Zeolite and Ascophyllum nodosum-Based Biostimulant Effects on Spinach Gas Exchange and Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Description and Experimental Design
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lovelli, S.; Perniola, M.; Scalcione, E.; Troccoli, A.; Ziska, L.H. Future Climate change in the Mediterranea area: Implications for water use and weed management. Ital. J. Agron. 2012, 7, 44–49. [Google Scholar]
- Spinoni, J.; Naumann, G.; Vogt, J.V. Pan-European seasonal trends and recent changes of drought frequency and severity. Glob. Planet. Chang. 2017, 148, 113–130. [Google Scholar] [CrossRef]
- Molina, C.; Akçay, E.; Dieckmann, U.; Levin, S.A.; Rovenskaya, E.A. Combating climate change with matching-commitment agreements. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lovelli, S. Weed Competition under drought conditions in a changing climate. Acta Sci. Agric. 2023, 7, 30–32. [Google Scholar] [CrossRef]
- Miralles, D.G.; Gentine, P.; Seneviratne, S.I.; Teuling, A.J. Land–atmospheric feedbacks during droughts and heatwaves: State of the science and current challenges. Ann. N.Y. Acad. Sci. 2019, 1436, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; de Jeu, R.A.M.; Liu, Y.Y.; van der Werf, G.R.; Dolman, A.J. Using satellite based soil moisture to quantify the water driven variability in NDVI: A case study over mainland Australia. Remote Sens. Environ. 2014, 140, 330–338. [Google Scholar] [CrossRef]
- Lovelli, S. Dryland farming and the agronomic management of crops in arid environments. J. Agron. 2019, 18, 49–54. [Google Scholar] [CrossRef]
- Xu, C.; Leskovar, D.I. Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Sci. Hortic. 2015, 183, 39–47. [Google Scholar] [CrossRef]
- Długosz, J.; Piotrowska-Długosz, A.; Kotwica, K.; Przybyszewska, E. Application of multi-component conditioner with clinoptilolite and ascophyllum nodosum extract for improving soil properties and zea mays L. growth and yield. Agronomy 2020, 10, 2005. [Google Scholar] [CrossRef]
- Garbowski, T.; Bar-Michalczyk, D.; Charazińska, S.; Grabowska-Polanowska, B.; Kowalczyk, A.; Lochyński, P. An overview of natural soil amendments in agriculture. Soil Till. Res. 2023, 225, 105462. [Google Scholar] [CrossRef]
- Shukla, S.P.; Mantin, E.G.; Adil, M.; Bajpai, S.; Critchley, A.T.; Prithiviraj, B. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front. Plant Sci. 2019, 10, 655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithivira, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Spinelli, F.; Fiori, G.; Noferini, M.; Sprocatti, M.; Costa, G. A novel type of seaweed extract as a natural alternative to the use of iron chelates in strawberry production. Sci. Hortic. 2010, 125, 263–269. [Google Scholar] [CrossRef]
- Illera-Vives, M.; López-Fabal, A.; López-Mosquera, M.E.; Ribeiro, H.M. Mineralization dynamics in soil fertilized with seaweed–fish waste compost. J. Sci. Food Agric. 2015, 95, 3047–3054. [Google Scholar] [CrossRef] [PubMed]
- Vernieri, P.; Borghesi, E.; Tognoni, F.; Ferrante, A.; Serra, G.; Piagessi, A. Use of biostimulants for reducing nutrient solution concentration in floating system. Acta Hortic. 2006, 718, 477–484. [Google Scholar] [CrossRef]
