Development of a Physicochemical Test Kit for On-Farm Measurement of Nutrients in Liquid Organic Manures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Sample Preparation
2.2. Laboratory Measurements and Quick Test Methods
2.3. Statistical Analyses
3. Results
4. Discussion
4.1. Evaluation of the Ammonium Models
4.2. Evaluation of the Total Nitrogen Models
4.3. Evaluation of the Phosphorus Models
4.4. Evaluation of the Potassium Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statistisches Bundesamt. Land- und Forstwirtschaft, Fischerei: Wirtschaftsdünger Tierischer Herkunft in Landwirtschaftlichen Betrieben/Landwirtschaftszählung. Available online: https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Produktionsmethoden/Publikationen/Downloads-Produktionsmethoden/wirtschaftsduenger-2030222209004.pdf?__blob=publicationFile (accessed on 1 January 2023).
- Herrera, A.; D’Imporzano, G.; Zilio, M.; Pigoli, A.; Rizzi, B.; Meers, E.; Schouman, O.; Schepis, M.; Barone, F.; Giordano, A.; et al. Environmental Performance in the Production and Use of Recovered Fertilizers from Organic Wastes Treated by Anaerobic Digestion vs Synthetic Mineral Fertilizers. ACS Sustain. Chem. Eng. 2022, 10, 986–997. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Khan, M.A.; Mohsin, I.; Wicks, J.; Ip, A.H.; Sumon, K.Z.; Dinh, C.-T.; Sargent, E.H.; Gates, I.D.; Kibria, M.G. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber–Bosch processes? Energy Environ. Sci. 2021, 14, 2535–2548. [Google Scholar] [CrossRef]
- Han, Z.; Wu, P.; He, M.; Zhuang, X.; Lin, H.; Han, S. Ammonia synthesis by electrochemical nitrogen reduction reaction—A novel energy storage way. J. Energy Storage 2022, 55, 105684. [Google Scholar] [CrossRef]
- Randive, K.; Raut, T.; Jawadand, S. An overview of the global fertilizer trends and India’s position in 2020. Miner. Econ. 2021, 34, 371–384. [Google Scholar] [CrossRef]
- Mahmud, K.; Panday, D.; Mergoum, A.; Missaoui, A. Nitrogen Losses and Potential Mitigation Strategies for a Sustainable Agroecosystem. Sustainability 2021, 13, 2400. [Google Scholar] [CrossRef]
- Fan, D.; He, W.; Smith, W.N.; Drury, C.F.; Jiang, R.; Grant, B.B.; Shi, Y.; Song, D.; Chen, Y.; Wang, X.; et al. Global evaluation of inhibitor impacts on ammonia and nitrous oxide emissions from agricultural soils: A meta-analysis. Glob. Change Biol. 2022, 28, 5121–5141. [Google Scholar] [CrossRef]
- Liu, D.; Bai, L.; Li, X.; Zhang, Y.; Qiao, Q.; Lu, Z.; Liu, J. Spatial characteristics and driving forces of anthropogenic phosphorus emissions in the Yangtze River Economic Belt, China. Resour. Conserv. Recycl. 2022, 176, 105937. [Google Scholar] [CrossRef]
- Ortiz-Reyes, E.; Anex, R.P. A life cycle impact assessment method for freshwater eutrophication due to the transport of phosphorus from agricultural production. J. Clean. Prod. 2018, 177, 474–482. [Google Scholar] [CrossRef]
- Tunney, H. Dry matter, specific gravity and nutrient relationships of cattle and pig slurry. In Engineering Problems with Effluents from Livestock; Hawkins, J.C., Ed.; EEC: Luxembourg, 1979; pp. 430–447. [Google Scholar]
- Scotford, I.M.; Cumby, T.R.; White, R.P.; Carton, O.T.; Lorenz, F.; Hatterman, U.; Provolo, G. Estimation of the Nutrient Value of Agricultural Slurries by Measurement of Physical and Chemical Properties. J. Agric. Eng. Res. 1998, 71, 291–305. [Google Scholar] [CrossRef] [Green Version]
- Thygesen, O.; Triolo, J.M.; Sommer, S.G. Indicators of physical properties and plant nutrient content of animal slurry and separated slurry. Biol. Eng. Trans. 2012, 5, 123–135. [Google Scholar] [CrossRef]
- Yagüe, M.R.; Bosch-Serra, À.D.; Boixadera, J. Measurement and estimation of the fertiliser value of pig slurry by physicochemical models: Usefulness and constraints. Biosyst. Eng. 2012, 111, 206–216. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Suller, L.; Azzellino, A.; Provolo, G. Analysis of livestock slurries from farms across Northern Italy: Relationship between indicators and nutrient content. Biosyst. Eng. 2008, 99, 540–552. [Google Scholar] [CrossRef]
