Effects of Tillage Systems on the Physical Properties of Soils in a Semi-Arid Region of Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Climate of the Study Sites
2.2. Soil Description
2.3. Experimental Design and Methodology
2.4. Mesurments an Methods
- Particle size distribution was defined using Meriaux’s densimetric methods [31];
- With θg represents the gravimetric water content (%), mwet represents the wet weight (g), and mdry represents the weight of the dry soil obtained after drying (g);
- Structural stability (SS) is defined as the capacity of the soil aggregates to resist the degrading effects of rainfall [33]. The SS allows for determining the susceptibility of soils to degradation processes and their vulnerability to ramming and erosion [34,35]. It is determined by the method proposed by Le Bissonnais [36], which has become an ISO standard #10930 [37]. This method is applied to sieve-separated, air-dried, and dry-stored aggregates of 3.15 to 5 mm. Three aggregate tests were conducted under various climatic, hydraulic, and structural scenarios to which the soil face would be subjected:
- −
- Test 1: Fast wetting by immersion (FW): the aggregates are brutally immersed in a volume of water. This treatment makes it possible to test the behavior of dry soils in case of sudden humidification, such as submerged irrigation, or heavy rainfall (spring and summer storms);
- −
- Test 2: Slow wetting by capillary action (SW): the aggregates are slowly moistened by capillarity. This treatment allows for the testing of the performance of dry or slightly wet soils under moderate rain. It is less destructive than rapid wetting and therefore allows for the distinction of very unstable soils;
- −
- Test 3: Wet stirring (WS): the aggregates are saturated with ethanol, immersed in water, and manually shaken in an Erlenmeyer flask. This treatment allows us to test the behavior of wet soils (wet winter periods).
- Soil bulk density (BD) was measured with the calibrated cylinder method, using cylinders with a volume of 1140 cm3 and following the procedure described by Grossman and Reinsch (2002) [38]. The measurements were made at two soil depths (0–13 and 13–26 cm), with five replicates for the two treatments (CT and NT). The principle of the cylinder method is based on the determination of the apparent specific weight of a volume of soil sampled, using a metal cylinder, so that the weight sampled is evaluated by weighing before and after passage in an oven at 105 °C for 24 h, using a precision balance [39]. Bulk density can be expressed in g⋅cm−3 using the following equation [40]:BD = Ms/VT
- Soil organic carbon (SOC) content was assessed indirectly through the oxidation of organic carbon using the classical Walkley and Black method [41]. The soil organic matter (SOM) content is calculated by multiplying the soil organic carbon (SOC) content by a correction factor of 1.724.SOM (%) = SOC (%) × 1.724
2.5. Statistical Analysis
3. Results and Discussion
3.1. Soil Physical Parameters
3.1.1. Effect of Tillage Type (NT and CT) and Depth on the Physical Properties of the Soil
3.1.2. Structural Stability
3.1.3. Bulk Density
