Occurrence of Coliforms and Enterococcus Species in Drinking Water Samples Obtained from Selected Dairy Cattle Farms in Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Microbiological Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pachepsky, Y.A.; Allende, A.; Boithias, L.; Cho, K.; Jamieson, R.; Hofstra, N.; Molina, M. Microbial Water Quality: Monitoring and Modeling. J. Environ. Qual. 2018, 47, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Nazemi, K.; Salari, S.; Eskandani, M.A. Assessment of the Escherichia Coli Pollution in Drinking Water and Water Sources in Sistan, Iran. J. Water Reuse Desalination 2018, 8, 386–392. [Google Scholar] [CrossRef]
- Mohammed, A.N. Field Study on Evaluation of the Efficacy and Usability of Two Disinfectants for Drinking Water Treatment at Small Cattle Breeders and Dairy Cattle Farms. Environ. Monit. Assess. 2016, 188, 151. [Google Scholar] [CrossRef]
- Edberg, S.; Rice, E.; Karlin, R.; Allen, M. Escherichia Coli: The Best Biological Drinking Water Indicator for Public Health Protection. J. Appl. Microbiol. 2000, 88, 1068–1168. [Google Scholar] [CrossRef]
- Odonkor, S.T.; Addo, K.K. Prevalence of Multidrug-Resistant Escherichia Coli Isolated from Drinking Water Sources. Int. J. Microbiol. 2018, 2018, 7204013. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, M.S.; Clewell, D.B.; Ike, Y.; Shankar, N. Enterococci: From Commensals to Leading Causes of Drug. Mass. Eye Ear Infirm. 2014. [Google Scholar]
- Lobna, M.A.S.; Metawea, Y.F. Detection of Some Water Borne Zoonotic Pathogens in Untreated Ground Water and Its Impact on Human and Animal Health in Kalyoubia Province (Rural Areas). Glob. Vet. 2013, 10, 669–675. [Google Scholar] [CrossRef]
- Mohammed, A.N. A Potential Approach for Monitoring and Evaluation of Drinking Water Sources and Quality for Livestock Animals at Beni-Suef Province. Glob. Vet. 2014, 13, 534–543. [Google Scholar] [CrossRef]
- Lardner, H.A.; Kirychuk, B.D.; Braul, L.; Willms, W.D.; Yarotski, J.; Lardner, H.A.; Kirychuk, B.D.; Braul, L.; Willms, W.D.; Yarotski, J. The Effect of Water Quality on Cattle Performance on Pasture. Aust. J. Agric. Res. 2005, 56, 97–104. [Google Scholar] [CrossRef]
- Lemma, D.H.; Mengistu, A.; Kuma, T.; Kuma, B. Improving Milk Safety at Farm-Level in an Intensive Dairy Production System: Relevance to Smallholder Dairy Producers. Food Qual. Saf. 2018, 2, 135–143. [Google Scholar] [CrossRef]
- Vanitha, H.D.; Sethulekshmi, C.; Latha, C. An Epidemiological Investigation on Occurrence of Enterohemorrhagic Escherichia Coli in Raw Milk. Vet. World 2018, 11, 1164–1170. [Google Scholar] [CrossRef] [PubMed]
- Beede, D.K. What Will Our Ruminants Drink? Anim. Front. 2012, 2, 36–43. [Google Scholar] [CrossRef]
- Nolan, S.; Waters, N.R.; Brennan, F.; Auer, A.; Fenton, O.; Richards, K.; Bolton, D.J.; Pritchard, L.; O’Flaherty, V.; Abram, F. Toward Assessing Farm-Based Anaerobic Digestate Public Health Risks: Comparative Investigation with Slurry, Effect of Pasteurization Treatments, and Use of Miniature Bioreactors as Proxies for Pathogen Spiking Trials. Front. Sustain. Food Syst. 2018, 2, 41. [Google Scholar] [CrossRef]
