar] [CrossRef]
- Titov, A.F.; Shibaeva, T.G.; Ikkonen, E.N.; Sherudilo, E.G. Plant Responses to a Daily Short-term Temperature Drop: Phenomenology and Mechanisms. Russ. J. Plant Physiol. 2020, 67, 1003–1017. [Google Scholar] [CrossRef]
- Ogbaga, C.C.; Amir, M.; Bano, H.; Chater, C.C.; Jellason, N.P. Clarity on frequently asked questions about drought measurements in plant physiology. Sci. Afr. 2020, 8, e00405. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 1989, 99, 87–92. [Google Scholar] [CrossRef]
- Campbell, C.; Atkinson, L.; Zaragaza-Castells, J.; Lundmark, M.; Atkin, O.; Hurry, V. Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. N. Phytol. 2007, 176, 375–389. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Q.; Lu, Z.; Xu, F. Accumulation of ammonium and reactive oxygen mediated drought-induced rice growth inhibition by disturbed nitrogen metabolism and photosynthesis. Plant Soil 2018, 431, 107–117. [Google Scholar] [CrossRef]
- Arndt, S.K.; Irawan, A.; Sanders, G.J. Apoplastic water fraction and rehydration techniques introduce significant errors in measurements of relative water content and osmotic potential in plant leaves. Physiol. Plant. 2015, 155, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Soylak, M.; Tuzen, M.; Souza, A.S.; Korn, M.D.G.A.; Ferreira, S.L.C. Optimization of microwave assisted digestion procedure for the determination of zinc, copper and nickel in tea samples employing flame atomic absorption spectrometry. J. Hazard. Mater. 2007, 149, 264–268. [Google Scholar] [CrossRef]
- Sajwan, K.S.; Lindsay, W.L. Response of flooded rice to various sources of zinc. J. Agric. Sci. 1988, 111, 197–210. [Google Scholar] [CrossRef]
- Morales, F.; Pavlovic, A.; Abadia, A.; Abadia, J. Photosynthesis in poor nutrient soils, in compacted soils, and under drought. In The Leaf: A Platform for Performing Photosynthesis, Advances in Photosynthesis and Respiration; Adams, W.W., III, Terashima, I., Eds.; Springer: Cham, Switzerland, 2018; pp. 371–399. [Google Scholar]
- Rad, S.V.; Valadabadi, S.A.R.; Pouryousef, M.; Saifzadeh, S.; Zakrin, H.R.; Mastinu, A. Quantitative and Qualitative Evaluation of Sorghum bicolor L. under Intercropping with Legumes and Different Weed Control Methods. Horticulturae 2020, 6, 78. [Google Scholar] [CrossRef]
- Yousefi, A.R.; Rashidi, S.; Moradi, P.; Mastinu, A. Germination and Seedling Growth Responses of Zygophyllum fabago, Salsola kali L. and Atriplex canescens to PEG-Induced Drought Stress. Environments 2020, 7, 107. [Google Scholar] [CrossRef]
- Loveys, B.R.; Atkinson, L.J.; Sherlock, D.J.; Roberts, R.L.; Fitter, A.H.; Atkin, O.K. Thermal acclimation of leaf and root respiration: An investigation comparing inherently fast- and slow-growing plant species. Glob. Change Biol. 2003, 9, 895–910. [Google Scholar] [CrossRef] [Green Version]