3.1.4. Soil Organic Matter
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sumberg, J.; Giller, K.E. What Is ‘Conventional’ Agriculture? Glob. Food Secur. 2022, 32, 100617. [Google Scholar] [CrossRef]
- Friedrich, T.; Kassam, A.; Mrabet, R. Agriculture de Conservation Dans Le Monde: Défis et Évolutions. Rev. HT E 2011, 149, 10–12. [Google Scholar]
- Jacobs, A.A.; Evans, R.S.; Allison, J.K.; Garner, E.R.; Kingery, W.L.; McCulley, R.L. Cover Crops and No-Tillage Reduce Crop Production Costs and Soil Loss, Compensating for Lack of Short-Term Soil Quality Improvement in a Maize and Soybean Production System. Soil Tillage Res. 2022, 218, 105310. [Google Scholar] [CrossRef]
- Mondal, S.; Chakraborty, D. Global Meta-Analysis Suggests That No-Tillage Favourably Changes Soil Structure and Porosity. Geoderma 2022, 405, 115443. [Google Scholar] [CrossRef]
- Hassan, W.; Li, Y.; Saba, T.; Jabbi, F.; Wang, B.; Cai, A.; Wu, J. Improved and Sustainable Agroecosystem, Food Security and Environmental Resilience through Zero Tillage with Emphasis on Soils of Temperate and Subtropical Climate Regions: A Review. Int. Soil Water Conserv. Res. 2022, 10, 530–545. [Google Scholar] [CrossRef]
- Jin, H.; Zhong, Y.; Shi, D.; Li, J.; Lou, Y.; Li, Y.; Li, J. Quantifying the Impact of Tillage Measures on the Cultivated-Layer Soil Quality in the Red Soil Hilly Region: Establishing the Thresholds of the Minimum Data Set. Ecol. Indic. 2021, 130, 108013. [Google Scholar] [CrossRef]
- Man, M.; Wagner-Riddle, C.; Dunfield, K.E.; Deen, B.; Simpson, M.J. Long-Term Crop Rotation and Different Tillage Practices Alter Soil Organic Matter Composition and Degradation. Soil Tillage Res. 2021, 209, 104960. [Google Scholar] [CrossRef]
- Mrabet, R.; Saber, N.; El-Brahli, A.; Lahlou, S.; Bessam, F. Total, Particulate Organic Matter and Structural Stability of a Calcixeroll Soil under Different Wheat Rotations and Tillage Systems in a Semiarid Area of Morocco. Soil Tillage Res. 2001, 57, 225–235. [Google Scholar] [CrossRef]
- Saber, N.; Mrabet, R. Impact of No Tillage and Crop Sequence on Selected Soil Quality Attributes of a Vertic Calcixeroll Soil in Morocco. Agronomie 2002, 22, 451–459. [Google Scholar] [CrossRef]
- Saber, N.; Mrabet, R. Influence Du Travail Du Sol et Des Rotations de Cultures Sur La Qualité d’un Sol Argileux Gonflant En Milieu Semi-Aride Marocain. Etude Et Gest. Des Sols 2002, 9, 43–53. [Google Scholar]
- Bahir, M.; Ouhamdouch, S.; Ouazar, D.; El Moçayd, N. Climate Change Effect on Groundwater Characteristics within Semi-Arid Zones from Western Morocco. Groundw. Sustain. Dev. 2020, 11, 100380. [Google Scholar] [CrossRef]
- Kiran Kumara, T.M.; Kandpal, A.; Pal, S. A Meta-Analysis of Economic and Environmental Benefits of Conservation Agriculture in South Asia. J. Environ. Manag. 2020, 269, 110773. [Google Scholar] [CrossRef]
- Moussadek, R.; Mrabet, R.; Dahan, R.; Douaik, A.; Verdoodt, A.; Van Ranst, E.; Corbeels, M. Effect of Tillage Practices on the Soil Carbon Dioxide Flux during Fall and Spring Seasons in a Mediterranean Vertisol. J. Soil Sci. Environ. Manag. 2011, 2, 362–369. [Google Scholar]
