Impact of Seed Treatment with Imidacloprid, Clothianidin and Thiamethoxam on Soil, Plants, Bees and Hive Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.1.1. Field Site
2.1.2. Design of Experiments
2.2. Sampling
2.2.1. Sampling of Soil
2.2.2. Sampling of Rapeseed, Maize and Sunflower Plants
2.3. Sample Analysis
2.3.1. Neonicotinoid Residues Analysis in Plants and Soil
2.3.2. Statistical Analysis
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aktar, W.; Paramasivam, M.; Sengupta, D.; Purkait, S.; Ganguly, M.; Banerjee, S. Impact assessment of pesticide residues in fish of Ganga river around Kolkata in West Bengal. Environ. Monit. Assess. 2008, 157, 97–104. [Google Scholar] [CrossRef]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdisc Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Fenik, J.; Tankiewicz, M.; Biziuk, M. Properties and determination of pesticides in fruits and vegetables. TrAC Trends Anal. Chem. 2011, 30, 814–826. [Google Scholar] [CrossRef]
- Strassemeyer, J.; Daehmlow, D.; Dominic, A.; Lorenz, S.; Golla, B. SYNOPS-WEB, an online tool for environmental risk assessment to evaluate pesticide strategies on field level. Crop Prot. 2017, 97, 28–44. [Google Scholar] [CrossRef]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Hayes, T.B.; Hansen, M. From silent spring to silent night: Agrochemicals and the anthropocene. Elem. Sci. Anth. 2017, 5, 57. [Google Scholar] [CrossRef] [Green Version]
- Bernardes, M.F.F.; Pazin, M.; Pereira, L.C.; Dorta, D.J. Impact of Pesticides on Environmental and Human Health. In Toxicology Studies—Cells, Drugs and Environment; Andreazza, A.C., Scola, G., Eds.; IntechOpen: London, UK, 2015; pp. 195–233. Available online: https://www.intechopen.com/chapters/48406 (accessed on 5 March 2023).
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, J.R. Pesticide use and risk reduction in European farming systems with IPM: An introduction to the special issue. Crop. Prot. 2017, 97, 1–6. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0261219417300261 (accessed on 5 March 2023). [CrossRef]
- Dwivedi, S.A.; Sonawane, V.K.; Pandit, T.R. Review on the impact of insecticides utilization in crop ecosystem: Their prosperity and threats. In Insecticides-Impact and Benefits of Its Use for Humanity; IntechOpen: London, UK, 2022; Available online: https://www.intechopen.com/chapters/82570 (accessed on 5 March 2023). [CrossRef]
- Labrie, G.; Gagnon, A.V.; Vanasse, A.; Latraverse, A.; Tremblay, G. Impacts of neonicotinoid seed treatments on soil-dwelling pest populations and agronomic parameters in corn and soybean in Quebec (Canada). PLoS ONE 2020, 15, e0229136. [Google Scholar] [CrossRef] [PubMed]
- Casida, J.E.; Durkin, K.A. Neuroactive insecticides: Targets, selectivity, resistance, and secondary effects. Annu. Rev. Entomol. 2013, 58, 99–117. [Google Scholar] [CrossRef] [PubMed]
- Ensley, S.M. Chapter 48—Neonicotinoids, Veterinary Toxicology, 2nd ed.; Gupta, C.R., Ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 596–598. ISBN 9780123859266. [Google Scholar]
- Jeschke, P.; Nauen, R.; Schindler, M.; Elbert, A. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 2011, 59, 2897–2908. [Google Scholar] [CrossRef]
- Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.W.; Giorio, C.; Girolami, V.; et al. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 2015, 22, 5–34. [Google Scholar] [CrossRef] [PubMed]
