Gene Silencing of laccase 1 Induced by Double-Stranded RNA in Callosobruchus maculatus (Fabricius 1775) (Coleoptera: Chrysomelidae) Suggests RNAi as a Potential New Biotechnological Tool for Bruchid’s Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of lac 1, dcr-2, ago-2, and R2D2 in C. maculatus
2.2. DsRNA Synthesis
2.3. Micro-Injection Experiments
2.4. Reference Gene and RT-qPCR Analyses
2.5. Statistical Analyses
3. Results
3.1. Identification and Description of RNAi Core Machinery (dcr-2, ago-2, and R2D2) in C. maculatus
3.2. Identification and Description of the laccase 1 Protein in C. maculatus
3.3. Validation of Primers and Reference Gene for qPCR Analyses
3.4. Gene Expression Analyses and Survival Curves
4. Discussion
4.1. Identification of RNAi Machinery Core Components and lac 1 in C. maculatus
4.2. Identification of Reference Genes for RT-qPCR
4.3. Gene Knockdown and Mortalities
4.4. Perspectives for Future Research in the Development of RNAi Pesticide against Bruchids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kingsolver, J.M. Handbook of the Bruchidae of the United States and Canada (Insecta, Coleoptera); U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2004. [Google Scholar]
- Segers, A.; Caparros Megido, R.; Lognay, G.; Francis, F. Overview of Bruchus rufimanus Boheman 1833 (Coleoptera: Chrysomelidae): Biology, chemical ecology and semiochemical opportunities in integrated pest management programs. Crop Prot. 2021, 140, 105411. [Google Scholar] [CrossRef]
- Kergoat, G.J.; Silvain, J.-F.; Delobel, A.; Tuda, M.; Anton, K.-W. Defining the limits of taxonomic conservatism in host-plant use for phytophagous insects: Molecular systematics and evolution of host-plant associations in the seed-beetle genus Bruchus Linnaeus (Coleoptera: Chrysomelidae: Bruchinae). Mol. Phylogenet Evol. 2007, 43, 251–269. [Google Scholar] [CrossRef] [PubMed]
- Caswell, G.H. The Development and Extension of Nonchemical Control Techniques for Stored Cowpea in Nigeria; Institute for Agricultural Research, Samaru, Ahmadu Bello University: Zaria, Nigeria, 1977. [Google Scholar]
- Credland, P.F.; Dick, K.M. Food consumption by larvae of three strains of Callosobruchus maculatus (Coleoptera: Bruchidae). J. Stored Prod. Res. 1987, 23, 31–40. [Google Scholar] [CrossRef]
- Howe, R.W.; Currie, J.E. Some laboratory observations on the rates of development, mortality and oviposition of several species of Bruchidae breeding in stored pulses. Bull. Entomol. Res. 1964, 55, 437–477. [Google Scholar] [CrossRef]
- Mobarakian, M.; Zamani, A.A.; Karmizadeh, J.; Moeeny Naghadeh, N.; Emami, M.S. Modelling development of Callosobruchus maculatus and Anisopteromalus calandrae at various constant temperatures using linear and non-linear models. Biocontrol Sci. Technol. 2014, 24, 1308–1320. [Google Scholar] [CrossRef]
- van Alebeek, F. Foraging Behaviour of the Egg Parasitoid Uscana Lariophaga: Towards Biological Control of Bruchid Pests in Stored Cowpea in West Africa. Ph.D. Thesis. 1996. Available online: https://edepot.wur.nl/202236 (accessed on 6 February 2023).