- Valkama, E.; Kunypiyaeva, G.; Zhapayev, R.; Karabayev, M.; Zhusupbekov, E.; Perego, A.; Schillaci, C.; Sacco, D.; Moretti, B.; Grignani, C.; et al. Can Conservation Agriculture Increase Soil Carbon Sequestration? A Modelling Approach. Geoderma 2020, 369, 114298. [Google Scholar] [CrossRef]
- Jat, H.S.; Datta, A.; Choudhary, M.; Yadav, A.K.; Choudhary, V.; Sharma, P.C.; Gathala, M.K.; Jat, M.L.; McDonald, A. Effects of Tillage, Crop Establishment and Diversification on Soil Organic Carbon, Aggregation, Aggregate Associated Carbon and Productivity in Cereal Systems of Semi-Arid Northwest India. Soil Tillage Res. 2019, 190, 128–138. [Google Scholar] [CrossRef]
- Piazza, G.; Pellegrino, E.; Moscatelli, M.C.; Ercoli, L. Long-Term Conservation Tillage and Nitrogen Fertilization Effects on Soil Aggregate Distribution, Nutrient Stocks and Enzymatic Activities in Bulk Soil and Occluded Microaggregates. Soil Tillage Res. 2020, 196, 104482. [Google Scholar] [CrossRef]
- Fernández-Ugalde, O.; Virto, I.; Bescansa, P.; Imaz, M.J.; Enrique, A.; Karlen, D.L. No-Tillage Improvement of Soil Physical Quality in Calcareous, Degradation-Prone, Semiarid Soils. Soil Tillage Res. 2009, 106, 29–35. [Google Scholar] [CrossRef]
- Kurothe, R.S.; Kumar, G.; Singh, R.; Singh, H.B.; Tiwari, S.P.; Vishwakarma, A.K.; Sena, D.R.; Pande, V.C. Effect of Tillage and Cropping Systems on Runoff, Soil Loss and Crop Yields under Semiarid Rainfed Agriculture in India. Soil Tillage Res. 2014, 140, 126–134. [Google Scholar] [CrossRef]
- Álvarez, C.R.; Taboada, M.Á.; Bustingorri, C.; Gutiérrez Boem, F.H. Descompactación de Suelos En Siembra Directa: Efectos Sobre Las Propiedades Físicas y El Cultivo de Maíz. Cienc. Suelo 2006, 24, 1–10. [Google Scholar]
- Álvarez, C.R.; Torres Duggan, M.; Chamorro, E.R.; Taboada, M.A. Descompactación de Suelos Franco Limosos En Siembra Directa: Efectos Sobre Las Propiedades Edáficas y Los Cultivos. Cienc. Suelo 2009, 27, 159–169. [Google Scholar]
- Taboada, M.A.; Álvarez, C.R. Soil Physical Properties and Soybean (Glycine Max, Merrill) Root Abundance in Conventionally-and Zero-Tilled Soils in the Humid Pampas of Argentina. R. Bras. Ci. Solo 2007, 32, 769–779. [Google Scholar] [CrossRef]
- Mtyobile, M.; Muzangwa, L.; Mnkeni, P.N.S. Tillage and Crop Rotation Effects on Soil Carbon and Selected Soil Physical Properties in a Haplic Cambisol in Eastern Cape, South Africa. Soil Water Res. 2020, 15, 47–54. [Google Scholar] [CrossRef]
- Ouattara, B.; Coulibaly, K.; Kohio, E.; Doumbia, S.; Ouédraogo, S.; Nacro, H.B. Effets Du Système de Culture Sous Couverture Végétale (SCV) Sur Les Flux Hydriques d’un Sol Ferrugineux à l’Ouest Du Burkina Faso. Int. J. Biol. Chem. Sci. 2018, 12, 1770–1783. [Google Scholar] [CrossRef]
- Agriculture de Conservation à Base de Semis Direct Pour Les Grandes Culture|Ministère de l’agriculture. Available online: https://www.agriculture.gov.ma/en/node/244?_wrapper_format=html (accessed on 19 July 2022).
- Devkota, M.; Devkota, K.P.; Kumar, S. Conservation Agriculture Improves Agronomic, Economic, and Soil Fertility Indicators for a Clay Soil in a Rainfed Mediterranean Climate in Morocco. Agric. Syst. 2022, 201, 103470. [Google Scholar] [CrossRef]