- Elbert, A.; Haas, M.; Springer, B.; Thielert, W.; Nauen, R. Applied aspects of neonicotinoid uses in crop protection. Pest Manag. Sci. 2008, 64, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Hladik, M.L.; Main, A.R.; Goulson, D. Environmental risks and challenges associated with neonicotinoid insecticides. Environ. Sci. Technol. 2018, 52, 3329–3335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feltham, H.; Park, K.; Goulson, D. Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology 2014, 23, 317–323. [Google Scholar] [CrossRef]
- Bonmatin, J.M.; Giorio, C.; Girolami, V.; Goulson, D.; Kreutzweiser, D.P. Environmental fate and exposure; neonicotinoids and fipronil. Environ. Sci. Pollut. Res. 2015, 22, 35–67. [Google Scholar] [CrossRef]
- Auerbach, P. Colony Collapse Disorder. Adv. Virus Res. 2014, 90, 147–206. [Google Scholar]
- Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Lu, C.; Warchol, K.M.; Callahan, R.A. In situ replication of honey bee colony collapse disorder. Bull. Insectol. 2012, 65, 99–106, ISSN 1721-8861. [Google Scholar]
- Maini, S.; Medrzycki, P.; Porrini, C. The puzzle of honey bee losses: A brief review. Bull. Insectol. 2010, 63, 153–160, ISSN 1721-8861. [Google Scholar]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Conclusion on the peer review of the pesticide risk assessment for bees for the active substance thiamethoxam. EFSA J. 2018, 16, 5179. [Google Scholar]
- EFSA (European Food Safety Authority). Conclusion on the peer review of the pesticide risk assessment for bees for the active substance imidacloprid considering the uses as seed treatments and granules. EFSA J. 2018, 16, 5178. [Google Scholar]
- EFSA (European Food Safety Authority). Conclusion on the peer review of the pesticide risk assessment for bees for the active substance clothianidin considering the uses as seed treatments and granules. EFSA J. 2018, 16, 5177. [Google Scholar]
- Georgescu, E.; Toader, M.; Cana, L.; Horhocea, D.; Manole, T.; Zaharia, R.; Risnoveanu, L. Researches concerning the effectiveness of the maize foliar treatment compared with seeds treatment for chemical control of the maize leaf weevil (Tanymecus dilaticollis Gyll) in the southeast of Romania. Rom. Agric. Res. 2021, 38, 357–369. Available online: https://www.incda-fundulea.ro/rar/nr38/rar38.38.pdf (accessed on 5 March 2023).
- Trotuș, E.; Mincea, C.; Dudoiu, R.; Pintilie, P.; Georgescu, E. Rezultatele preliminare privind impactul insecticidelor neonicotinoide, aplicate în tratamentul seminței de rapiță, floarea-soarelui și porumb, asupra entomofaunei dăunătoare și albinelor melifere. Analele, I.N.C.D.A. Fundulea 2019, 87, 251–260, ISSN 2067-7758. [Google Scholar]
- Emil, G.; Alina, C.; Cristian, Z.; Lidia, C. Are there Alternatives at Maize Seed Treatment for Controlling of the Maize Leaf Weevil (Tanymecus dilaticollis Gyll)? In Proceedings of the International Scientific Congress “Life Sciences, a Challenge for the Future”, Iasi, Romania, 17–18 October 2019; pp. 64–70, ISBN 978-88-85813-63-2. [Google Scholar]
- Gasparic, V.H.; Grubelic, M.; Dragovic Uzelac, V.; Bazok, R.; Cacija, M.; Drmic, Z.; Lemic, D. Neonicotinoid residues in sugar beet plants and soil under different agro-climatic conditions. Agriculture 2020, 10, 484. [Google Scholar] [CrossRef]