- Tiroesele, B.; Thomas, K.; Seketeme, S. Control of Cowpea Weevil, Callosobruchus Maculatus (F.) (Coleoptera: Bruchidae), Using Natural Plant Products. Insects 2015, 6, 77–84. [Google Scholar] [CrossRef]
- Naqqash, M.N.; Gökçe, A.; Bakhsh, A.; Salim, M. Insecticide resistance and its molecular basis in urban insect pests. Parasitol. Res. 2016, 115, 1363–1373. [Google Scholar] [CrossRef]
- Karaağaç, S.U. Insecticide Resistance; IntechOpen: London, UK, 2012; ISBN 978-953-307-780-2. [Google Scholar]
- Vivekanandhan, P.; Thendralmanikandan, A.; Kweka, E.J.; Mahande, A.M. Resistance to temephos in Anopheles stephensi larvae is associated with increased cytochrome P450 and α-esterase genes overexpression. Int. J. Trop. Insect Sci. 2021, 41, 2543–2548. [Google Scholar] [CrossRef]
- Aziz, E.E.; Abbass, M.H. Chemical composition and efficiency of five essential oils against the pulse beetle Callosobruchus maculatus (F.) on Vigna radiata seeds. Am-Eurasian J. Agric. Environ. Sci. 2010, 8, 411–419. [Google Scholar]
- Nattudurai, G.; Baskar, K.; Paulraj, M.G.; Islam, V.I.H.; Ignacimuthu, S.; Duraipandiyan, V. Toxic effect of Atalantia monophylla essential oil on Callosobruchus maculatus and Sitophilus oryzae. Environ. Sci. Pollut. Res. Int. 2017, 24, 1619–1629. [Google Scholar] [CrossRef]
- Idoko, J.E.; Ileke, K.D. Comparative evaluation of insecticidal properties of essential oils of some selected botanicals as bio-pesticides against Cowpea bruchid, Callosobruchus maculatus (Fabricius) [Coleoptera: Chrysomelidae]. Bull. Natl. Res. Cent. 2020, 44, 119. [Google Scholar] [CrossRef]
- Esther Ojebode, M.; Ojo Olaiya, C. Efficacy of Some Plant Extracts as Storage Protectants against Callosobruchus maculatus. J. Biotechnol. Biomater. 2016, 6, 217. [Google Scholar] [CrossRef]
- Rodrigues, T.B.; Figueira, A. Management of Insect Pest by RNAi—A New Tool for Crop Protection; IntechOpen: London, UK, 2016; ISBN 978-953-51-2272-2. [Google Scholar]
- Zhao, C.; Alvarez Gonzales, M.A.; Poland, T.M.; Mittapalli, O. Core RNAi machinery and gene knockdown in the emerald ash borer (Agrilus planipennis). J. Insect Physiol. 2015, 72, 70–78. [Google Scholar] [CrossRef]
- Kim, K.; Lee, Y.S.; Harris, D.; Nakahara, K.; Carthew, R.W. The RNAi Pathway Initiated by Dicer-2 in Drosophila. Cold Spring Harb. Symp. Quant. Biol. 2006, 71, 39–44. [Google Scholar] [CrossRef]
- Zamore, P.D.; Tuschl, T.; Sharp, P.A.; Bartel, D.P. RNAi: Double-Stranded RNA Directs the ATP-Dependent Cleavage of mRNA at 21 to 23 Nucleotide Intervals. Cell 2000, 101, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Rand, T.A.; Kalidas, S.; Du, F.; Kim, H.-E.; Smith, D.P.; Wang, X. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 2003, 301, 1921–1925. [Google Scholar] [CrossRef]
- Meister, G.; Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004, 431, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Kyre, B.R.; Bentz, B.J.; Rieske, L.K. Susceptibility of mountain pine beetle (Dendroctonus ponderosae Hopkins) to gene silencing through RNAi provides potential as a novel management tool. For. Ecol. Manag. 2020, 473, 118322. [Google Scholar] [CrossRef]