- Marino, P.; de Ferrari, G.; Bechini, L. Description of a sample of liquid dairy manures and relationships between analytical variables. Biosyst. Eng. 2008, 100, 256–265. [Google Scholar] [CrossRef]
- Yang, Z.; Han, L.J.; Li, Q.; Piao, X. Estimating nutrient contents of pig slurries rapidly by measurement of physical and chemical properties. J. Agric. Sci. 2006, 144, 261–267. [Google Scholar] [CrossRef]
- Suresh, A.; Choi, H.L.; Oh, D.I.; Moon, O.K. Prediction of the nutrients value and biochemical characteristics of swine slurry by measurement of EC-electrical conductivity. Bioresour. Technol. 2009, 100, 4683–4689. [Google Scholar] [CrossRef]
- Stevens, R.J.; O’bric, C.J.; Carton, O.T. Estimating nutrient content of animal slurries using electrical conductivity. J. Agric. Sci. 1995, 125, 233–238. [Google Scholar] [CrossRef]
- van Kessel, J.S.; Reeves, J.B.; Thompson, R.B. Rapid on-farm analysis of manure nutrients using quick tests. J. Prod. Agric. 1999, 12, 215–224. [Google Scholar] [CrossRef]
- Williams, J.R.; Chambers, B.J.; Smith, K.A.; Brookman, S.; Chadwick, D.; Pain, B.F. The Development of User Friendly Systems for On-Farm Estimation of the Available Nitrogen Content in Solid Manures and Slurries; MAFF Open Contract CSA 2849; ADAS and IGER: London, UK, 1996. [Google Scholar]
- Higgins, S.F.; Shearer, S.A.; Coyne, M.S.; Fulton, J.P. Relationship of total nitrogen and total phosphorus concentration to solids content in animal water slurries. Appl. Eng. Agric. 2004, 20, 355–364. [Google Scholar] [CrossRef]
- Lugo-Ospina, A.; Dao, T.H.; van Kessel, J.A.; Reeves, J.B. Evaluation of quick tests for phosphorus determination in dairy manures. Environ. Pollut. 2005, 135, 155–162. [Google Scholar] [CrossRef]
- Singh, A.; Bicudo, J.R. Dairy manure nutrient analysis using quick tests. Environ. Technol. 2005, 26, 471–478. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Z.; Ndegwa, P.M. Using a soil hydrometer to measure the nitrogen and phosphorus contents in pig slurries. Biosyst. Eng. 2003, 85, 121–128. [Google Scholar] [CrossRef]
- Suresh, A.; Choi, H.L. Estimation of nutrients and organic matter in Korean swine slurry using multiple regression analysis of physical and chemical properties. Bioresour. Technol. 2011, 102, 8848–8859. [Google Scholar] [CrossRef]
- ISO 11261:1995; Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method. Beuth Verlag GmbH: Berlin, Germany, 1997.
- ISO 11732:2005; Water Quality—Determination of Ammonium Nitrogen—Method by Flow Analysis (CFA and FIA) and Spectrometric Detection (German Version EN ISO 11732:2005). Beuth Verlag GmbH: Berlin, Germany, 2005.
- ISO 11885:2007; Water Quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) (German Version EN ISO 11885:2009). Beuth Verlag GmbH: Berlin, Germany, 2009.
- RStudio Team. RStudio v1.4.1106: Integrated Development Environment for R; RStudio, PBC: Boston, MA, USA, 2021. [Google Scholar]
- APHA. Standard Methods for Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017; ISBN 9780875532875. [Google Scholar]
- Chescheir, G.M.; Westerman, P.W.; Safley, L.M., Jr. Rapid methods for determining nutrients in livestock manures. Trans. ASAE 1985, 28, 1817–1824. [Google Scholar] [CrossRef]
- Byrne, E.; Power, T. Determination of ammonium nitrogen in animal slurries by an ammonia electrode. Commun. Soil Sci. Plant Anal. 1974, 5, 51–65. [Google Scholar] [CrossRef]
- Chen, L.; Xing, L.; Han, L.; Yang, Z. Evaluation of physicochemical models for rapidly estimating cattle manure nutrient content. Biosyst. Eng. 2009, 104, 143–151. [Google Scholar] [CrossRef]
- Provolo, G.; Martínez-Suller, L. In situ determination of slurry nutrient content by electrical conductivity. Bioresour. Technol. 2007, 98, 3235–3242. [Google Scholar] [CrossRef] [PubMed]