- Stocker, M.D.; Pachepsky, Y.A.; Hill, R.L.; Martinez, G. Escherichia coli Export from Manured Fields Depends on the Time between the Start of Rainfall and Runoff Initiation. Wiley Online Libr. 2018, 47, 1293–1297. [Google Scholar] [CrossRef] [PubMed]
- Solomon, E.B.; Yaron, S.; Matthews, K.R. Transmission of Escherichia Coli O157:H7 from Contaminated Manure and Irrigation Water to Lettuce Plant Tissue and Its Subsequent Internalization. Appl. Environ. Microbiol. 2002, 68, 397–400. [Google Scholar] [CrossRef]
- Manero, A.; Vilanova, X.; Cerdà-Cuéllar, M.; Blanch, A.R. Characterization of Sewage Waters by Biochemical Fingerprinting of Enterococci. Water Res. 2002, 36, 2831–2835. [Google Scholar] [CrossRef] [PubMed]
- Hricová, K.; Štosová, T.; Kučová, P.; Fišerová, K.; Bardoň, J.; Kolář, M. Analysis of Vancomycin-Resistant Enterococci in Hemato-Oncological Patients. Antibiotics 2020, 9, 785. [Google Scholar] [CrossRef]
- Ahmed, M.O.; Baptiste, K.E. Vancomycin-Resistant Enterococci: A Review of Antimicrobial Resistance Mechanisms and Perspectives of Human and Animal Health. Microb. Drug Resist. 2018, 24, 590–606. [Google Scholar] [CrossRef]
- Siročić, A.P.; Ojdanić, K.; Dogančić, D.; Plantak, L. Water Quality for Human Consumption from the Public Water Supply System †. Environ. Sci. 2023, 25, 21. [Google Scholar] [CrossRef]
- LeJeune, J.T.; Besser, T.E.; Merrill, N.L.; Rice, D.H.; Hancock, D.D. Livestock Drinking Water Microbiology and the Factors Influencing the Quality of Drinking Water Offered to Cattle. J. Dairy Sci. 2001, 84, 1856–1862. [Google Scholar] [CrossRef]
- Mousing, J.; Jensen, P.T.; Halgaard, C.; Bager, F.; Feld, N.; Nielsen, B.; Nielsen, J.P.; Bech-Nielsen, S. Nation-Wide Salmonella Enterica Surveillance and Control in Danish Slaughter Swine Herds. Prev. Vet. Med. 1997, 29, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Doyle, M.P.; Shere, J.; Garber, L. Prevalence of Enterohemorrhagic Escherichia Coli O157:H7 in a Survey of Dairy Herds. Appl. Environ. Microbiol. 1995, 61, 1290–1293. [Google Scholar] [CrossRef] [PubMed]
- Hancock, D.D.; Besser, T.E.; Kinsel, M.L.; Tarr, P.I. Prevalence Escherichia. Vet. Microbiol. 1994, 199–207. [Google Scholar]
- Din, M.; Aleem, A.; Pirkani, G.S.; Mohammad, A. Pathogens From Drinking Water; Isolation and Antibiogram of Pathogenic Organisms from Drinking Water in Quetta City. Prof. Med. J. 2014, 21, 760–765. [Google Scholar]
- Fairbrother, J.M.; Nadeau, É. Escherichia Coli: On-Farm Contamination of Animals. OIE Rev. Sci. Tech. 2006, 25, 555–569. [Google Scholar] [CrossRef]
- LeJeune, J.T.; Wetzel, A.N. Preharvest Control of Escherichia coli O157 in Cattle. J. Anim. Sci. 2007, 85, E73–E80. [Google Scholar] [CrossRef]
- Hernández-Vásquez, A.; Visconti-Lopez, F.J.; Vargas-Fernández, R. Escherichia Coli Contamination of Water for Human Consumption and Its Associated Factors in Peru: A Cross-Sectional Study. Am. J. Trop. Med. Hyg. 2023, 108, 187–194. [Google Scholar] [CrossRef]
- Adesiyun, A.A.; Webb, L.A.; Romain, H.; Kaminjolo, J.S. Prevalence and Characteristics of Strains of Escherichia Coli Isolated from Milk and Feces of Cows on Dairy Farms in Trinidad. J. Food Prot. 1997, 60, 1174–1181. [Google Scholar] [CrossRef]