- Laghrour, M.; Moussadek, R.; Mrabet, R.; Dahan, R.; Mourid, M.; Zouahri, A.; Mekkaoui, M. Long and Midterm Effect of Conservation Agriculture on Soil Properties in Dry Areas of Morocco. Appl. Environ. Soil Sci. 2016, 2016, 6345765. [Google Scholar] [CrossRef]
- Kacemi, M.; Peterson, G.A.; Mrabet, R. Water Conservation, Wheat-Crop Rotations and Conservation Tillage Systems in a Turbulent Moroccan Semiarid Agriculture. In Proceedings Conference on Challenges in Moroccan Dryland Agriculture; INRA (Morocco) Publication: Rabat, Morocco, 1995; pp. 83–91. [Google Scholar]
- Moussadek, R.; Laghrour, M.; Mrabet, R.; Van Ranst, E. Crop Yields under Climate Variability and No-Tillage System in Dry Areas of Morocco. Ecol. Eng. Environ. Technol. 2023, 24, 221–232. [Google Scholar] [CrossRef]
- Devkota, M.; Singh, Y.; Yigezu, Y.A.; Bashour, I.; Mussadek, R.; Mrabet, R. Conservation Agriculture in the Drylands of the Middle East and North Africa (MENA) Region: Past Trend, Current Opportunities, Challenges and Future Outlook. Adv. Agron. 2022, 172, 253–305. [Google Scholar]
- Mekkaoui, A.E.; Moussadek, R.; Mrabet, R.; Chakiri, S.; Douaik, A.; Ghanimi, A.; Zouahri, A. The Conservation Agriculture in Northwest of Morocco (Merchouch Area): The Impact of No-till Systems on Physical Properties of Soils in Semi-Arid Climate. E3S Web Conf. 2021, 234, 00037. [Google Scholar] [CrossRef]
- Mériaux, S. Contribution à l’etude de l’Analyse Granulometrique: Theses Présentées à La Faculté Des Sciences de L’Université de Paris Pour Obtenir Le Titre de Docteur d’Université de Paris (Mention Sciences). Ph.D. Thesis, Institut National de la Recherche Agronomique, Paris, France, 1954. [Google Scholar]
- Gardner, W.H. Water Content. Methods Soil Anal. Part 1 Phys. Mineral. Methods 1986, 5, 493–544. [Google Scholar]
- Pojasok, T.; Kay, B.D. Assessment of a Combination of Wet Sieving and Turbidimetry to Characterize the Structural Stability of Moist Aggregates. Can. J. Soil Sci. 1990, 70, 33–42. [Google Scholar] [CrossRef]
- Chenu, C.; Abiven, S.; Annabi, M.; Barray, S.; Bertrand, M.; Bureau, F.; Cosentino, D.J.; Darboux, F.; Duval, O.; Fourrié, L. Mise Au Point d’outils de Prévision de l’évolution de La Stabilité de La Structure de Sols Sous l’effet de La Gestion Organique Des Sols. Etude Gest. Sols 2011, 18, 161–174. [Google Scholar]
- Moussadek, R.; Mrabet, R.; Dahan, R. Effet de l’agriculture de Conservation Sur La Qualité Des Sols Au Maroc. Rev. HT E 2011, 149, 25–28. [Google Scholar]
- Le Bissonnais, Y. Aggregate Stability and Assessment of Soil Crustability and Erodibility: I. Theory and Methodology. Eur. J. Soil Sci. 1996, 47, 425–437. [Google Scholar] [CrossRef]
- Standard 10930; Soil Quality—Measurement of the Stability of Soil Aggregates Subjected to the Action of Water. International Organization for Standardization: Geneva, Switzerland, 2012.
- Grossman, R.B.; Reinsch, T.G. 2.1 Bulk Density and Linear Extensibility. Methods Soil Anal. Part 4 Phys. Methods 2002, 5, 201–228. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk Density. Methods Soil Anal. Part 1 Phys. Mineral. Methods 1986, 5, 363–375. [Google Scholar]
