Feammox Bacterial Biofilms as an Alternative Biological Process for the Removal of Nitrogen from Agricultural Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sludge Sample Collection
2.2. Chemical Characterization of Sludge
2.3. Sludge Pre-Incubation
2.4. Enrichment Culture in Batch Experiments
2.5. Biofilm Formation on Hollow Fibers
3. Results and Discussion
3.1. Enrichment of Feammox and Ammonium Removal in Batch Reactors
3.2. Effect of pH on Feammox Enrichment in a Batch Reactor
3.3. Biofilm Formation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thamdrup, B. New pathways and processes in the global nitrogen cycle. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 407–428. [Google Scholar] [CrossRef]
- Prakash, A.; Khanam, S. Nitrogen Pollution Threat to Mariculture and Other Aquatic Ecosystems: An Overview. J. Pharm. Pharmacol. 2021, 9, 428–433. [Google Scholar] [CrossRef]
- Richardson, D.; Felgate, H.; Watmough, N.; Thomson, A.; Baggs, E. Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle–could enzymic regulation hold the key? Trends Biotechnol. 2009, 27, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Galloway, J.N.; Cowling, E.B. Reactive Nitrogen and The World: 200 Years of Change. AMBIO J. Hum. Environ. 2002, 31, 64–71. [Google Scholar] [CrossRef]
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Hou, L.; Liu, M.; Zheng, Y.; Yin, G.; Lin, X.; Hu, X. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland. Environ. Sci. Technol. 2015, 49, 11560–11568. [Google Scholar] [CrossRef]
- Canfield, D.E.; Glazer, A.N.; Falkowski, P.G. The evolution and future of Earth’s nitrogen cycle. Science 2010, 330, 192–196. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; He, N.; Zhang, X. Effects of reactive nitrogen deposition on terrestrial and aquatic ecosystems. Ecol. Eng. 2014, 70, 312–318. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, G. Integrated effects of temperature and COD/N on an up-flow anaerobic filter-biological aerated filter: Performance, biofilm characteristics and microbial community. Bioresour. Technol. 2019, 293, 122004. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, W.; Liu, R.; Li, Q.; Li, B.; Wang, S.; Mulchandani, A. Phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale wastewater treatment plants. Environ. Sci. Technol. 2011, 45, 7408–7415. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Gu, S.; Zhang, L.; Dong, Y.; Jiang, L.; Fan, W.; Peng, Y. The combined effects of biomass and temperature on maximum specific ammonia oxidation rate in domestic wastewater treatment. Front. Environ. Sci. Eng. 2021, 15, 123. [Google Scholar] [CrossRef]
- Xu, Z.; Dai, X.; Chai, X. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes. Sci. Total Environ. 2018, 634, 195–204. [Google Scholar] [CrossRef]
- Guisasola, A.; Petzet, S.; Baeza, J.A.; Carrera, J.; Lafuente, J. Inorganic carbon limitations on nitrification: Experimental assessment and modelling. Water Res. 2007, 41, 277–286. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.C.; Cheng, Z.; Li, Y.; Tang, J. Effect of fermentation liquid from food waste as a carbon source for enhancing denitrification in wastewater treatment. Chemosphere 2016, 144, 689–696. [Google Scholar] [CrossRef]
- Zekker, I.; Raudkivi, M.; Artemchuk, O.; Rikmann, E.; Priks, H.; Jaagura, M.; Tenno, T. Mainstream-sidestream wastewater switching promotes anammox nitrogen removal rate in organic-rich, low-temperature streams. Environ. Technol. 2021, 42, 3073–3082. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ling, J.; Chen, P.; Chen, J.; Dai, R.; Liao, J.; Yu, J.; Xu, Y. Pseudomonas mendocina LYX: A novel aerobic bacterium with advantage of removing nitrate high effectively by assimilation and dissimilation simultaneously. Front. Environ. Sci. Eng. 2021, 15, 57. [Google Scholar] [CrossRef]
