Estimates of Dust Emissions and Organic Carbon Losses Induced by Wind Erosion in Farmland Worldwide from 2017 to 2021
Abstract
:1. Introduction
2. Material and Methods
2.1. Meteorological Data Improvement
2.2. Farmland Cultivation Area Adjustment
2.3. Adjustment of Wind Erosion Parameters in Farmland
2.4. Estimating Global Dust Emissions and Organic Carbon Losses from Wind Erosion on Agricultural Land
2.5. Dataset
3. Results
3.1. Characteristics of Global Wind Erosion Dust Emissions from Agricultural Land
3.2. Characteristics of Global Organic Carbon Loss from Agricultural Land Due to Wind Erosion
4. Discussion
4.1. Emission Characteristics and Influencing Factors for Dust Emissions from Agricultural Land
4.2. Loss Characteristics and Influencing Factors for Organic Carbon Loss from Farmland
4.3. Impact of Wind-Driven Organic Carbon Loss from Farmland on Conservation Strategies
4.4. Uncertainty in Estimating Dust Emission and SOC Loss by Wind Erosion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Nijs, E.A.; Cammeraat, E.L.H. The stability and fate of soil organic carbon during the transport phase of soil erosion. Earth Sci. Rev. 2020, 201, 103067. [Google Scholar] [CrossRef]
- Du, H.; Wang, T.; Xue, X.; Li, S. Estimation of soil organic carbon, nitrogen, and phosphorus losses induced by wind erosion in northern china. Land Degrad. Dev. 2019, 30, 1006–1022. [Google Scholar] [CrossRef]
- Chen, W.; Meng, H.; Song, H.; Zheng, H. Progress in dust modelling, global dust budgets, and soil organic carbon dynamics. Land 2022, 11, 176. [Google Scholar] [CrossRef]
- Tong, D.Q.; Dan, M.; Wang, T.; Lee, P. Long-term dust climatology in the western united states reconstructed from routine aerosol ground monitoring. Atmos. Chem. Phys. 2012, 12, 5189–5205. [Google Scholar] [CrossRef] [Green Version]
- Tegen, I.; Schepanski, K. The global distribution of mineral dust. IOP Conf. Ser. Earth Environ. Sci. 2009, 7, 012001. [Google Scholar] [CrossRef]
- Tegen, I.; Werner, M.; Harrison, S.P.; Kohfeld, K.E. Relative importance of climate and land use in determining present and future global soil dust emission. Geophys. Res. Lett. 2004, 31, L05105. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhao, W.; Liu, S.; An, Y.; Pereira, P. Ecosystems impact on aeolian dust emissions in inner mongolia from 2001 to 2018. Geoderma 2022, 422, 115938. [Google Scholar] [CrossRef]
- Kok, J.F.; Ward, D.S.; Mahowald, N.M.; Evan, A.T. Global and regional importance of the direct dust-climate feedback. Nat. Commun. 2018, 9, 241. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Russell, L.M.; Lou, S.; Liao, H.; Guo, J.; Liu, Y.; Singh, B.; Ghan, S.J. Dust-wind interactions can intensify aerosol pollution over eastern china. Nat. Commun. 2017, 8, 15333. [Google Scholar] [CrossRef]
- Attiya, A.A.; Jones, B.G. An extensive dust storm impact on air quality on 22 november 2018 in sydney, australia, using satellite remote sensing and ground data. Environ. Monit. Assess. 2022, 194, 432. [Google Scholar] [CrossRef]
- Yan, H.; Wang, S.; Wang, C.; Zhang, G.; Patel, N. Losses of soil organic carbon under wind erosion in china. Glob. Chang. Biol. 2005, 11, 828–840. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Chabrillat, S.; Pignatti, S.; Milewski, R.; Karyotis, K.; Brell, M.; Ruhtz, T.; Bochtis, D.; Zalidis, G. Evaluation of airborne hyspex and spaceborne PRISMA hyperspectral remote sensing data for soil organic matter and carbonates estimation. Remote Sens. 2023, 15, 1106. [Google Scholar] [CrossRef]
- Ozlu, E.; Arriaga, F.J.; Bilen, S.; Gozukara, G.; Babur, E. Carbon footprint management by agricultural practices. Biology 2022, 11, 1453. [Google Scholar] [CrossRef]