- Blake, G.R. Bulk Density. Methods Soil Anal. Part 1 Phys. Mineral. Prop. Incl. Stat. Meas. Sampl. 1965, 9, 374–390. [Google Scholar]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Moussadek, R.; Laghrour, M.; Mrabet, R.; Van Ranst, E.; Badraoui, M.; Mekkaoui, M. Morocco’s Vertisol Characterization (Tirs). J. Mater. Environ. Sci. 2017, 8, 3932–3942. [Google Scholar]
- Chellappa, J.; Sagar, K.L.; Sekaran, U.; Kumar, S.; Sharma, P. Soil Organic Carbon, Aggregate Stability and Biochemical Activity under Tilled and No-Tilled Agroecosystems. J. Agric. Food Res. 2021, 4, 100139. [Google Scholar] [CrossRef]
- Le Bissonnais, Y.; Le Souder, C. Mesurer La Stabilité Structurale Des Sols Pour Évaluer Leur Sensibilité à La Battance et à l’érosion. Etude Et Gest. Des Sols 1995, 2, 43–56. [Google Scholar]
- Laghrour, M. Impact du semis direct sur les propriétés physiques d’un sol argileux au Maroc central (Impact of No Tillage on physical proprieties of a clay soil in Central Morocco). J. Mater. Environ. Sci. 2016, 6, 391–396. [Google Scholar]
- Laghrour, M.; Moussadek, R.; Zouahri, A.; Mekkaoui, M.; Dahan, R.; El Mourid, M. Impact of No Tillage on Physical Proprieties of a Clay Soil in Central Morocco. J. Mater. Environ. Sci. 2015, 6, 391–396. [Google Scholar]
- Moussadek, R.; Mrabet, R.; Zante, P.; Marie Lamachère, J.; Pépin, Y.; Le Bissonnais, Y.; Ye, L.; Verdoodt, A.; Van Ranst, E. Effets Du Travail Du Sol et de La Gestion Des Résidus Sur Les Propriétés Du Sol et Sur l’érosion Hydrique d’un Vertisol Méditerranéen. Can. J. Soil. Sci. 2011, 91, 627–635. [Google Scholar] [CrossRef]
- Abiven, S.; Menasseri, S.; Chenu, C. The Effects of Organic Inputs over Time on Soil Aggregate Stability–A Literature Analysis. Soil Biol. Biochem. 2009, 41, 1–12. [Google Scholar] [CrossRef]
- Alongo, S.; Kombele, F. Évolution de La Densité Apparente et Du Rapport c/n Du Sol Sous Les Variétés Exotiques et Locale de Manioc Dans Les Conditions Naturelles de Kisangani (RD Congo). Ann. L’institut Fac. Sci. Agron. Yangambi 2009, 1, 197–214. [Google Scholar]
- Bruce, R.R.; Langdale, G.W.; Dillard, A.L. Tillage and Crop Rotation Effect on Characteristics of a Sandy Surface Soil. Soil Sci. Soc. Am. J. 1990, 54, 1744–1747. [Google Scholar] [CrossRef]
- Cassel, D.K.; Raczkowski, C.W.; Denton, H.P. Tillage Effects on Corn Production and Soil Physical Conditions. Soil Sci. Soc. Am. J. 1995, 59, 1436–1443. [Google Scholar] [CrossRef]
- Jabro, J.D.; Stevens, W.B.; Iversen, W.M.; Sainju, U.M.; Allen, B.L. Soil Cone Index and Bulk Density of a Sandy Loam under No-till and Conventional Tillage in a Corn-Soybean Rotation. Soil Tillage Res. 2021, 206, 104842. [Google Scholar] [CrossRef]
- Kay, B.D.; VandenBygaart, A.J. Conservation Tillage and Depth Stratification of Porosity and Soil Organic Matter. Soil Tillage Res. 2002, 66, 107–118. [Google Scholar] [CrossRef]
- Huwe, B. The Role of Soil Tillage for Soil Structure. In Soil Tillage in Agroecosystems; El Titi, A., Ed.; CRC Press: Boca Raton, FL, USA, 2003; pp. 27–49. [Google Scholar]
- Munkholm, L.J.; Schjønning, P.; Rasmussen, K.J.; Tanderup, K. Spatial and Temporal Effects of Direct Drilling on Soil Structure in the Seedling Environment. Soil Tillage Res. 2003, 71, 163–173. [Google Scholar] [CrossRef]