- Hammond, S.M. Dicing and slicing: The core machinery of the RNA interference pathway. FEBS Lett. 2005, 579, 5822–5829. [Google Scholar] [CrossRef]
- Hammond, S.M.; Bernstein, E.; Beach, D.; Hannon, G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000, 404, 293–296. [Google Scholar] [CrossRef]
- Sen, G.L.; Blau, H.M. A brief history of RNAi: The silence of the genes. FASEB J. 2006, 20, 1293–1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baum, J.A.; Roberts, J.K. Chapter Five—Progress Towards RNAi-Mediated Insect Pest Management. In Advances in Insect Physiology; Dhadialla, T.S., Gill, S.S., Eds.; Insect Midgut and Insecticidal Proteins; Academic Press: Cambridge, MA, USA, 2014; Volume 47, pp. 249–295. [Google Scholar]
- Chen, J.; Peng, Y.; Zhang, H.; Wang, K.; Zhao, C.; Zhu, G.; Reddy Palli, S.; Han, Z. Off-target effects of RNAi correlate with the mismatch rate between dsRNA and non-target mRNA. RNA Biol. 2021, 18, 1747–1759. [Google Scholar] [CrossRef] [PubMed]
- Whyard, S.; Singh, A.D.; Wong, S. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem. Mol. Biol. 2009, 39, 824–832. [Google Scholar] [CrossRef]
- Li, H.; Khajuria, C.; Rangasamy, M.; Gandra, P.; Fitter, M.; Geng, C.; Woosely, A.; Hasler, J.; Schulenberg, G.; Worden, S.; et al. Long dsRNA but not siRNA initiates RNAi in western corn rootworm larvae and adults. J. Appl. Entomol. 2015, 139, 432–445. [Google Scholar] [CrossRef]
- Cappelle, K.; de Oliveira, C.F.R.; Van Eynde, B.; Christiaens, O.; Smagghe, G. The involvement of clathrin-mediated endocytosis and two Sid-1-like transmembrane proteins in double-stranded RNA uptake in the Colorado potato beetle midgut. Insect Mol. Biol. 2016, 25, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.-C.; Fu, K.-Y.; Yang, S.; Li, X.-X.; Li, G.-Q. Instar-dependent systemic RNA interference response in Leptinotarsa decemlineata larvae. Pestic. Biochem. Physiol. 2015, 123, 64–73. [Google Scholar] [CrossRef]
- Huvenne, H.; Smagghe, G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: A review. J. Insect Physiol. 2010, 56, 227–235. [Google Scholar] [CrossRef]
- Kola, V.S.R.; Renuka, P.; Madhav, M.S.; Mangrauthia, S.K. Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing. Front. Physiol. 2015, 6, 119. [Google Scholar] [CrossRef]
- Yu, N.; Christiaens, O.; Liu, J.; Niu, J.; Cappelle, K.; Caccia, S.; Huvenne, H.; Smagghe, G. Delivery of dsRNA for RNAi in insects: An overview and future directions. Insect Sci. 2013, 20, 4–14. [Google Scholar] [CrossRef]
- Joga, M.R.; Zotti, M.J.; Smagghe, G.; Christiaens, O. RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far. Front. Physiol. 2016, 7, 553. [Google Scholar] [CrossRef]
- Willow, J.; Veromann, E. Highly Variable Dietary RNAi Sensitivity Among Coleoptera. Front. Plant Sci. 2021, 12, 2914. [Google Scholar] [CrossRef] [PubMed]
- Baum, J.A.; Bogaert, T.; Clinton, W.; Heck, G.R.; Feldmann, P.; Ilagan, O.; Johnson, S.; Plaetinck, G.; Munyikwa, T.; Pleau, M.; et al. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 2007, 25, 1322–1326. [Google Scholar] [CrossRef] [PubMed]