- Gonçalves, A.; Igrejas, G.; Radhouani, H.; Estepa, V.; Alcaide, E.; Zorrilla, I.; Serra, R.; Torres, C.; Poeta, P. Detection of Extended-Spectrum Beta-Lactamase-Producing Escherichia Coli Isolates in Faecal Samples of Iberian Lynx. Lett. Appl. Microbiol. 2012, 54, 73–77. [Google Scholar] [CrossRef]
- Costa, D.; Poeta, P.; Sáenz, Y.; Vinué, L.; Coelho, A.C.; Matos, M.; Rojo-Bezares, B.; Rodrigues, J.; Torres, C. Mechanisms of Antibiotic Resistance in Escherichia Coli Isolates Recovered from Wild Animals. Microbial. Drug Resist. 2008, 14, 71–77. [Google Scholar] [CrossRef]
- Jia, Y.; Zheng, F.; Maier, H.R.; Ostfeld, A.; Creaco, E.; Savic, D.; Langeveld, J.; Kapelan, Z. Water Quality Modeling in Sewer Networks: Review and Future Research Directions. Water Res. 2021, 202, 117419. [Google Scholar] [CrossRef] [PubMed]
- The Council of the European Union Council. The Council of the European Union Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption (OJ L 330 05.12.1998 p. 32). Doc. Eur. Community Environ. Law 1998, 865–878. [Google Scholar] [CrossRef]
- Soares, A.S.; Miranda, C.; Teixeira, C.A.; Coutinho, J.; Trindade, H.; Coelho, A.C. Impact of Different Treatments on Escherichia Coli during Storage of Cattle Slurry. J. Environ. Manag. 2019, 236, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Hout, J.J. Lead in Drinking Water. J. Environ. Health 2012, 75, 56. [Google Scholar] [PubMed]
- Davies-Colley, R.J.; Nagels, J.W.; Smith, R.A.; Young, R.G.; Phillips, C.J. Water Quality Impact of a Dairy Cow Herd Crossing a Stream. N. Z. J. Mar. Freshw. Res. 2004, 38, 569–576. [Google Scholar] [CrossRef]
- Eenige Van, M.; Kononoff, P.J.; Snow, D.D.; Christensen, D.A. Drinking Water for Dairy Cattle. Large Dairy Herd Manag. 2013, 611–624. [Google Scholar] [CrossRef]
- Available online: https://biblio.ugent.be/publication/01GVJKHN3DVVY9P68JARE18B5S (accessed on 13 April 2023).
- Ashbolt, N.J. Microbial Contamination of Drinking Water and Human Health from Community Water Systems. Curr. Environ. Health Rep. 2015, 2, 95–106. [Google Scholar] [CrossRef]
- Rossi-Fedele, G.; de Figueiredo, J.A.P.; Steier, L.; Canullo, L.; Steier, G.; Roberts, A.P. Evaluation of the Antimicrobial Effect of Super-Oxidized Water (Sterilo®) and Sodium Hypochlorite against Enterococcus Faecalis in a Bovine Root Canal Model. J. Appl. Oral Sci. 2010, 18, 498–502. [Google Scholar] [CrossRef]
- Wingender, J.; Flemming, H.C. Biofilms in Drinking Water and Their Role as Reservoir for Pathogens. Int. J. Hyg. Environ. Health 2011, 214, 417–423. [Google Scholar] [CrossRef]
- Ding, S.; Deng, Y.; Bond, T.; Fang, C.; Cao, Z.; Chu, W. Disinfection Byproduct Formation during Drinking Water Treatment and Distribution: A Review of Unintended Effects of Engineering Agents and Materials. Water Res. 2019, 160, 313–329. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, X. Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review. Agriculture 2014, 4, 1–29. [Google Scholar] [CrossRef]
- Burkhardt, F.K.; Hayer, J.J.; Heinemann, C.; Steinhoff-Wagner, J. Drinking Behavior of Dairy Cows under Commercial Farm Conditions Differs Depending on Water Trough Design and Cleanliness. Appl. Anim. Behav. Sci. 2022, 256, 93–99. [Google Scholar] [CrossRef]