- Garmash, E.V.; Golovko, T.K. CO2 gas exchange and growth in Rhaponticum carthamoides under the conditions of the middle taiga subzone of northeastern Europe. 1. Dependence of photosynthesis and respiration on environmental factors. Russ. J. Plant Physiol. 1997, 44, 737–745. [Google Scholar]
- Kalaji, H.M.; Oukarroum, A.; Alexandrov, V.; Kouzmanova, M.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Allakhverdiev, S.I.; Goltsev, V. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurement. Plant Physiol. Biochem. 2014, 81, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Kalaji, H.M.; Bąba, W.; Gediga, K.; Goltsev, V.; Samborska, I.A.; Cetner, M.D.; Dimitrova, S.; Piszcz, U.; Bielecki, K.; Karmowska, K.; et al. Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosyn. Res. 2018, 136, 329–343. [Google Scholar] [CrossRef] [Green Version]
- Bajji, M.; Kinet, J.M.; Lutts, S. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul. 2002, 36, 61–70. [Google Scholar] [CrossRef]
- Van der Paal, J.; Neyts, E.C.; Verlackt, C.C.W. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem. Sci. 2016, 7, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Aung, M.S.; Masuda, H. How Does Rice Defend Against Excess Iron?: Physiological and Molecular Mechanisms. Front. Plant Sci. 2020, 11, 1102. [Google Scholar] [CrossRef] [PubMed]
- Sabinin, D.A. Physiological Basis of Plant Nutrition; Academy of Sciences of the USSR: Moscow, Russia, 1955. [Google Scholar]
- Rodríguez-Lucena, P.; Benedicto, A.; Lucena, J.J.; Rodríguez-Castrillo, J.A.; Moldovan, M.; García Alonso, J.I.; Hernandez-Apaolaza, L. Use of the stable isotope 57Fe to track the efficacy of the foliar application of lignosulfonate/Fe3+ complexes to correct iron deficiencies in cucumber plants. J. Sci. Food Agric. 2011, 91, 395–404. [Google Scholar] [PubMed]
- López-Rayo, S.; Correas, C.; Lucena, J.J. Novel chelating agents as manganese and zinc fertilisers: Characterisation, theoretical speciation and stability in solution. Chem. Speciat. Bioavailab. 2012, 24, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Jurkevich, M.G.; Ikkonen, E.N. Lignosulfonate effect on loamy soil and cucumber plants. Waste Resour. 2020, 7, 1–9. [Google Scholar]
- Ahmad, N.; Hussain, S.; Ali, M.A.; Minhas, A.; Waheed, W.; Danish, S.; Fahad, S.; Ghafoor, U.; Baig, K.S.; Sultan, H. Correlation of Soil Characteristics and Citrus Leaf Nutrients Contents in Current Scenario of Layyah District. Horticulturae 2022, 8, 61. [Google Scholar] [CrossRef]
Treatment Factor, Interaction | |||
---|---|---|---|
Parameter | Nutrient Availability | sLS | sLS + Nutrient Availability |