- Vélez, A.M.; Fishilevich, E.; Rangasamy, M.; Khajuria, C.; McCaskill, D.G.; Pereira, A.E.; Gandra, P.; Frey, M.L.; Worden, S.E.; Whitlock, S.L.; et al. Control of western corn rootworm via RNAi traits in maize: Lethal and sublethal effects of Sec23 dsRNA. Pest. Manag. Sci. 2020, 76, 1500–1512. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fan, J.; Francis, F.; Chen, J. Molecular characterization and gene silencing of Laccase 1 in the grain aphid, Sitobion avenae. Arch Insect Biochem. Physiol. 2018, 97, e21446. [Google Scholar] [CrossRef]
- Lattanzio, V.; Terzano, R.; Cicco, N.; Cardinali, A.; Venere, D.D.; Linsalata, V. Seed coat tannins and bruchid resistance in stored cowpea seeds. J. Sci. Food Agric. 2005, 85, 839–846. [Google Scholar] [CrossRef]
- Sayadi, A.; Immonen, E.; Bayram, H.; Arnqvist, G. The De Novo Transcriptome and Its Functional Annotation in the Seed Beetle Callosobruchus maculatus. PLoS ONE 2016, 11, e0158565. [Google Scholar] [CrossRef]
- de Castro, E.; Sigrist, C.J.A.; Gattiker, A.; Bulliard, V.; Langendijk-Genevaux, P.S.; Gasteiger, E.; Bairoch, A.; Hulo, N. ScanProsite: Detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 2006, 34, 362–365. [Google Scholar] [CrossRef]
- Janusz, G.; Pawlik, A.; Świderska-Burek, U.; Polak, J.; Sulej, J.; Jarosz-Wilkołazka, A.; Paszczyński, A. Laccase Properties, Physiological Functions, and Evolution. Int. J. Mol. Sci. 2020, 21, 966. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Shakeel, M.; Rodriguez, A.; Tahir, U.B.; Jin, F. Gene expression studies of reference genes for quantitative real-time PCR: An overview in insects. Biotechnol. Lett. 2018, 40, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Wallace, M.; Rieske, L.K. Validation of reference genes for quantitative PCR in the forest pest, Ips calligraphus. Sci. Rep. 2021, 11, 23523. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.C.; Nadeau, K.; Abbasi, M.; Lachance, C.; Nguyen, M.; Fenrich, J. The Ultimate qPCR Experiment: Producing Publication Quality, Reproducible Data the First Time. Trends Biotechnol. 2019, 37, 761–774. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29, e45. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef]
- Brar, G.S.; Kaur, G.; Singh, S.; Shukla, J.N.; Pandher, S. Identification and validation of stage-specific reference genes for gene expression analysis in Callosobruchus maculatus (Coleoptera: Bruchidae). Gene Expr. Patterns 2022, 43, 119233. [Google Scholar] [CrossRef]
- Kaplan, E.L.; Meier, P. Nonparametric Estimation from Incomplete Observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef]
- Fire, A.; Albertson, D.; Harrison, S.W.; Moerman, D.G. Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle. Development 1991, 113, 503–514. [Google Scholar] [CrossRef]
- Schmitt-Engel, C.; Schultheis, D.; Schwirz, J.; Ströhlein, N.; Troelenberg, N.; Majumdar, U.; Dao, V.A.; Grossmann, D.; Richter, T.; Tech, M.; et al. The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology. Nat. Commun. 2015, 6, 7822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.-H.; Guo, J.-Y.; Chu, D.; Ding, T.-B.; Wei, K.-K.; Cheng, D.-F.; Wan, F.-H. Secretory laccase 1 in Bemisia tabaci MED is involved in whitefly-plant interaction. Sci. Rep. 2017, 7, 3623. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Fujiwara, M. Relative Efficiencies of the Maximum Likelihood, Maximum Parsimony, and Neighbor-Joining Methods for Estimating Protein Phylogeny. Mol. Phylogenet. Evol. 1993, 2, 1–5. [Google Scholar] [CrossRef]