- Fernández, P.L.; Álvarez, C.R.; Schindler, V.; Taboada, M.A. Changes in Topsoil Bulk Density after Grazing Crop Residues under No-till Farming. Geoderma 2010, 159, 24–30. [Google Scholar] [CrossRef]
- Jordán, A.; Zavala, L.M.; Gil, J. Effects of Mulching on Soil Physical Properties and Runoff under Semi-Arid Conditions in Southern Spain. Catena 2010, 81, 77–85. [Google Scholar] [CrossRef]
- Helgason, B.L.; Walley, F.L.; Germida, J.J. No-till Soil Management Increases Microbial Biomass and Alters Community Profiles in Soil Aggregates. Applied Soil Ecology 2010, 46, 390–397. [Google Scholar] [CrossRef]
- Aduhene-Chinbuah, J.; Sugihara, S.; Komatsuzaki, M.; Nishizawa, T.; Tanaka, H. No Tillage Increases SOM in Labile Fraction but Not Stable Fraction of Andosols from a Long-Term Experiment in Japan. Agronomy 2022, 12, 479. [Google Scholar] [CrossRef]
- Gao, Q.; Ma, L.; Fang, Y.; Zhang, A.; Li, G.; Wang, J.; Wu, D.; Wu, W.; Du, Z. Conservation Tillage for 17 Years Alters the Molecular Composition of Organic Matter in Soil Profile. Sci. Total Environ. 2021, 762, 143116. [Google Scholar] [CrossRef]
- Moussadek, R.; Mrabet, R.; Dahan, R.; Zouahri, A.; El Mourid, M.; Van Ranst, E. Tillage System Affects Soil Organic Carbon Storage and Quality in Central Morocco. Appl. Environ. Soil Sci. 2014, 2014, 654796. [Google Scholar] [CrossRef]
- Govaerts, B.; Sayre, K.D.; Goudeseune, B.; De Corte, P.; Lichter, K.; Dendooven, L.; Deckers, J. Conservation Agriculture as a Sustainable Option for the Central Mexican Highlands. Soil Tillage Res. 2009, 103, 222–230. [Google Scholar] [CrossRef]
- López, M.V.; Blanco-Moure, N.; Limón, M.Á.; Gracia, R. No Tillage in Rainfed Aragon (NE Spain): Effect on Organic Carbon in the Soil Surface Horizon. Soil Tillage Res. 2012, 118, 61–65. [Google Scholar] [CrossRef]
- Andruschkewitsch, R.; Geisseler, D.; Koch, H.-J.; Ludwig, B. Effects of Tillage on Contents of Organic Carbon, Nitrogen, Water-Stable Aggregates and Light Fraction for Four Different Long-Term Trials. Geoderma 2013, 192, 368–377. [Google Scholar] [CrossRef]
- Bessam, F.; Mrabet, R. Long-Term Changes in Soil Organic Matter under Conventional Tillage and No-Tillage Systems in Semiarid Morocco. Soil Use Manag. 2003, 19, 139–143. [Google Scholar] [CrossRef]
- Mrabet, R.; Moussadek, R.; Fadlaoui, A.; Van Ranst, E. Conservation Agriculture in Dry Areas of Morocco. Field Crops Res. 2012, 132, 84–94. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 10th ed.; United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2006.
- Murthy, R.S.; Bhattacharjee, J.C.; Landey, R.J.; Pofali, R.M. Distribution, Characteristics and Classification of Vertisols. In Vertisols and Rice Soils of the Tropics; Symposia papers II: New Delhi, India, 1982; Volume 2, pp. 3–22. [Google Scholar] [CrossRef]
Site | Depth | Tillage | Clay | Fine Slit | Coarse Slit | Fine Sand | Coarse Sand | CaCO3 | Soil |
---|---|---|---|---|---|---|---|---|---|
(cm) | Type | (%) | (%) | (%) | (%) | (%) | (%) | Type | |
M13 | 0–13 | CT | 50.0 | 12.3 | 22.7 | 8.5 | 7.4 | 0.4 | Dark brown and grey vertisol with possible external drainage |