- Spinelli, F.; Fiori, G.; Bregoli, A.M.; Sprocati, M.; Vancini, R.; Pellicani, F.; Costa, G. Disponibile un nuovo biostimolante per aumentare l’efficienza produttiva. Riv. Fruttic. Ortofloric. 2006, 12, 66–75. [Google Scholar]
- Mondal, M.; Biswas, B.; Garai, S.; Sarkar, S.; Banerjee, H.; Brahmachari, K.; Bandyopadhyay, P.K.; Maitra, S.; Brestic, M.; Skalicky, M.; et al. Zeolites enhance soil health, crop productivity and environmental safety. Agronomy 2021, 11, 448. [Google Scholar] [CrossRef]
- Belviso, C.; Satriani, A.; Lovelli, S.; Comegna, A.; Coppola, A.; Dragonetti, G.; Cavalcante, G.; Rivelli, A.R. Impact of zeolite from coal fly ash on soil hydrophysical properties and plant growth. Agriculture 2022, 12, 356. [Google Scholar] [CrossRef]
- Nakhli, S.A.A.; Delkash, M.; Bakhshayesh, B.E.; Kazemian, H. Application of zeolites for sustainable agriculture: A review on water and nutrient retention. Water Air Soil Pollut. 2017, 228, 464–497. [Google Scholar] [CrossRef]
- Yasuda, H.; Takuma, K.; Fukuda, T. Water retention changes of dune sand due to zeolite addition. J. Agric. Meteorol. 1997, 52, 641–644. [Google Scholar] [CrossRef]
- Wu, Q.; Chi, D.; Xia, G.; Chen, T.; Sun, Y.; Song, Y. Effects of Zeolite on Drought Resistance and Water–Nitrogen Use Efficiency in Paddy Rice. J. Irrig. Drain Eng. 2019, 11, 04019024. [Google Scholar] [CrossRef]
- Bonasia, A.; Conversa, G.; Lazzizera, C.; Elia, A. Foliar Application of Protein Hydrolysates on Baby-Leaf Spinach Grown at Different N Levels. Agronomy 2022, 12, 36. [Google Scholar] [CrossRef]
- Dasgan, H.Y.; Kacmaz, S.; Arpaci, B.B.; İkiz, B.; Gruda, N.S. Biofertilizers Improve the Leaf Quality of Hydroponically Grown Baby Spinach (Spinacia oleracea L.). Agronomy 2023, 13, 575. [Google Scholar] [CrossRef]
- Irrometer Company Inc. Available online: www.irrometer.com (accessed on 16 February 2023).
- Abbas, F.; Fares, A.; Fares, S. Field calibrations of soil moisture sensors in a forested watershed. Sensors 2011, 11, 6354–6369. [Google Scholar] [CrossRef] [Green Version]
- Scholander, P.F.; Hammel, H.T.; Bradstreet, E.D.; Hemmingsen, E.A. Sap pressure in vascular plants. Science 1965, 148, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Medrano, H.; Tomás, M.; Martorell, S.; Flexas, J.; Hernández, E.; Rosselló, J.; Pou, A.; Escalona, J.M.; Bota, J. From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. Crop J. 2015, 3, 220–228. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Kumari, R.; Kaur, I.; Bhatnagar, A.K. Effect of aqueous extract of Sargassum johnstonii Setchell & Gardner on growth, yield and quality of Lycopersicon esculentum Mill. J. Appl. Phycol. 2011, 23, 623–633. [Google Scholar] [CrossRef]
- Spann, T.M.; Little, H.A. Applications of a commercial extract of the brown seaweed Ascophyllum nodosum increases drought tolerance in container-grown “hamlin” sweet orange nursery trees. Hortic. Sci. 2011, 46, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Basher, A.A.; Mohammed, A.J.; Teeb, A.I.H. Effect of seaweed and drainage water on germination and seedling growth of tomato (Lycopersicon spp.). Euphrates J. Agric. Sci. 2012, 4, 24–39. [Google Scholar]
- Tourte, L.; Bugg, R.L.; Shennan, C. Foliar-applied seaweed and fish powder do not improve yield and fruit quality of organically grown processing tomatoes. Biol. Agric. Hortic. 2000, 18, 15–27. [Google Scholar] [CrossRef]