- Ota, S.; Li, W.-H. NJML: A Hybrid Algorithm for the Neighbor-Joining and Maximum-Likelihood Methods. Mol. Biol. Evol. 2000, 17, 1401–1409. [Google Scholar] [CrossRef]
- Tomoyasu, Y.; Miller, S.C.; Tomita, S.; Schoppmeier, M.; Grossmann, D.; Bucher, G. Exploring systemic RNA interference in insects: A genome-wide survey for RNAi genes in Tribolium. Genome Biol. 2008, 9, R10. [Google Scholar] [CrossRef] [PubMed]
- Dittmer, N.T.; Suderman, R.J.; Jiang, H.; Zhu, Y.-C.; Gorman, M.J.; Kramer, K.J.; Kanost, M.R. Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochem. Mol. Biol. 2004, 34, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, U.N.; Singh, P.; Pandey, V.P.; Kumar, A. Structure–function relationship among bacterial, fungal and plant laccases. J. Mol. Catal. B Enzym. 2011, 68, 117–128. [Google Scholar] [CrossRef]
- Thomas, B.R.; Yonekura, M.; Morgan, T.D.; Czapla, T.H.; Hopkins, T.L.; Kramer, K.J. A trypsin-solubilized laccase from pharate pupal integument of the tobacco hornworm, Manduca sexta. Insect Biochem. 1989, 19, 611–622. [Google Scholar] [CrossRef]
- Tomoyasu, Y.; Denell, R.E. Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev. Genes Evol. 2004, 214, 575–578. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q. Laccase-1 in the Pea Aphid, Acyrthosiphon pisum (Harris). Master’s Thesis, Kansas State University, Manhattan, KS, USA, 2006. [Google Scholar]
- Hattori, M.; Konishi, H.; Tamura, Y.; Konno, K.; Sogawa, K. Laccase-type phenoloxidase in salivary glands and watery saliva of the green rice leafhopper, Nephotettix cincticeps. J. Insect Physiol. 2005, 51, 1359–1365. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Nolan, T.; Pfaffl, M.W. Quantitative real-time RT-PCR--a perspective. J. Mol. Endocrinol. 2005, 34, 597–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, X.; Ma, J.; Wang, J.; Wu, X.; Li, P.; Yao, Y. Validation of suitable reference genes for gene expression analysis in the halophyte Salicornia europaea by real-time quantitative PCR. Front. Plant Sci. 2015, 5, 788. [Google Scholar] [CrossRef] [PubMed]
- Keeling, P.J.; Doolittle, W.F. Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. Mol. Biol. Evol. 1996, 13, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. J. Mol. Endocrinol. 2002, 29, 23–39. [Google Scholar] [CrossRef]
- Enayati, A.A.; Ranson, H.; Hemingway, J. Insect glutathione transferases and insecticide resistance. Insect Mol. Biol. 2005, 14, 3–8. [Google Scholar] [CrossRef]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef]
- Perkin, L.C.; Elpidina, E.N.; Oppert, B. RNA interference and dietary inhibitors induce a similar compensation response in Tribolium castaneum larvae. Insect Mol. Biol. 2017, 26, 35–45. [Google Scholar] [CrossRef]
- De Loecker, S. Protection des Graines Emmagasinées de Niébé (Vigna unguiculata (L.) Walp.)—Influence de Certains Facteurs Climatiques et d’extraits de Feuilles de Azadirachta indica A. de Jussieu sur la bruche du niébé (Callosobruchus maculatus (F.); Faculté des sciences agronomiques de l’Etat, 1982. [Google Scholar]