NT | 48.3 | 10.5 | 21.8 | 6.6 | 5.4 | 0.3 | |||
13–26 | CT | 47.7 | 13.0 | 23.2 | 8.7 | 7.7 | 0.5 | ||
NT | 50.0 | 11.5 | 22.3 | 7.9 | 6.9 | 0.3 | |||
AS7 | 0–13 | CT | 36.1 | 10.5 | 12.6 | 9.9 | 5.2 | 13.7 | Isohumic and brown with a vertic character |
NT | 36.4 | 11.2 | 13.2 | 10.4 | 5.6 | 13.7 | |||
13–26 | CT | 38.7 | 5.1 | 13.1 | 10.1 | 5.3 | 20.8 | ||
NT | 39.4 | 5.4 | 12.9 | 10.2 | 5.4 | 19.8 |
Site | Cropping System | Area (ha) | Year of NT Adoption | Previous Crop Residue Management | Plowing Technique | Current Crop | Sowing Period and Density | Basal Fertilizer NPK:14-28-14 (kg/ha) | Top Dressing Fertilizer Ammonium Sulfate 21% (kg/ha) | Pest Management |
---|---|---|---|---|---|---|---|---|---|---|
M13 | NT | 1 | 2005 | 30% lentil Residue retained | No ground turning; seeds were placed in a ground opening of a 5 cm depth using the Monoseed B/GP/DT Seeder. | Soft wheat: Arrihane variety | 22 December 2017 150 kg/ha | 150 | 50 | Glyphosate 2 L/ha (pre-sowing) |
CT | 1 | - | 0% lentil residue retained | Chisel passage in July; cover crop in October (15–20 cm depth) for the preparation of seedbeds and the burial of crop residues. | Soft wheat: Arrihane variety | 22 December 2017 150 kg/ha | 150 | 50 | None | |
AS7 | NT | 1 | 2011 | 30% barley residue retained | No ground turning; seeds were placed in a ground opening of a 5 cm depth using the Monoseed B/GP/DT Seeder. | Chickpea: Farihane variety | 15 December 2017 80 kg/ha | 100 | None | Glyphosate 2 L/ha (pre-sowing) + fluazifop-P-butyl 1.25 L/Ha (After sowing) |
CT | 1 | - | 0% barley residue retained | Chisel passage in July; cover crop in October (15–20 cm depth). | Chickpea: Farihane variety | 15 December 2017, 80 kg/ha | 100 | None | None |
M13 | AS7 | ||||||
---|---|---|---|---|---|---|---|
Parameter | Tillage | 0–13 | 13–26 | Mean | 0–13 | 13–26 | Mean |
θg (%) | CT | 17.31 ± 0.75 | 17.48 ± 0.42 | 17.39 ± 0.58 | 22.52 ± 0.76 | 21.71 ± 0.76 | 22.12 ± 0.83 |
NT | 19.34 ± 0.70 | 19.20 ± 0.61 | 19.27 ± 0.62 | 22.04 ± 0.54 | 22.23 ± 0.55 | 22.14 ± 0.52 | |
Variability (%) | 12 | 10 | 11 | −2 | 2 | 0 | |
BD (g cm−3) | CT | 1.41 ± 0.05 | 1.60 ± 0.04 | 1.51 ± 0.11 | 1.20 ± 0.07 | 1.37 ± 0.08 | 1.29 ± 0.11 |
NT | 1.46 ± 0.02 | 1.60 ± 0.05 | 1.53 ± 0.08 | 1.34 ± 0.05 | 1.50 ± 0.06 | 1.42 ± 0.09 | |
Variability (%) | 4 | 0 | 1 | 12 | 9 | 10 | |
SOM (%) | CT | 1.33 ± 0.15 | 1.10 ± 0.11 | 1.22 ± 0.17 | 2.23 ± 0.04 | 1.82 ± 0.07 | 2.03 ± 0.22 |
NT | 1.96 ± 0.04 | 1.75 ± 0.02 | 1.85 ± 0.11 | 2.68 ± 0.06 | 2.50 ± 0.07 | 2.59 ± 0.11 | |
Variability (%) | 47 | 59 | 52 | 20 | 37 | 28 | |
FW (mm) | CT | 0.47 ± 0.01 | 0.64 ± 0.00 | 0.55 ± 0.09 | 0.35 ± 0.01 | 0.43 ± 0.01 | 0.39 ± 0.05 |
NT | 0.97 ± 0.05 | 1.12 ± 0.05 | 1.04 ± 0.09 | 0.37 ± 0.01 | 0.57 ± 0.02 | 0.47 ± 0.10 | |
Variability (%) | 106 | 75 | 89 | 6 | 33 | 21 | |
SW (mm) | CT | 0.81 ± 0.01 | 1.02 ± 0.05 | 0.92 ± 0.12 | 0.49 ± 0.01 | 0.73 ± 0.02 | 0.61 ± 0.13 |
NT | 1.42 ± 0.02 | 1.20 ± 0.02 | 1.31 ± 0.12 | 0.63 ± 0.01 | 0.90 ± 0.03 | 0.76 ± 0.14 | |
Variability (%) | 75 | 18 | 42 | 29 | 23 | 25 | |
WS (mm) | CT | 0.88 ± 0.03 | 1.03 ± 0.03 | 0.95 ± 0.08 | 0.66 ± 0.01 | 0.80 ± 0.02 | 0.73 ± 0.07 |