- Chappell, A.; Baldock, J.A. Wind erosion reduces soil organic carbon sequestration falsely indicating ineffective management practices. Aeolian Res. 2016, 22, 107–116. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, X.; Gao, C.; Tong, D.Q.; Xiu, A.; Wu, G.; Cao, X.; Huang, L.; Zhao, H.; Zhang, S.; et al. Multimodel simulations of a springtime dust storm over northeastern china: Implications of an evaluation of four commonly used air quality models (CMAQ v5.2.1, CAMx v6.50, CHIMERE v2017r4, and WRF-Chem v3.9.1). Geosci. Model Dev. 2019, 12, 4603–4625. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y. A model for mineral dust emission. J. Geophys. Res. Atmos. 2001, 106, 20239–20254. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Q.; Chen, W.; Wang, Y.; Tong, D.Q. Observation and modeling of black soil wind-blown erosion from cropland in northeastern china. Aeolian Res. 2015, 19, 153–162. [Google Scholar] [CrossRef]
- Vogel, C.; Heister, K.; Buegger, F.; Tanuwidjaja, I.; Haug, S.; Schloter, M.; Kögel-Knabner, I. Clay mineral composition modifies decomposition and sequestration of organic carbon and nitrogen in fine soil fractions. Biol. Fertil. Soils 2015, 51, 427–442. [Google Scholar] [CrossRef]
- Diego, I.; Pelegry, A.; Torno, S.; Toraño, J.; Menendez, M. Simultaneous CFD evaluation of wind flow and dust emission in open storage piles. Appl. Mathmat. Model. 2009, 33, 3197–3207. [Google Scholar] [CrossRef]
- Lal, R. Erosion-crop productivity relationships for soils of africa. Soil Sci. Soc. Am. J. 1995, 59, 661–667. [Google Scholar] [CrossRef]
- Chappell, A.; Webb, N.P.; Butler, H.J.; Strong, C.L.; McTainsh, G.H.; Leys, J.F.; Viscarra Rossel, R.A. Soil organic carbon dust emission: An omitted global source of atmospheric CO2. Glob. Chang. Biol. 2013, 19, 3238–3244. [Google Scholar] [CrossRef] [PubMed]
- Owen, P.R. Saltation of uniform grains in air. J. Fluid Mech. 1964, 20, 225–242. [Google Scholar] [CrossRef]
- Woodruff, N.P.; Siddoway, F.H. A wind erosion equation. Soil Sci. Soc. Am. J. 1965, 29, 602–608. [Google Scholar] [CrossRef]
- Gomes, L.; Rajot, J.L.; Alfaro, S.C.; Gaudichet, A. Validation of a dust production model from measurements performed in semi-arid agricultural areas of spain and niger. Catena 2003, 52, 257–271. [Google Scholar] [CrossRef]
- Shao, Y.P. Simplification of a dust emission scheme and comparison with data. J. Geophys. Res. 2004, 109, D10202. [Google Scholar] [CrossRef] [Green Version]
- Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the lpj dynamic global vegetation model. Glob. Chang. Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- Shannon, S.; Lunt, D.J. A new dust cycle model with dynamic vegetation: Lpj-dust version 1.0. Geosci. Model Dev. 2011, 4, 85–105. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Broeg, T.; Blaschek, M.; Seitz, S.; Taghizadeh-Mehrjardi, R.; Zepp, S.; Scholten, T. Transferability of covariates to predict soil organic carbon in cropland soils. Remote Sens. 2023, 15, 876. [Google Scholar] [CrossRef]
- Zobeck, T.M.; Sterk, G.; Funk, R.; Rajot, J.L.; Stout, J.E.; Van Pelt, R.S. Measurement and data analysis methods for field-scale wind erosion studies and model validation. Earth Surf. Process. Land. 2003, 28, 1163–1188. [Google Scholar] [CrossRef]
- Cao, X. Global Emissions of Particulate Matter (PM10 and PM2.5) from Cropland Wind Erosion. Ph.D. Thesis, Unverisity of Chinese Academy of Sciences, Changchun, China, 2019. (In Chinese). [Google Scholar]
- Marticorena, B.; Bergametti, G. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res. 1995, 100, 16415–16430. [Google Scholar] [CrossRef] [Green Version]
- Astitha, M.; Lelieveld, J.; Kader, M.A.; Pozzer, A.; de Meij, A. Parameterization of dust emissions in the global atmospheric chemistry-climate model emac: Impact of nudging and soil properties. Atmos. Chem. Phys. 2012, 12, 11057–11083. [Google Scholar] [CrossRef] [Green Version]
- Fecan, F.; Marticorena, B.; Bergametti, G. Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann. Geophys.-Atmos. Hydrosph. Space Sci. 1999, 17, 149–157. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.J.; Duan, Q.Y.; Liu, B.Y.; Yuan, H. A global soil data set for earth system modeling. J. Adv. Model. Earth Syst. 2014, 6, 249–263. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. Modis/Terra Snow Cover Daily L3 Global 0.05Deg CMG, Version 61. 2021. Available online: http://dx.doi.org/10.5067/MODIS/MOD10C1.061 (accessed on 3 December 2022).