- Schaafsma, A.; Limay-Rios, V.; Baute, T.; Smith, J.; Xue, Y. Neonicotinoid Insecticide Residues in Surface Water and Soil Associated with Commercial Maize (Corn) Fields in Southwestern Ontario. PLoS ONE 2015, 10, e0118139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alford, A.; Krupke, C.H. Translocation of the neonicotinoid seed treatment clothianidin in maize. PLoS ONE 2017, 12, e0186527. [Google Scholar] [CrossRef] [Green Version]
- Huseth, A.S.; Groves, R.L. Environmental fate of soil applied neonicotinoid insecticides in an irrigated potato agroecosystem. PLoS ONE 2014, 9, e97081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Gajbhiye, V.T.; Gupta, R.K. Soil dissipation and leaching behavior of a neonicotinoid insecticide thiamethoxam. Bull. Environ. Contam. Toxicol. 2008, 80, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Kailani, M.H.; Al-Antary, T.M.; Alawi, M.A. Monitoring of pesticides residues in soil samples from the southern district of Jordan in 2016/2017. Toxin Rev. 2021, 40, 198–214. [Google Scholar] [CrossRef]
- Jones, A.; Harrington, P.; Turnbul, G. Neonicotinoid Concentrations in Arable Soils After Seed Treatment application in preceding years. Pest Manag. Sci. 2014, 70, 1780–1784. [Google Scholar] [CrossRef] [PubMed]
- Lundin, O.; Rundlöf, M.; Smith, H.G.; Fries, I.; Bommarco, R. Neonicotinoid insecticides and their impacts on bees: A systematic review of research approaches and identification of knowledge gaps. PLoS ONE 2015, 10, e0136928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodcock, B.A.; Bullock, J.M.; Shore, R.F.; Heard, M.S.; Pereira, M.G.; Redhead, J.; Ridding, L.; Dean, H.; Sleep, D.; Henrys, P.; et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 2017, 356, 1393–1395. Available online: http://science.sciencemag.org/content/356/6345/1393.full (accessed on 5 March 2023). [CrossRef] [Green Version]
- Schmuck, R.; Lewis, G. Review of field and monitoring studies investigating the role of nitro-substituted neonicotinoid insecticides in the reported losses of honey bee colonies (Apis mellifera). Ecotoxicology 2016, 25, 1617–1629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores, J.M.; Gámiz, V.; Gil-Lebrero, S.; Rodríguez, I.; Navas, F.J.; García-Valcárcel, A.I.; Cutillas, V.; Fernández-Alba, A.R.; Hernando, M.D. A three-year large scale study on the risk of honey bee colony exposure to blooming sunflowers grown from seeds treated with thiamethoxam and clothianidin neonicotinoids. Chemosphere 2021, 262, 127735. [Google Scholar] [CrossRef] [PubMed]
- José, M.F.; Gamiz, V.; Inmaculada, R.; Sergio, G.; Francisco, J.; Cutillas, V.; García-Valcárcel, A.; Amadeo, R.; Dolores, M. A three-year large scale study on the risk of honey bee colony exposure to blooming sunflowers grown from seeds treated with thiamethoxam and clothianidin neonicotinoids. Chemosphere 2020, 262, 127735. [Google Scholar]
ARDS Secuieni | ARDS Pitesti | NARDI Fundulea | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2021 | 2022 | 2018 | 2019 | 2020 | 2021 | 2022 | 2018 | 2019 | 2020 | 2021 | 2022 |
Imidacloprid (Nuprid Al) | Imidacloprid (Nuprid 600 FS) | Cyantraniliprole (Lumiposa 625 FS) | Imidacloprid (Nuprid 600 FS) | Imidacloprid (Nuprid 600 FS) | Cyantraniliprole (Lumiposa 625 FS) | Imidacloprid (Nuprid 600 FS) | Imidacloprid (Nuprid 600 FS) | Cyantraniliprole (Lumiposa 625 FS) | ||||||