NT | 1.87 ± 0.02 | 1.60 ± 0.05 | 1.74 ± 0.15 | 0.71 ± 0.01 | 0.88 ± 0.01 | 0.80 ± 0.09 | |
Variability (%) | 113 | 55 | 83 | 8 | 10 | 10 |
Effect of Tillage System | Effect of Soil Depth | Tillage Type * Depth | |||||
---|---|---|---|---|---|---|---|
Site | Soil Property | F | Sig. | F | Sig. | F | Sig. |
M13 | Bulk density (g/cm3) | 1.383 | 0.257 ns | 73.650 | <0.001 *** | 1.980 | 0.178 ns |
Gravimetric water content (%) | 43.879 | <0.001 *** | 0.004 | 0.952 ns | 0.305 | 0.588 ns | |
SOM (%) | 228.690 | <0.001 *** | 27.622 | <0.001 *** | 0.073 | 0.791 ns | |
Fast wetting (mm) | 885.014 | <0.001 *** | 99.244 | <0.001 *** | 0.713 | 0.411 ns | |
Slow wetting (mm) | 1013.928 | <0.001 *** | 0.243 | 0.629 ns | 307.839 | <0.001 *** | |
Wet stirring (mm) | 2306.756 | <0.001 *** | 14.360 | 0.01 ** | 164.023 | <0.001 *** | |
AS7 | Bulk density (g/cm3) | 23.292 | <0.001 *** | 32.595 | <0.001 *** | 0.014 | 0.909 ns |
Gravimetric water content (%) | 0.005 | 0.947 ns | 1.105 | 0.309 ns | 2.880 | 0.109 ns | |
SOM (%) | 413.568 | <0.001 *** | 114.812 | <0.001 *** | 17.212 | 0.01 ** | |
Fast wetting (mm) | 346.574 | <0.001 *** | 1180.378 | <0.001 *** | 168.739 | <0.001 *** | |
Slow wetting (mm) | 1863.704 | <0.001 *** | 4941.530 | <0.001 *** | 14.238 | 0.01 ** | |
Wet stirring (mm) | 106.454 | <0.001 *** | 555.199 | <0.001 *** | 4.408 | 0.052 * |
Site | Tillage Type | Depth (cm) | MWD (mm) | Class | Stability | Sealing | Runoff and Erosion |
---|---|---|---|---|---|---|---|
M13 | NT | 0–13 | 1.42 | 1.3–2.0 mm | Stable | Occasional | Limited risk |
CT | 0–13 | 0.72 | 0.4–0.8 mm | Unstable | Very frequent | Frequent risk | |
AS7 | NT | 0–13 | 0.57 | 0.4–0.8 mm | Unstable | Very frequent | Frequent risk |
CT | 0–13 | 0.50 | 0.4–0.8 mm | Unstable | Very frequent | Frequent risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Mekkaoui, A.; Moussadek, R.; Mrabet, R.; Douaik, A.; El Haddadi, R.; Bouhlal, O.; Elomari, M.; Ganoudi, M.; Zouahri, A.; Chakiri, S. Effects of Tillage Systems on the Physical Properties of Soils in a Semi-Arid Region of Morocco. Agriculture 2023, 13, 683. https://doi.org/10.3390/agriculture13030683
El Mekkaoui A, Moussadek R, Mrabet R, Douaik A, El Haddadi R, Bouhlal O, Elomari M, Ganoudi M, Zouahri A, Chakiri S. Effects of Tillage Systems on the Physical Properties of Soils in a Semi-Arid Region of Morocco. Agriculture. 2023; 13(3):683. https://doi.org/10.3390/agriculture13030683
Chicago/Turabian StyleEl Mekkaoui, Abdelali, Rachid Moussadek, Rachid Mrabet, Ahmed Douaik, Rachid El Haddadi, Outmane Bouhlal, Mariyam Elomari, Matike Ganoudi, Abdelmjid Zouahri, and Said Chakiri. 2023. "Effects of Tillage Systems on the Physical Properties of Soils in a Semi-Arid Region of Morocco" Agriculture 13, no. 3: 683. https://doi.org/10.3390/agriculture13030683
APA StyleEl Mekkaoui, A., Moussadek, R., Mrabet, R., Douaik, A., El Haddadi, R., Bouhlal, O., Elomari, M., Ganoudi, M., Zouahri, A., & Chakiri, S. (2023). Effects of Tillage Systems on the Physical Properties of Soils in a Semi-Arid Region of Morocco. Agriculture, 13(3), 683. https://doi.org/10.3390/agriculture13030683