- Hansen, M.C.; Reed, B. A comparison of the igbp discover and university of maryland 1 km global land cover products. Int. J. Remote Sens. 2000, 21, 1365–1373. [Google Scholar] [CrossRef]
- Klingmuller, K.; Metzger, S.; Abdelkader, M.; Karydis, V.A.; Stenchikov, G.L.; Pozzer, A.; Lelieveld, J. Revised mineral dust emissions in the atmospheric chemistry-climate model emac (messy 2.52 du_astitha1 kkdu2017 patch). Geosci. Model Dev. 2018, 11, 989–1008. [Google Scholar] [CrossRef] [Green Version]
- Sacks, W.J.; Deryng, D.; Foley, J.A.; Ramankutty, N. Crop planting dates: An analysis of global patterns. Glob. Ecol. Biogeogr. 2010, 19, 607–620. [Google Scholar] [CrossRef]
- Martinez-Grana, A.M.; Goy, J.; Gutierrez, I.D.; Cardena, C.Z. Characterization of environmental impact on resources, using strategic assessment of environmental impact and management of natural spaces of “las batuecas-sierra de francia” and “quilamas” (Salamanca, Spain). Environ. Earth Sci. 2014, 71, 39–51. [Google Scholar] [CrossRef]
- Martinez-Grana, A.M.; Goy, J.L.; Zazo, C. Cartographic procedure for the analysis of aeolian erosion hazard in natural parks (central system, Spain). Land Degrad. Dev. 2015, 26, 110–117. [Google Scholar] [CrossRef]
- Otto, C.; Piontek, F.; Kalkuhl, M.; Frieler, K. Event-based models to understand the scale of the impact of extremes. Nat. Energy 2020, 5, 111–114. [Google Scholar] [CrossRef]
- Zhang, X.X.; Sharratt, B.; Chen, X.; Wang, Z.F.; Liu, L.Y.; Guo, Y.H.; Li, J.; Chen, H.S.; Yang, W.Y. Dust deposition and ambient pm10 concentration in northwest china: Spatial and temporal variability. Atmos. Chem. Phys. 2017, 17, 1699–1711. [Google Scholar] [CrossRef] [Green Version]
- Mugizi, F.M.P.; Matsumoto, T. Population pressure and soil quality in Sub-Saharan Africa: Panel evidence from Kenya. Land Use Policy 2020, 94, 104499. [Google Scholar] [CrossRef]
- Guan, X.; Huang, J.; Zhang, Y.; Xie, Y.; Liu, J. The relationship between anthropogenic dust and population over global semi-arid regions. Atmos. Chem. Phys. 2016, 16, 5159–5169. [Google Scholar] [CrossRef] [Green Version]
- Munkhtsetseg, E.; Shinoda, M.; Ishizuka, M.; Mikami, M.; Kimura, R.; Nikolich, G. Anthropogenic dust emissions due to livestock trampling in a mongolian temperate grassland. Atmos. Chem. Phys. 2017, 17, 11389–11401. [Google Scholar] [CrossRef] [Green Version]
- Labiadh, M.; Bergametti, G.; Kardous, M.; Perrier, S.; Grand, N.; Attoui, B.; Sekrafi, S.; Marticorena, B. Soil erosion by wind over tilled surfaces in South Tunisia. Geoderma 2013, 202–203, 8–17. [Google Scholar] [CrossRef]
- Zhao, Y.; Xin, Z.; Ding, G. Spatiotemporal variation in the occurrence of sand-dust events and its influencing factors in the Beijing-Tianjin sand source region, China, 1982–2013. Reg. Environ. Chang. 2018, 18, 2433–2444. [Google Scholar] [CrossRef]
- Pi, H.; Webb, N.P.; Huggins, D.R.; Sharratt, B. Critical standing crop residue amounts for wind erosion control in the inland pacific northwest, USA. Catena 2020, 195, 104742. [Google Scholar] [CrossRef]
- Yang, J.; Jia, X.; Ma, H.; Chen, X.; Liu, J.; Shangguan, Z.; Yan, W. Effects of warming and precipitation changes on soil ghg fluxes: A meta-analysis. Sci. Total Environ. 2022, 827, 154351. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, J.A.; Zou, X.; Mao, R.; Gong, D.; Feng, X. Wind erosion climate change in northern China during 1981–2016. Int. J. Disaster Risk Sci. 2020, 11, 484–496. [Google Scholar] [CrossRef]
- Meng, G.; Zhang, Y.; Gu, W.; Zhang, Y.; Yu, N.; Zou, H. The characteristics of labile organic carbon in paddy soils in Hei Longjiang province. Ecol. Environ. Sci. 2015, 24, 785–790. [Google Scholar] [CrossRef]