Total biomass | <0.001 *** | <0.01 ** | <0.01 ** |
Leaf mass | <0.001 *** | <0.01 ** | <0.01 ** |
Root mass | <0.001 *** | <0.05 * | 0.050 ns |
LWR | <0.001 *** | <0.001 *** | 0.051 ns |
RWR | <0.001 *** | 0.009 ** | <0.01 ** |
RSR | <0.001 *** | 0.013 * | 0.206 ns |
An1200 | <0.001 *** | 0.084 ns | <0.05 * |
An300 | <0.001 *** | 0.247 ns | <0.01 ** |
R | <0.001 *** | 0.627 ns | 0.092 ns |
α | <0.001 *** | <0.05 * | 0.062 ns |
R/An1200 | <0.001 *** | <0.001 *** | <0.001 *** |
R/An300 | <0.001 *** | <0.001 *** | <0.001 *** |
EC | <0.001 *** | 0.024 * | 0.125 ns |
RWC | 0.574 ns | 0.194 ns | 0.590 ns |
Fe | <0.001 *** | <0.001 *** | <0.001 *** |
Mn | 0.456 ns | <0.001 *** | 0.924 ns |
Cu | 0.108 ns | 0.915 ns | 0.647 ns |
Zn | <0.05 * | 0.320 ns | 0.916 ns |
Ni | <0.001 *** | <0.001 *** | <0.001 *** |
Cr | <0.001 *** | <0.001 *** | <0.001 *** |
Al | <0.001 *** | <0.001 *** | <0.001 *** |
Co | <0.001 *** | <0.001 *** | <0.001 *** |
Pb | <0.01 ** | 0.091 ns | 0.062 ns |
SNA | LNA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | 0sLS | 1sLS | 2.5sLS | 5sLS | 10sLS | 0sLS | 1sLS | 2.5sLS | 5sLS | 10sLS |
Concentration | ||||||||||
Fe, mg kg−1 | 99.2 ± 16.7 a | 92.8 ± 8.4 a | 82.6 ± 2.5 a | 84.4 ± 5.8 a | 90.0 ± 9.8 a | 2077 (±5%) | 1300 (±5%) | 378 (±5%) | 493 (±5%) | 304 (±5%) |
Mn, mg kg−1 | 954 ± 37 a | 365 ± 137 b | 196 ± 13.4 bc | 116 ± 27 c | 224 ± 10.0 bc | 960 (±5%) | 203 (±5%) | 134 (±5%) | 90 (±5%) | 220 (±5%) |
Cu, mg kg−1 | 5.4 ± 0.4 ab | 7.5 ± 1.9 a | 5.5 ± 0.4 ab | 4.6 ± 0.1 b | 5.6 ± 0.6 ab | 5.1 (±5%) | 3.4 (± 5%) | 3.4 (± 5%) | 4.1 (±5%) | 4.9 (±5%) |
Zn, mg kg−1 | 42.8 ± 0.5- ab | 48.2 ± 3.8 a | 40.2 ± 3.8 ab | 37.1 ± 5.4 b | 36.6 ± 1.1 b | 39.0 ( ± 5%) | 34.2 ( ± 5%) | 32.6 (± 5%) | 28.7 (±5%) | 27.1 (±5%) |
Ni, mg kg−1 | 2.7 ± 0.6 a | 1.8 ± 0.5 ab | 1.5 ± 0.1 b | 1.4 ± 0.2 b | 1.3 ± 0.1 b | 12.0 (±5%) | 3.3 (± 5%) | 2.8 (± 5%) | 2.8 (±5%) | 1.3 (±5%) |
Cr, mg kg−1 | 0.40 ± 0.10 a | 0.45 ± 0.06 a | 0.33 ± 0.09 a | 0.30 ± 0.00 a | 0.50 ± 0.06 a | 3.2 (±5%) | 2.7 (± 5%) | 1.9 (±5%) | 2.0 (± 5%) | 1.1 (± 5%) |
Al, mg kg−1 | 110 ± 12 a | 43 ± 3 ab | 21 ± 9 b | 26 ± 3 b | 75 ± 5 ab | 639 (± 5%) | 2310 (± 5%) | 1971 (± 5%) | 2317 (± 5%) | 100 (±5%) |
Co, mg kg−1 | 0.88 ± 0.14 a | 0.38 ± 0.09 b | 0.33 ± 0.05 b | 0.18 ± 0.05 b | 0.40 ± 0.06 b | 5.3 (±5%) | 1.8 (±5%) | 1.2( ±5%) | 1.2 (±5%) | 1.3 (±5%) |
Pb, mg kg−1 | 0.6 ± 0.2 a | 0.7 ± 0.2 a | 0.5 ± 0.1 a | 0.4 ± 0.1 a | 1.0 ± 0.6 a | 2.8 (±5%) | 2.0 (±5%) | 2.3 (±5%) | 0.4 (±5%) | 0.6 (±5%) |
Accumulation | ||||||||||
Fe, mg plant−1 | 0.12 ± 0.02 a | 0.12 ± 0.01 a | 0.11 ± 0.01 a | 0.11 ± 0.00 a | 0.10 ± 0.02 ab | 0.07 ± 0.00 b | 0.10 ± 0.02 ab | 0.03 ± 0.00 c | 0.04 ± 0.00 cb | 0.04 ± 0.00 cb |