Clotihanidin + beta-cyfluthrin (Modesto 480 FS) | Clotihanidin + beta-cyfluthrin (Modesto 480 FS) | Clotihanidin + beta-cyfluthrin (Modesto 480 FS) | Clotihanidin + beta-cyfluthrin (Modesto 480 FS) | Clotihanidin + beta-cyfluthrin (Modesto 480 FS) | Clotihanidin + beta-cyfluthrin (Modesto 480 FS) | |||||||||
Thiamethoxam (Cruiser 350 FS) | Thiamethoxam (Cruiser 350 FS) |
ARDS Secuieni | ARDS Pitesti | NARDI Fundulea | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2021 | 2022 | 2018 | 2019 | 2020 | 2021 | 2022 | 2018 | 2019 | 2020 | 2021 | 2022 |
Imidacloprid (Nuprid Al) | Imidacloprid (Nuprid Al) | Imidacloprid (Nuprid Al) | Thiamethoxam (Cruiser 350 FS) | Imidacloprid (Nuprid 600 FS) | Thiamethoxam (Cruiser 350 FS) | Imidacloprid (Nuprid Al) | Imidacloprid (Nuprid 600 FS) | Imidacloprid (Nuprid 600 FS) | Imidacloprid (Nuprid 600 FS) | Imidacloprid (Nuprid 600 FS) | ||||
Clotihanidin + beta-cyfluthrin (Modesto 480 FS) | Clothianidin (Poncho 600 FS) | Cypermethrin (Langis) | Imidacloprid (Nuprid 600 FS) | Clothianidin (Poncho 600 FS) | Cypermethrin (Langis) | Cypermethrin (Langis) | Clothianidin (Poncho 600 FS) | Clothianidin (Poncho 600 FS) | Thiamethoxam (Cruiser 350 FS) | Cypermethrin (Langis) | ||||
Thiamethoxam (Cruiser 350 FS) | Clothianidin (Poncho 600 FS) | Thiamethoxam (Cruiser 350 FS) | Imidacloprid (Nuprid Al) | Thiamethoxam (Cruiser 350 FS) | Thiamethoxam (Cruiser 350 FS) | Cypermethrin (Langis) |
ARDS Secuieni | ARDS Pitesti | NARDI Fundulea | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2021 | 2022 | 2018 | 2019 | 2020 | 2021 | 2018 | 2019 | 2020 | 2021 | 2022 |
Imidacloprid (Nuprid Al) | Imidacloprid (Nuprid Al) | Cypermethrin (Langis) | Imidacloprid (Nuprid 600 FS) | Thiamethoxam (Cruiser 350 FS) | Imidacloprid (Nuprid 600 FS) | Cypermethrin (Langis) | Imidacloprid (Nuprid 600 FS) | Imidacloprid (Nuprid 600 FS0029 | Cypermethrin (Langis) | Imidacloprid (Nuprid 600 FS) | |||
Clotihanidin + beta-cyfluthrin (Modesto 480 FS) | Clothianidin (Poncho 600 FS) | Cypermethrin (Langis) | Imidacloprid (Nuprid 600 FS) | Clothianidin (Poncho 600 FS) | Clothianidin (Poncho 600 FS) | Clothianidin (Poncho 600 FS) | Cypermethrin (Langis) | ||||||
Thiamethoxam (Cruiser 350 FS) | Clothianidin (Poncho 600 FS) | Thiamethoxam (Cruiser 350 FS) | Thiamethoxam (Cruiser 350 FS) | Thiamethoxam (Cruiser 350 FS) |
Sample Type | 2018 | 2019 | 2020 | 2021 | 2022 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Samples Total No. | % Samples > LOQ | Samples Total No. | % Samples > LOQ | Samples Total No. | % Samples > LOQ | Samples Total No. | % Samples > LOQ | Samples Total No. | % Samples > LOQ | ||
SOIL | - | - | 27 | 44.44 (12 spl) | 53 | 9.43 (5 spl) | 44 | 27.27 (12 spl) | 38 | 31.57 (12 spl) | |
PLANT (including flowers) | 53 | 20,75 (11 spl) | 74 | 10,81 (8 spl) | 85 | 5.88 (5 spl) | 81 | 13.58 (11 spl) | - | - | |
FLOWERS | 36 | 16.66 (6 spl) | 35 | 0 | 40 | 0 | 46 | 0 | 35 | 0 | |
HIVE products | Bees | 10 | 20 (2 spl) | 5 | 0 | 6 | 0 | 6 | 6 | 6 | 0 |
Pollen | 26 | 26.92 (7 spl) | 4 (pollen + honey comb) | 0 | 6 | 0 | 6 | 6 | 6 | 16.66 (1 sample pasture) | |
Honeycomb with brood | - | - | - | - | 6 | 0 | 6 | 6 | 6 | 0 | |
Honey | 16 | 0 | 12 | 0 | 6 | 0 | 6 | 6 | 6 | 0 | |