- Stephens, E.; Timsina, J.; Martin, G.; van Wijk, M.; Klerkx, L.; Reidsma, P.; Snow, V. The immediate impact of the first waves of the global COVID-19 pandemic on agricultural systems worldwide: Reflections on the COVID-19 special issue for agricultural systems. Agric. Syst. 2022, 201, 103436. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, Y.; Liu, S.; Zhao, W.; Xiao, J.; Winowiecki, L.A.; Vagen, T.G.; Xu, J.; Yin, X.; Wang, F.; et al. The grain-for-green project offsets warming-induced soil organic carbon loss and increases soil carbon stock in chinese loess plateau. Sci. Total Environ. 2022, 837, 155469. [Google Scholar] [CrossRef] [PubMed]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Xu, X.; Du, C.; Ma, F.; Qiu, Z.; Zhou, J. A framework for high-resolution mapping of soil organic matter (SOM) by the integration of fourier mid-infrared attenuation total reflectance spectroscopy (FTIR-ATR), sentinel-2 images, and DEM derivatives. Remote Sens. 2023, 15, 1072. [Google Scholar] [CrossRef]
- Ozlu, E.; Gozukara, G.; Acar, M.; Bilen, S.; Babur, E. Field-scale evaluation of the soil quality index as influenced by dairy manure and inorganic fertilizers. Sustainability 2022, 14, 7593. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Environmental Quality Incentives Program. Available online: https://www.Nrcs.Usda.Gov/wps/portal/nrcs/main/national/programs/financial/eqip/ (accessed on 5 January 2023).
- United States Department of Agriculture. Conservation Stewardship Program. Available online: https://www.Nrcs.Usda.Gov/wps/portal/nrcs/main/national/programs/financial/csp/ (accessed on 5 January 2023).
- Agriculture and Agri-Food Canada. Government of Canada Invests over $1.6 Million in New Technology for High-Efficiency Fertilizers. Available online: https://www.Canada.Ca/en/agriculture-agri-food/news/2022/07/government-of-canada-invests-over-16-million-in-new-technology-for-high-efficiency-fertilizers.Html (accessed on 6 December 2022).
- GOV.UK. Sustainable Farming Incentive Opens for Applications. Available online: https://www.Gov.Uk/government/news/sustainable-farming-incentive-opens-for-applications (accessed on 12 January 2023).
- Ge, Q.; Wang, J.; Zhu, H. Overall promotion of black soil protection and rural revitalization: Internal logic, main routes and policy suggestions. Bull. Chin. Acad. Sci. 2021, 36, 1175–1183. [Google Scholar]
- Guo, H.; Zhao, W.; Pan, C.; Qiu, G.; Xu, S.; Liu, S. Study on the influencing factors of farmers’ adoption of conservation tillage technology in black soil region in china: A logistic-ism model approach. Int. J. Environ. Res. Public Health 2022, 19, 7762. [Google Scholar] [CrossRef]
Region | 2017 | 2018 | 2019 | 2020 | 2021 | Average |
---|---|---|---|---|---|---|
Unit: Gg | ||||||
Asia | 469 | 553 | 536 | 529 | 618 | 541 |
Europe | 920 | 894 | 930 | 1142 | 1030 | 983 |
Africa | 33 | 45 | 46 | 47 | 47 | 44 |
Oceania | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
North America | 1051 | 928 | 991 | 1071 | 1111 | 1030 |
South America | 404 | 361 | 364 | 387 | 342 | 371 |
Antarctica | 0 | 0 | 0 | 0 | 0 | 0 |
Global | 2877 | 2781 | 2867 | 3175 | 3149 | 2970 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhao, H.; Zhao, G.; Cao, X.; Zhang, X.; Xiu, A. Estimates of Dust Emissions and Organic Carbon Losses Induced by Wind Erosion in Farmland Worldwide from 2017 to 2021. Agriculture 2023, 13, 781. https://doi.org/10.3390/agriculture13040781
Liu Y, Zhao H, Zhao G, Cao X, Zhang X, Xiu A. Estimates of Dust Emissions and Organic Carbon Losses Induced by Wind Erosion in Farmland Worldwide from 2017 to 2021. Agriculture. 2023; 13(4):781. https://doi.org/10.3390/agriculture13040781
Chicago/Turabian StyleLiu, Yongxiang, Hongmei Zhao, Guangying Zhao, Xinyuan Cao, Xuelei Zhang, and Aijun Xiu. 2023. "Estimates of Dust Emissions and Organic Carbon Losses Induced by Wind Erosion in Farmland Worldwide from 2017 to 2021" Agriculture 13, no. 4: 781. https://doi.org/10.3390/agriculture13040781