Mn, mg plant−1 | 1.19 ± 0.10 a | 0.48 ± 0.16 b | 0.14 ± 0.0 cd | 0.15 ± 0.03 cd | 0.25 ± 0.03 c | 0.03 ± 0.00 d | 0.02 ± 0.00 d | 0.01 ± 0.00 d | 0.01 ± 0.00 d | 0.03 ± 0.00 d |
Cu, μg plant−1 | 6.8 ± 0.8 b | 10.1 ± 2.6 a | 5.4 ± 0.3 b | 6.3 ± 0.4 b | 6.2 ± 0.9 b | 0.2 ± 0.0 c | 0.3 ± 0.0 c | 0.3 ± 0.0 c | 0.4 ± 0.0 c | 0.7 ± 0.1 c |
Zn, μg plant−1 | 54.0 ± 5.5 b | 65.1 ± 5.6 a | 49.2 ± 3.1 b | 50.5 ± 6.3 b | 40.4 ± 4.4 c | 1.2 ± 0.1 d | 2.7 ± 0.4 d | 2.7 ± 0.4 d | 2.5 ± 0.2 d | 4.0 ± 0.4 d |
Ni, μg plant−1 | 3.4 ± 0.9 a | 2.3 ± 0.6 b | 1.9 ± 0.1 bc | 1.9 ± 0.3 bc | 1.4 ± 0.2 c | 0.4 ± 0.0 d | 0.3 ± 0.0 d | 0.2 ± 0.0 d | 0.2 ± 0.0 d | 0.2 ± 0.0 d |
Cr, μg plant−1 | 0.50 ± 0.13 ab | 0.61 ± 0.08 a | 0.33 ± 0.05 b | 0.41 ± 0.03 b | 0.56 ± 0.11 ab | 0.10 ± 0.0 c | 0.21 ± 0.04 c | 0.16 ± 0.02 c | 0.17 ± 0.01 c | 0.16 ± 0.02 c |
Al, μg plant−1 | 147 ± 61 a | 57 ± 8 b | 16 ± 5 c | 36 ± 4 bc | 91 ± 58 ab | 20 ± 1 c | 183 ± 30 a | 164 ± 23 a | 198 ± 16 a | 15 ± 2c |
Co, μg plant−1 | 1.09 ± 0.20 a | 0.49 ± 0.09 b | 0.24 ± 0.04 c | 0.23 ± 0.05 c | 0.44 ± 0.08 b | 0.17 ± 0.01 c | 0.14 ± 0.02 c | 0.10 ± 0.01 c | 0.10 ± 0.01 c | 0.19 ± 0.02 c |
Pb, μg plant−1 | 0.7 ± 0.2 a | 0.9 ± 0.2 a | 0.4 ± 0.1 a | 0.5 ± 0.2 a | 1.1 ± 0.8 a | 0.09 ± 0.01 b | 0.06 ± 0.02 b | 0.19 ± 0.03 b | 0.03 ± 0.00 b | 0.09 ± 0.01 b |
Growth Parameters | Fe | Mn | Cu | Zn | Ni | Cr | Co | Al | Pb |
---|---|---|---|---|---|---|---|---|---|
Total mass, g plant−1 | −0.55 | 0.15 | 0.53 | 0.61 | −0.38 | −0.82 | −0.52 | −0.70 | −0.46 |
Leaves mass, g plant−1 | −0.56 | 0.16 | 0.52 | 0.60 | −0.38 | −0.83 | −0.53 | −0.72 | −0.47 |
Root mass, g plant−1 | −0.51 | 0.13 | 0.48 | 0.66 | −0.35 | −0.76 | −0.49 | −0.65 | −0.44 |
LWR | −0.77 | −0.15 | 0.33 | 0.22 | −0.67 | −0.86 | −0.73 | −0.55 | −0.60 |
RWR | 0.56 | 0.11 | −0.28 | −0.03 | 0.48 | 0.62 | 0.50 | 0.42 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikkonen, E.; Yurkevich, M.; Kaznina, N.; Krasilnikov, P. Sodium Lignosulfonate Effect on Physiological Traits of Cucumis sativus L. Seedlings. Agriculture 2023, 13, 307. https://doi.org/10.3390/agriculture13020307
Ikkonen E, Yurkevich M, Kaznina N, Krasilnikov P. Sodium Lignosulfonate Effect on Physiological Traits of Cucumis sativus L. Seedlings. Agriculture. 2023; 13(2):307. https://doi.org/10.3390/agriculture13020307
Chicago/Turabian StyleIkkonen, Elena, Maria Yurkevich, Natalia Kaznina, and Pavel Krasilnikov. 2023. "Sodium Lignosulfonate Effect on Physiological Traits of Cucumis sativus L. Seedlings" Agriculture 13, no. 2: 307. https://doi.org/10.3390/agriculture13020307
APA StyleIkkonen, E., Yurkevich, M., Kaznina, N., & Krasilnikov, P. (2023). Sodium Lignosulfonate Effect on Physiological Traits of Cucumis sativus L. Seedlings. Agriculture, 13(2), 307. https://doi.org/10.3390/agriculture13020307