- Ulrich, J.; Dao, V.A.; Majumdar, U.; Schmitt-Engel, C.; Schwirz, J.; Schultheis, D.; Ströhlein, N.; Troelenberg, N.; Grossmann, D.; Richter, T.; et al. Large scale RNAi screen in Tribolium reveals novel target genes for pest control and the proteasome as prime target. BMC Genom. 2015, 16, 674. [Google Scholar] [CrossRef]
- Bucher, G.; Scholten, J.; Klingler, M. Parental RNAi in Tribolium (Coleoptera). Curr. Biol. 2002, 12, R85–R86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehlhorn, S.; Ulrich, J.; Baden, C.U.; Buer, B.; Maiwald, F.; Lueke, B.; Geibel, S.; Bucher, G.; Nauen, R. The mustard leaf beetle, Phaedon cochleariae, as a screening model for exogenous RNAi-based control of coleopteran pests. Pestic. Biochem. Physiol. 2021, 176, 104870. [Google Scholar] [CrossRef] [PubMed]
- Kontogiannatos, D.; Kolliopoulou, A.; Swevers, L. The “Trojan horse” approach for successful RNA interference in insects. In RNAi for Plant Improvement and Protection; CABI: Wallingford UK, 2021; pp. 25–39. [Google Scholar]
- Zhu, F.; Xu, J.; Palli, R.; Ferguson, J.; Palli, S.R. Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag. Sci. 2011, 67, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Petek, M.; Coll, A.; Ferenc, R.; Razinger, J.; Gruden, K. Validating the Potential of Double-Stranded RNA Targeting Colorado Potato Beetle Mesh Gene in Laboratory and Field Trials. Front. Plant Sci. 2020, 11, 1250. [Google Scholar] [CrossRef]
Callosobruchus maculatus | |||
---|---|---|---|
Cmac-Dcr-2 GEUD01209535.1 | Cmac-Ago-2 GEUH01006697.1 | Cmac-R2D2 GEUD01188481.1 | |
Tribolium castaneum | Tcas-Dcr-1, XP_968993.2 Tcas-Dcr-2, NP_001107840.1 | Tcas-Ago-1, EFA09197.2 Tcas-Ago-2a, NP_001107842.1 Tcas-Ago-2b, NP_001107828.1 Tcas-Ago-3, XP_968053.2 | Tcas-R2D2, NP_001128425.1 |
Argillus plannipennis | Apla-Dcr-1, AJF15702.1 Apla-Dcr-2, AJF15703.1 | Apla-Ago-1, AJF15704.1 Apla-Ago-2, AJF15705.1 Apla-Ago-3, AJF15706.1 | Apla-R2D2, AJF15707.1 |
Drosophila melanogaster | Dmel-Dcr-1, AAF56056.1 Dmel-Dcr-2, NP_523778.2 | Dmel-Ago-1, AAF58314.1 Dmel-Ago-2, AGB94575.1 Dmel-Ago-3, NP_001163498.1 | Dmel-R2D2, NP_609152.1 |
Gene | Primers | Sequence (5′ to 3′) | Amplicon Size (bp) |
---|---|---|---|
lac 1 | Lac1-CM-F | ATT CCT GTT TTA AAT AAT TTG ATG ACA TG | 2433 |
Lac1-CM-R | TTG ATG TGT CAC TGT GTT TCT | ||
T7—lac 1 | Lac1-CM-T7-F’ | TAA TAC GAC TCA CTA TAG GG TGT CTT TGC TTC CGT TCC C | 588 |
Lac1-CM-T7-R’ | TAA TAC GAC TCA CTA TAG GG CGT GAT GCT CTA TTG CTT TCC | ||
T7—gfp | GFP-T7-F’ | TAA TAC GAC TCA CTA TAG GG GCC AAC CTT AGT CAC TAC TTT C | 542 |
GFP-T7-R’ | TAA TAC GAC TCA CTA TAG GG TGG GTA ATA CCA GCA GCA G |
Gene Name | Gene Symbol | Accession Number | Primers | Sequence (5’ to 3’) | Amplicon Size (bp) | Melt. Temp. | RE | R2 | Slope | y Intercept | Primer Dimer |
---|---|---|---|---|---|---|---|---|---|---|---|
Alpha-tubulin1 | tuba1 | GEUH01049608.1 | Tuba1 F1 | TGC ATC ACT AGC TTT TCT GAA | 149 | 80.5 °C | 97.8% | 0.997 | −3.375 | 22.147 | No |
Tuba1 R1 | CAA TTC CCA GCA GGC ATT AC | ||||||||||