- Czyzewska, W.; Piontek, M.; Łuszczyńska, K. The Occurrence of Potential Harmful Cyanobacteria and Cyanotoxins in the Obrzyca River (Poland), a Source of Drinking Water. Toxins 2020, 12, 284. [Google Scholar] [CrossRef] [PubMed]
- Qu, K.; Guo, F.; Liu, X.; Lin, Y.; Zou, Q. Application of Machine Learning in Microbiology. Front. Microbiol. 2019, 10, 827. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Luo, J.; Huang, D.; Liu, Y.; Li, D.D. Machine Learning Advances in Microbiology: A Review of Methods and Applications. Front. Microbiol. 2022, 13, 1929. [Google Scholar] [CrossRef]
Variables | Farms with Poor Water Quality (n; %) (n = 19) | Occurrence (%) | p |
---|---|---|---|
Region | 0.892 | ||
North | 15 (78.9%) | 60.0 | |
Other | 4 (21.1%) | 57.1 | |
Season | 0.341 | ||
Spring | 7 (36.8%) | 50.0 | |
Summer | 12 (63.2%) | 66.7 | |
Head of cattle in the herd | 0.279 | ||
Less than 204 | 8 (42.1%) | 50.0 | |
204 or more | 11 (57.9%) | 68.8 | |
Number of adult cows in the herd | 0.719 | ||
Less than 199 | 9 (47.4%) | 56.3 | |
199 or more | 10 (52.6%) | 62.5 | |
Number of males in the herd | 0.926 | ||
0–2 | 7 (63.2%) | 58.3 | |
3 or more | 12 (36.8%) | 60.0 | |
Number of heifers in the herd | 0.821 | ||
Less than 40 | 8 (42.1%) | 57.1 | |
40 or more | 11 (57.9%) | 61.1 | |
Production type | 0.604 | ||
Milk | 16 (84.2%) | 61.5 | |
Mixed | 3 (15.8%) | 50.0 | |
Husbandry | 0.933 | ||
Intensive | 16 (84.2%) | 59.3 | |
Extensive/semi-intensive | 3 (15.8%) | 15.8 | |
Pasture area | 0.975 | ||
Own pastures | 3 (15.8%) | 60.0 | |
Others′ pastures | 16 (84.2%) | 59.3 | |
Water Source | 0.560 | ||
Hole | 10 (52.6%) | 62.5 | |
Well | 7 (36.8%) | 58.3 | |
Tap water | 1 (5.3%) | 1/2 | |
Other | 1 (5.3%) | 1/2 | |
Effective periodic disinfection | 0.022 | ||
Yes | 2 (10.5%) | 25.0 | |
No | 17 (89.5%) | 70.8 |
Variables | Farms with Poor Water Quality (n; %) (n = 19) | Occurrence (%) | p |
---|---|---|---|
Responsible for the husbandry | 0.140 | ||
Man | 17 (89.5%) | 56.7 | |
Woman | 2 (10.5%) | 2/2 | |
Age of the farmer | 0.467 | ||
31–50 years | 14 (73.7%) | 63.6 | |
More than 50 years | 5 (26.3%) | 50.0 | |
Education level | 0.364 | ||
Basic | 5 (26.3%) | 5/8 | |
Secondary | 8 (42.1%) | 53.3 | |
Higher education | 6 (31.6%) | 66.7 | |
Training in husbandry | 0.302 | ||
Yes | 18 (94.7%) | 58.1 | |
No | 1 (5.3%) | 1/1 | |
Farmers with exclusive dedication | 0.684 | ||
Yes | 15 (78.9%) | 57.7 | |
No | 4 (21.1%) | 66.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, A.S.; Miranda, C.; Coelho, A.C.; Trindade, H. Occurrence of Coliforms and Enterococcus Species in Drinking Water Samples Obtained from Selected Dairy Cattle Farms in Portugal. Agriculture 2023, 13, 885. https://doi.org/10.3390/agriculture13040885
Soares AS, Miranda C, Coelho AC, Trindade H. Occurrence of Coliforms and Enterococcus Species in Drinking Water Samples Obtained from Selected Dairy Cattle Farms in Portugal. Agriculture. 2023; 13(4):885. https://doi.org/10.3390/agriculture13040885
Chicago/Turabian StyleSoares, Ana Sofia, Carla Miranda, Ana Claudia Coelho, and Henrique Trindade. 2023. "Occurrence of Coliforms and Enterococcus Species in Drinking Water Samples Obtained from Selected Dairy Cattle Farms in Portugal" Agriculture 13, no. 4: 885. https://doi.org/10.3390/agriculture13040885