- Clément, J.C.; Shrestha, J.; Ehrenfeld, J.G.; Jaffé, P.R. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil. Biol. Biochem. 2005, 37, 2323–2328. [Google Scholar] [CrossRef]
- Yang, W.H.; Weber, K.A.; Silver, W.L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nat.Geosci. 2012, 5, 538–541. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.J.; An, X.L.; Li, S.; Zhang, G.L.; Zhu, Y.G. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence. Environ. Sci. Technol. 2014, 48, 10641–10647. [Google Scholar] [CrossRef]
- Ding, L.; Mao, R.; Guo, X.; Yang, X.; Zhang, Q.; Yang, C. Microplastics in surface waters and sediments of the Wei River, in the northwest of China. Sci. Total Environ. 2019, 667, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Del Toro, E.E.; Valenzuela, E.I.; López-Lozano, N.E.; Cortés-Martínez, M.G.; Sánchez-Rodríguez, M.A.; Calvario-Martínez, O.; Sánchez-Carrillo, S.; Cervantes, F.J. Anaerobic ammonium oxidation linked to sulfate and ferric iron reduction fuels nitrogen loss in marine sediments. Biodegradation 2018, 29, 429–442. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, C.; Cisternas, J.; Serrano, J.; Leiva, E. Nitrogen Removal by an Anaerobic Iron-Dependent Ammonium Oxidation (Feammox) Enrichment: Potential for Wastewater Treatment. Water 2021, 13, 3462. [Google Scholar] [CrossRef]
- Visvanathan, C.; Aim, R.B.; Parameshwaran, K. Membrane separation bioreactors for wastewater treatment. Crit. Rev. Environ. Sci.Technol. 2000, 30, 1–48. [Google Scholar] [CrossRef]
- Ruiz-Urigüen, M.; Shuai, W.; Jaffé, P.R. Electrode colonization by the Feammox bacterium Acidimicrobiaceae sp. strain A6. Appl. Environ. Microbiol. 2018, 84, e02029-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razaviarani, V.; Ruiz-Urigüen, M.; Jaffé, P.R. Denitrification of nitric oxide using hollow fiber membrane bioreactor; effect of nitrate and nitric oxide loadings on the reactor performance and microbiology. Waste Biomass Valorization 2019, 10, 1989–2000. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, X.; Qin, L.; Li, X.; Meng, Q.; Shen, C.; Zhang, G. Enhanced MPBR with polyvinylpyrrolidone-graphene oxide/PVDF hollow fiber membrane for efficient ammonia nitrogen wastewater treatment and high-density Chlorella cultivation. Chem. Eng. J. 2020, 379, 122368. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Li, Y.; Zhao, H.; Peng, H. Nitrogen removal during anaerobic digestion of wasted activated sludge under supplementing Fe (III) compounds. Chem. Eng. J. 2018, 332, 711–716. [Google Scholar] [CrossRef]
- Zhu, T.T.; Lai, W.X.; Zhang, Y.B.; Liu, Y.W. Feammox process driven anaerobic ammonium removal of wastewater treatment under supplementing Fe (III) compounds. Sci. Total Environ. 2022, 804, 149965. [Google Scholar] [CrossRef]
- Xu, J.X.; Li, X.M.; Sun, G.X.; Cui, L.; Ding, L.J.; He, C.; Zhu, Y.G. Fate of labile organic carbon in paddy soil is regulated by microbial ferric iron reduction. Environ. Sci. Technol. 2019, 53, 8533–8542. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, C.; Lu, J.; Zhang, Y. Fe (III)/Fe (II) forwarding a new anammox-like process to remove high-concentration ammonium using nitrate as terminal electron acceptor. Water Res. 2020, 172, 115528. [Google Scholar] [CrossRef]
- Xia, Q.; Ai, Z.; Huang, W.; Yang, F.; Liu, F.; Lei, Z.; Huang, W. Recent progress in applications of Feammox technology for nitrogen removal from wastewaters: A review. Bioresour. Technol. 2022, 127868. [Google Scholar] [CrossRef]