Arginin-kinase | arg-K | GEUF01011058.1 | ArgK F23 | ATT TGA CCT TCT GCC CGA CC | 123 | 84 °C | 108.5% | 0.993 | −3.113 | 30.981 | No |
ArgK R2 | CCT GCA AGT TGA ACT GTC CC | ||||||||||
Tata binding protein | tbp | GEUH01047165.1 | TBP F1 | TTG CTC ACA ACG CAA GTA GG | 103 | 83 °C | 117.6% | 0.991 | −2.962 | 39.977 | Yes |
TBP R1 | TCG CCT GCA AGT CTT TCA TA | ||||||||||
Gluthiatone-S-transferase | gst | GEUE01064616.1 | GST F1 | CAG TCC CTG TCA AGA GCA CA | 120 | 82 °C | 108.7% | 0.999 | −3.129 | 40.815 | No |
GST R1 | TGC ATG GAG TGC AAT TCC TA | ||||||||||
laccase 1 | lac 1 | GJDX01063393.1 | Lacc F3 | ACA CAA GCA CCC CTC AAC AT | 110 | 84.5 °C | 107.5% | 0.998 | −3.154 | 43.238 | No |
Lacc R3 | GAA GCT GTA CCG ACA CAC CA |
Dpi | Target Gene | Biological Group | N Samples | Expression | Lower Error Bar | Upper Error Bar | p-Value (t-Test) |
---|---|---|---|---|---|---|---|
1 day | lac 1 | Control | 3 | 1.00 | 0.85 | 1.18 | |
1 day | lac 1 | gfp | 3 | 0.78 | 0.69 | 0.89 | 0.109 |
1 day | lac 1 | Laccase | 3 | 0.85 | 0.59 | 1.23 | 0.534 |
2 days | lac 1 | Control | 3 | 1.00 | 0.68 | 1.47 | |
2 days | lac 1 | gfp | 3 | 0.67 | 0.56 | 0.79 | 0.245 |
2 days | lac 1 | Laccase | 3 | 0.35 | 0.22 | 0.56 | 0.022 * |
3 days | lac 1 | Control | 3 | 1.00 | 0.98 | 1.02 | |
3 days | lac 1 | gfp | 3 | 0.67 | 0.59 | 0.75 | 0.004 ** |
3 days | lac 1 | Laccase | 3 | 0.24 | 0.23 | 0.25 | <10−6 *** |
4 days | lac 1 | Control | 3 | 1.00 | 0.64 | 1.56 | |
4 days | lac 1 | gfp | 3 | 0.60 | 0.47 | 0.77 | 0.163 |
4 days | lac 1 | Laccase | 3 | 0.21 | 0.19 | 0.23 | 0.004 ** |
5 days | lac 1 | Control | 3 | 1.00 | 0.77 | 1.30 | |
5 days | lac 1 | gfp | 3 | 1.15 | 1.04 | 1.27 | 0.646 |
5 days | lac 1 | Laccase | 3 | 0.27 | 0.23 | 0.31 | 0.012 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segers, A.; Carpentier, J.; Francis, F.; Caparros Megido, R. Gene Silencing of laccase 1 Induced by Double-Stranded RNA in Callosobruchus maculatus (Fabricius 1775) (Coleoptera: Chrysomelidae) Suggests RNAi as a Potential New Biotechnological Tool for Bruchid’s Control. Agriculture 2023, 13, 412. https://doi.org/10.3390/agriculture13020412
Segers A, Carpentier J, Francis F, Caparros Megido R. Gene Silencing of laccase 1 Induced by Double-Stranded RNA in Callosobruchus maculatus (Fabricius 1775) (Coleoptera: Chrysomelidae) Suggests RNAi as a Potential New Biotechnological Tool for Bruchid’s Control. Agriculture. 2023; 13(2):412. https://doi.org/10.3390/agriculture13020412
Chicago/Turabian StyleSegers, Arnaud, Joachim Carpentier, Frédéric Francis, and Rudy Caparros Megido. 2023. "Gene Silencing of laccase 1 Induced by Double-Stranded RNA in Callosobruchus maculatus (Fabricius 1775) (Coleoptera: Chrysomelidae) Suggests RNAi as a Potential New Biotechnological Tool for Bruchid’s Control" Agriculture 13, no. 2: 412. https://doi.org/10.3390/agriculture13020412
APA StyleSegers, A., Carpentier, J., Francis, F., & Caparros Megido, R. (2023). Gene Silencing of laccase 1 Induced by Double-Stranded RNA in Callosobruchus maculatus (Fabricius 1775) (Coleoptera: Chrysomelidae) Suggests RNAi as a Potential New Biotechnological Tool for Bruchid’s Control. Agriculture, 13(2), 412. https://doi.org/10.3390/agriculture13020412