- Suresh, A.; Choi, H.L. In situ rapid estimation of nutrients and organic matter in swine slurry by a hydrometer. Appl. Eng. Agric. 2012, 28, 935–942. [Google Scholar] [CrossRef]
- Chen, L.; Xing, L.; Han, L.J.; Yang, Z. Evaluation of physicochemical models for rapidly estimating pig manure nutrient content. Biosyst. Eng. 2009, 103, 313–320. [Google Scholar] [CrossRef]
- Piepel, M.-F.; Dittert, K.; Olfs, H.-W. Evaluation of Physicochemical On-Farm Quick Tests for Estimating Nutrient Concentrations in Pig Slurry and Development of an Application for Mobile Devices. Agronomy 2022, 12, 2809. [Google Scholar] [CrossRef]
- Scotford, I.M.; Cumby, T.R.; Han, L.J.; Richards, P.A. Development of a Prototype Nutrient Sensing System for Livestock Slurries. J. Agric. Eng. Res. 1998, 69, 217–228. [Google Scholar] [CrossRef]
- Sommer, S.G.; Husted, S. The chemical buffer system in raw and digested animal slurry. J. Agric. Sci. 1995, 124, 45–53. [Google Scholar] [CrossRef]
- Moral, R.; Perez-Murcia, M.D.; Perez-Espinosa, A.; Moreno-Caselles, J.; Paredes, C. Estimation of nutrient values of pig slurries in Southeast Spain using easily determined properties. Waste Manag. 2005, 25, 719–725. [Google Scholar] [CrossRef] [PubMed]
Pig Slurries (n = 391) | Cattle Slurries (n = 139) | Digestates (n = 89) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Mean | Max | SD | Min | Mean | Max | SD | Min | Mean | Max | SD | |
TN Lab (kg m−3) | 0.50 | 3.66 | 9.08 | 1.59 | 0.90 | 3.78 | 5.69 | 0.86 | 2.60 | 5.43 | 11.10 | 1.35 |
AN Lab (kg m−3) | 0.20 | 2.33 | 5.06 | 0.91 | 0.31 | 1.73 | 2.88 | 0.46 | 1.10 | 2.83 | 7.90 | 1.05 |
TP Lab (kg m−3) | 0.02 | 0.71 | 2.88 | 0.62 | 0.11 | 0.66 | 1.24 | 0.24 | 0.13 | 0.87 | 1.82 | 0.25 |
TK Lab (kg m−3) | 0.33 | 2.37 | 5.83 | 0.98 | 0.75 | 3.55 | 5.97 | 0.92 | 1.25 | 4.64 | 8.22 | 1.05 |
AN ISE (kg m−3) | 0.19 | 2.05 | 4.99 | 0.80 | 0.39 | 1.60 | 2.66 | 0.43 | 0.86 | 2.57 | 6.70 | 0.90 |
TK ISE (kg m−3) | 0.27 | 2.16 | 5.64 | 0.87 | 0.72 | 3.13 | 4.96 | 0.79 | 1.26 | 4.02 | 7.11 | 0.98 |
DM MA (%) | 0.15 | 3.42 | 15.31 | 2.84 | 1.00 | 7.12 | 11.52 | 2.30 | 1.48 | 6.60 | 10.14 | 1.73 |
Nutrient | Manure Type | Equation | RMSE (kg m−3) | R² |
---|---|---|---|---|
AN | Pig | y = 0.096 + 1.088 AN ISE | 0.262 | 0.92 |
Cattle | y = 0.096 + 1.022 AN ISE | 0.149 | 0.90 | |
Digestate | y = 0.078 + 1.132 AN ISE | 0.268 | 0.93 | |
All | y = 0.039 + 1.100 AN ISE | 0.247 | 0.93 | |
TN | Pig | y = 0.205 + 1.231 AN ISE + 0.273 DM MA | 0.354 | 0.95 |
Cattle | y = 0.379 + 1.190 AN ISE + 0.211 DM MA | 0.285 | 0.89 | |
Digestate | y = 0.055 + 1.424 AN ISE + 0.261 DM MA | 0.438 | 0.89 | |
All | y = 0.030 + 1.371 AN ISE + 0.242 DM MA | 0.391 | 0.94 | |
TP | Pig | y = 0.020 + 0.202 DM MA | 0.232 | 0.86 |
Cattle | y = 0.096 + 0.079 DM MA | 0.148 | 0.60 | |
Digestate | y = 0.343 + 0.080 DM MA | 0.204 | 0.31 | |
All | y = 0.145 + 0.122 DM MA | 0.350 | 0.54 | |
TK | Pig | y = 0.043 + 1.077 TK ISE | 0.298 | 0.91 |
Cattle | y = 0.039 + 1.125 TK ISE | 0.248 | 0.93 | |
Digestate | y = 0.534 + 1.021 TK ISE | 0.315 | 0.91 | |
All | y = 0.032 + 1.132 TK ISE | 0.302 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piepel, M.-F.; Olfs, H.-W. Development of a Physicochemical Test Kit for On-Farm Measurement of Nutrients in Liquid Organic Manures. Agriculture 2023, 13, 477. https://doi.org/10.3390/agriculture13020477
Piepel M-F, Olfs H-W. Development of a Physicochemical Test Kit for On-Farm Measurement of Nutrients in Liquid Organic Manures. Agriculture. 2023; 13(2):477. https://doi.org/10.3390/agriculture13020477
Chicago/Turabian StylePiepel, Max-Frederik, and Hans-Werner Olfs. 2023. "Development of a Physicochemical Test Kit for On-Farm Measurement of Nutrients in Liquid Organic Manures" Agriculture 13, no. 2: 477. https://doi.org/10.3390/agriculture13020477
APA StylePiepel, M. -F., & Olfs, H. -W. (2023). Development of a Physicochemical Test Kit for On-Farm Measurement of Nutrients in Liquid Organic Manures. Agriculture, 13(2), 477. https://doi.org/10.3390/agriculture13020477