- Desireddy, S.; Sabumon, P.C.; Maliyekkal, S.M. Anoxic ammonia removal using granulated nanostructured Fe oxyhydroxides and the effect of pH, temperature and potential inhibitors on the process. J. Water Process Eng. 2020, 33, 101066. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, C.; Song, N.; Wang, C.; Jiang, H. Oxidation of ammonium in aerobic wastewater by anoxic ferric iron-dependent ammonium oxidation (Feammox) in a biofilm reactor. Desalin. Water Treat. 2020, 173, 197–206. [Google Scholar] [CrossRef]
- Ghafari, S.; Hasan, M.; Aroua, M.K. Effect of carbon dioxide and bicarbonate as inorganic carbon sources on growth and adaptation of autohydrogenotrophic denitrifying bacteria. J. Hazard. Mater. 2009, 162, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Yang, L.; Song, N.; Wang, C.; Jiang, H. Effect of organic matter derived from algae and macrophyte on anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a shallow freshwater lake. Environ. Sci. Pollut. Res. 2020, 27, 25899–25907. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zhang, M.; Gu, X.; Yan, P.; He, S.; Chachar, A. New insight and enhancement mechanisms for Feammox process by electron shuttles in wastewater treatment—A systematic review. Bioresour. Technol. 2022, 128495. [Google Scholar] [CrossRef]
- Wett, B.; Rauch, W. The role of inorganic carbon limitation in biological nitrogen removal of extremely ammonia concentrated wastewater. Water Res. 2003, 37, 1100–1110. [Google Scholar] [CrossRef]
- Glass, C.; Silverstein, J. Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Water Res. 1998, 32, 831–839. [Google Scholar] [CrossRef]
- Tan, X.; Xie, G.J.; Nie, W.B.; Xing, D.F.; Liu, B.F.; Ding, J.; Ren, N.Q. Fe (III)-mediated anaerobic ammonium oxidation: A novel microbial nitrogen cycle pathway and potential applications. Crit. Rev. Environ. Sci. Technol. 2022, 52, 2962–2994. [Google Scholar] [CrossRef]
- Miao, L.; Wang, C.; Hou, J.; Wang, P.; Ao, Y.; Li, Y.; Gu, Q. Response of wastewater biofilm to CuO nanoparticle exposure in terms of extracellular polymeric substances and microbial community structure. Sci. Total Environ. 2017, 579, 588–597. [Google Scholar] [CrossRef]
- Li, X.; Yuan, Y.; Huang, Y. Enhancing the nitrogen removal efficiency of a new autotrophic biological nitrogen-removal process based on the iron cycle: Feasibility, progress, and existing problems. J. Clean. Prod. 2021, 317, 128499. [Google Scholar] [CrossRef]
Parameters | IC Sludge | |
Anions | NO3− [mg/L] NO2− [mg/L] | 16.8 0 |
Fe species | Total Fe [mg/L] | 1.46 |
Fe+2 [mg/L] | 0.36 | |
COD [mg/L] | 14039 | |
Other | sCOD [mg/L] | 5649 |
pH | 7.35 | |
NH4+ [mg/L] | 410.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerda, Á.; González, M.; Rodríguez, C.; Serrano, J.; Leiva, E. Feammox Bacterial Biofilms as an Alternative Biological Process for the Removal of Nitrogen from Agricultural Wastewater. Agriculture 2023, 13, 728. https://doi.org/10.3390/agriculture13030728
Cerda Á, González M, Rodríguez C, Serrano J, Leiva E. Feammox Bacterial Biofilms as an Alternative Biological Process for the Removal of Nitrogen from Agricultural Wastewater. Agriculture. 2023; 13(3):728. https://doi.org/10.3390/agriculture13030728
Chicago/Turabian StyleCerda, Ámbar, Macarena González, Carolina Rodríguez, Jennyfer Serrano, and Eduardo Leiva. 2023. "Feammox Bacterial Biofilms as an Alternative Biological Process for the Removal of Nitrogen from Agricultural Wastewater" Agriculture 13, no. 3: 728. https://doi.org/10.3390/agriculture13030728
APA StyleCerda, Á., González, M., Rodríguez, C., Serrano, J., & Leiva, E. (2023). Feammox Bacterial Biofilms as an Alternative Biological Process for the Removal of Nitrogen from Agricultural Wastewater. Agriculture, 13(3), 728. https://doi.org/10.3390/agriculture13030728