- Hernández-Herrera, R.M.; Santacruz-Ruvalcaba, F.; Ruiz-López, M.A.; Norrie, J.; Hernández-Carmona, G. Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J. Appl. Phycol. 2014, 26, 619–628. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Tarkalson, D.D.; Lehrsch, G.A. Zeolite soil application method affects inorganic nitrogen, moisture, and corn growth. Soil Sci. 2011, 176, 136–142. [Google Scholar] [CrossRef]
- Crouch, I.J.; Van Staden, J. Effect of seaweed concentrate on the establishment and yield of greenhouse tomato plants. J. Appl. Phycol. 1992, 4, 291–296. [Google Scholar] [CrossRef]
- Mattner, S.W.; Wite, D.; Riches, D.A.; Porter, I.J.; Arioli, T. The effect of kelpe xtract on seedling establishment of broccoli on contrasting soil types in southern Victoria, Australia. Biol. Agric. Hortic. 2013, 29, 258–270. [Google Scholar] [CrossRef]
- Battacharyya, D.; Babbohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
Property | Soil | Unit | Method |
---|---|---|---|
Sand | 9.53 | % | Hydrometer method |
Silt | 66.18 | % | |
Clay | 24.29 | % | |
Texture (USDA classification) | Silty loam | - | |
Soil bulk density (ρb) | 1.369 | g/cm3 | Core method |
Organic matter | 34.90 | g kg−1 | Walkley–Black |
Cation exchange capacity | 27.85 | cmol/kg | BaCl2 pH 8.1 |
pH (in H2O 1:2.5) | 7.63 | pH meter | |
Wilting point (WP) | 25.5 | % vol | Retention curve (at h = −1.5 MPa) |
Field capacity (FC) | 40.5 | % vol | Retention curve (at h = −0.03 MPa) |
Treatments (1) | Leaf Number | Leaf Area | Leaf Fresh Weight | Leaf Dry Weight | Dry Matter Content | Leaf Water Potential (Ψ) | SPAD | Soil Volumetric Water Content (2) |
---|---|---|---|---|---|---|---|---|
(n.) | (cm2) | (g) | (g) | (%) | (MPa) | (%) | ||
Zeolite | 7 b | 44.60 | 1.58 | 0.22 | 14.10 b | −1.97 bc | 53.33 | 33.21 a |
Biostimulant | 8 a | 43.80 | 2.19 | 0.29 | 13.51 b | −1.90 c | 50.90 | 30.25 ab |
Zeo + Bios (3) | 7 b | 48.42 | 1.54 | 0.22 | 14.11 b | −2.05 ab | 52.13 | 30.24 ab |
Control | 7 b | 44.83 | 1.68 | 0.27 | 16.16 a | −2.17 a | 54.20 | 27.26 b |
Significance(4) | * | ns | ns | ns | * | * | ns | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castronuovo, D.; Comegna, A.; Belviso, C.; Satriani, A.; Lovelli, S. Zeolite and Ascophyllum nodosum-Based Biostimulant Effects on Spinach Gas Exchange and Growth. Agriculture 2023, 13, 754. https://doi.org/10.3390/agriculture13040754
Castronuovo D, Comegna A, Belviso C, Satriani A, Lovelli S. Zeolite and Ascophyllum nodosum-Based Biostimulant Effects on Spinach Gas Exchange and Growth. Agriculture. 2023; 13(4):754. https://doi.org/10.3390/agriculture13040754
Chicago/Turabian StyleCastronuovo, Donato, Alessandro Comegna, Claudia Belviso, Antonio Satriani, and Stella Lovelli. 2023. "Zeolite and Ascophyllum nodosum-Based Biostimulant Effects on Spinach Gas Exchange and Growth" Agriculture 13, no. 4: 754. https://doi.org/10.3390/agriculture13040754
APA StyleCastronuovo, D., Comegna, A., Belviso, C., Satriani, A., & Lovelli, S. (2023). Zeolite and Ascophyllum nodosum-Based Biostimulant Effects on Spinach Gas Exchange and Growth. Agriculture, 13(4), 754. https://doi.org/10.3390/agriculture13040754