TOTAL | 105 | 19.04 (20spl) | 122 | 16.39 (20 spl) | 162 | 6.17 (10 pl) | 149 | 15.43 (23 spl) | 97 | 13.41 (13 spl) | |
TOTAL ANALYZED SAMPLES: 635 from which 13.55% (86 probe) > LOQ LOQ (quantification limit) = 0.01 mg/kg sample; MRL honey and hive products = 0.05 mg/kg sample |
Descriptive Statistics | Soil Imidacloprid | Soil Clothianidin | Soil Thiamethoxam | Plant Imidacloprid | Plant Clothianidin | Plant Thiamethoxam |
---|---|---|---|---|---|---|
Number of values | 39 | 9 | 1 | 18 | 5 | 3 |
Minimum | 0.01 | 0.01 | 0.013 | 0.012 | 0.012 | 0.013 |
25% percentile | 0.012 | 0.0115 | 0.013 | 0.029 | 0.0125 | 0.013 |
Median | 0.015 | 0.012 | 0.013 | 0.0885 | 0.018 | 0.014 |
75% percentile | 0.026 | 0.023 | 0.013 | 0.235 | 0.142 | 0.35 |
Maximum | 0.18 | 0.044 | 0.013 | 0.71 | 0.24 | 0.35 |
Mean | 0.02913 | 0.01844 | 0.013 | 0.1807 | 0.0654 | 0.1257 |
Std. deviation | 0.03849 | 0.01092 | 0 | 0.2161 | 0.09847 | 0.1943 |
Lower 95% CI of mean | 0.01665 | 0.01005 | 0.0732 | −0.05687 | −0.3569 | |
Upper 95% CI of mean | 0.0416 | 0.02684 | 0.2881 | 0.1877 | 0.6083 | |
Coefficient of variation | 132.13% | 59.21% | 0.00% | 119.62% | 150.57% | 154.60% |
Column Statistics | Soil | Plant (Including Flowers) | Flowers | Bees | Pollen | Honeycomb with Brood | Honey |
---|---|---|---|---|---|---|---|
Number of values | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Minimum | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
25% percentile | 4.715 | 2.94 | 0 | 0 | 0 | 0 | 0 |
Median | 27.27 | 10.81 | 0 | 0 | 0 | 0 | 0 |
75% percentile | 38.01 | 17.17 | 9.755 | 10 | 21.79 | 0 | 8.3 |
Maximum | 44.44 | 20.75 | 16.66 | 20 | 26.92 | 0 | 16.6 |
Mean | 22.54 | 10.2 | 3.902 | 4 | 8.716 | 0 | 3.32 |
Std. deviation | 17.77 | 7.839 | 7.238 | 8.944 | 12.47 | 0 | 7.424 |
Std. Error of mean | 7.948 | 3.506 | 3.237 | 4 | 5.579 | 0 | 3.32 |
Lower 95% CI of mean | 0.4745 | 0.4706 | −5.085 | −7.106 | −6.772 | 0 | −5.898 |
Upper 95% CI of mean | 44.61 | 19.94 | 12.89 | 15.11 | 24.2 | 0 | 12.54 |
Coefficient of variation | 78.84% | 76.82% | 185.49% | 223.61% | 143.12% | +infinity% | 223.61% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaharia, R.; Trotuș, E.; Trașcă, G.; Georgescu, E.; Șapcaliu, A.; Fătu, V.; Petrișor, C.; Mincea, C. Impact of Seed Treatment with Imidacloprid, Clothianidin and Thiamethoxam on Soil, Plants, Bees and Hive Products. Agriculture 2023, 13, 830. https://doi.org/10.3390/agriculture13040830
Zaharia R, Trotuș E, Trașcă G, Georgescu E, Șapcaliu A, Fătu V, Petrișor C, Mincea C. Impact of Seed Treatment with Imidacloprid, Clothianidin and Thiamethoxam on Soil, Plants, Bees and Hive Products. Agriculture. 2023; 13(4):830. https://doi.org/10.3390/agriculture13040830
Chicago/Turabian StyleZaharia, Roxana, Elena Trotuș, Georgeta Trașcă, Emil Georgescu, Agripina Șapcaliu, Viorel Fătu, Cristina Petrișor, and Carmen Mincea. 2023. "Impact of Seed Treatment with Imidacloprid, Clothianidin and Thiamethoxam on Soil, Plants, Bees and Hive Products" Agriculture 13, no. 4: 830. https://doi.org/10.3390/agriculture13040830
APA StyleZaharia, R., Trotuș, E., Trașcă, G., Georgescu, E., Șapcaliu, A., Fătu, V., Petrișor, C., & Mincea, C. (2023). Impact of Seed Treatment with Imidacloprid, Clothianidin and Thiamethoxam on Soil, Plants, Bees and Hive Products. Agriculture, 13(4), 830. https://doi.org/10.3390/agriculture13040830