Spatial Prediction and Mapping of Soil Water Content by TPE-GBDT Model in Chinese Coastal Delta Farmland with Sentinel-2 Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Laboratory Analysis
2.3. Auxiliary Data
2.4. Estimation Methods
2.4.1. MLR
2.4.2. AdaBoost
2.4.3. RF
2.4.4. GBDT
2.4.5. TPE Optimization Algorithm
2.5. Validation Methods
3. Results
3.1. Statistical Analysis
3.2. Prediction of Soil Water Content using TPE Machine Learning Models
3.3. Spatial Mapping of Soil Water Content Using TPE Machine Learning Models
3.4. Importance of Environmental Factors Using SHAP Analysis
4. Discussion
4.1. Advantage of Fitting Mechanism of TPE-GBDT Model
4.2. Effect of Environmental Factors in Driving Soil Water Content
4.3. Limitations and Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Li, Z.; Shangguan, W.; Wang, X.; Li, L.; Yu, F. Improving soil moisture prediction using a novel encoder-decoder model with residual learning. Comput. Electron. Agric. 2022, 195, 106816. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Z.; Shangguan, W.; Li, L.; Yao, Y.; Yu, F. Improved daily SMAP satellite soil moisture prediction over China using deep learning model with transfer learning. J. Hydrol. 2021, 600, 126698. [Google Scholar] [CrossRef]
- Xu, Z.; Man, X.; Duan, L.; Cai, T. Improved subsurface soil moisture prediction from surface soil moisture through the integration of the (de)coupling effect. J. Hydrol. 2022, 608, 127634. [Google Scholar] [CrossRef]
- Wendroth, O.; Rogasik, H.; Koszinski, S.; Ritsema, C.J.; Dekker, L.W.; Nielsen, D.R. State-space prediction of field-scale soil water content time series in a sandy loam. Soil Till Res. 1999, 50, 85–93. [Google Scholar] [CrossRef]
- Gao, X.; Wu, P.; Zhao, X.; Wang, J.; Shi, Y.; Zhang, B.; Tian, L.; Li, H. Estimation of spatial soil moisture averages in a large gully of the Loess Plateau of China through statistical and modeling solutions. J. Hydrol. 2013, 486, 466–478. [Google Scholar] [CrossRef]
- Huang, X.; Shi, Z.H.; Zhu, H.D.; Zhang, H.Y.; Ai, L.; Yin, W. Soil moisture dynamics within soil profiles and associated environmental controls. Catena 2015, 136, S1242748033. [Google Scholar] [CrossRef]
- Zhu, H.D.; Shi, Z.H.; Fang, N.F.; Wu, G.L.; Guo, Z.L.; Zhang, Y. Soil moisture response to environmental factors following precipitation events in a small catchment. Catena-Giess. Amst. 2014, 120, 73–80. [Google Scholar] [CrossRef]
- Hagen, K.; Berger, A.; Gartner, K.; Geitner, C.; Niedertscheider, K. Event-based dynamics of the soil water content at Alpine sites (Tyrol, Austria). Catena 2020, 194, 104682. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.; Peng, H.; Hu, X.; Ma, Y. Soil water and temperature dynamics in shrub-encroached grasslands and climatic implications: Results from Inner Mongolia steppe ecosystem of north China. Agric. For. Meteorol. 2013, s171–172, 20–30. [Google Scholar] [CrossRef]
- Pignotti, G.; Rathjens, H.; Chaubey, I.; Williams, M.; Crawford, M. Strong sensitivity of watershed-scale, ecohydrologic model predictions to soil moisture. Environ. Modell. Softw. 2021, 144, 105162. [Google Scholar] [CrossRef]
- Rawat, K.S.; Sehgal, V.K.; Singh, S.K.; Ray, S.S. Soil moisture estimation using triangular method at higher resolution from MODIS products. Phys. Chem. Earth Parts A/B/C 2022, 126, 103051. [Google Scholar] [CrossRef]
- Filgueiras, R.; Almeida, T.S.; Mantovani, E.C.; Dias, S.H.B.; Fernandes-Filho, E.I.; Da Cunha, F.F.; Venancio, L.P. Soil water content and actual evapotranspiration predictions using regression algorithms and remote sensing data. Agric. Water Manag. 2020, 241, 106346. [Google Scholar] [CrossRef]
- Schönauer, M.; Prinz, R.; Väätäinen, K.; Astrup, R.; Pszenny, D.; Lindeman, H.; Jaeger, D. Spatio-temporal prediction of soil moisture using soil maps, topographic indices and SMAP retrievals. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102730. [Google Scholar] [CrossRef]
- Fuentes, I.; Padarian, J.; Vervoort, R.W. Towards near real-time national-scale soil water content monitoring using data fusion as a downscaling alternative. J. Hydrol. 2022, 609, 127705. [Google Scholar] [CrossRef]
- Chaudhary, S.K.; Srivastava, P.K.; Gupta, D.K.; Kumar, P.; Prasad, R.; Pandey, D.K.; Das, A.K.; Gupta, M. Machine learning algorithms for soil moisture estimation using Sentinel-1: Model development and implementation. Adv. Space Res. 2022, 69, 1799–1812. [Google Scholar] [CrossRef]
- Babaeian, E.; Paheding, S.; Siddique, N.; Devabhaktuni, V.K.; Tuller, M. Estimation of root zone soil moisture from ground and remotely sensed soil information with multisensor data fusion and automated machine learning. Remote Sens. Environ. 2021, 260, 112434. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. ACM 2016, 785–794. [Google Scholar]
- Sraitih, M.; Jabrane, Y.; Hajjam, E.L.; Hassani, A. An Automated System for ECG Arrhythmia Detection Using Machine Learning Techniques. J. Clin. Med. 2021, 10, 5450. [Google Scholar] [CrossRef]
- Yu, J.; Zheng, W.; Xu, L.; Meng, F.; Li, J.; Zhangzhong, L. TPE-CatBoost: An adaptive model for soil moisture spatial estimation in the main maize-producing areas of China with multiple environment covariates. J. Hydrol. 2022, 613, 128465. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Z.; Xiang, R.; Ding, B.; Du, R.; Yin, H.; Chen, Y.; Ba, Y. Monitoring salinity in bare soil based on Sentinel-1/2 image fusion and machine learning. Infrared Phys. Technol. 2023, 131, 104656. [Google Scholar] [CrossRef]
- Gomez, C.; Dharumarajan, S.; Féret, J.-B.; Lagacherie, P.; Ruiz, L.; Sekhar, M. Use of Sentinel-2 Time-Series Images for Classification and Uncertainty Analysis of Inherent Biophysical Property: Case of Soil Texture Mapping. Remote Sens. 2019, 11, 565. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Ji, C.; Xu, X.; Wang, H.; Pan, J.; Bumberger, J.; Haase, D.; Lausch, A. Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Sci. Total Environ. 2020, 755, 142661. [Google Scholar] [CrossRef] [PubMed]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. Isprs J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef]
- Daughtry, C.; Walthall, C.L.; Kim, M.S.; Colstoun, E.; Iii, M.M. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Wu, C.; Wu, J.; Luo, Y.; Zhang, L.; DeGloria, S.D. Spatial Prediction of Soil Organic Matter Content Using Cokriging with Remotely Sensed Data. Soil Fertil. Plant Nutr. 2009, 73, 1202–1208. [Google Scholar] [CrossRef]
- Odhiambo, B.O.; Kenduiywo, B.K.; Were, K. Spatial prediction and mapping of soil pH across a tropical afro-montane landscape. Appl. Geogr. 2020, 114, 102129. [Google Scholar] [CrossRef]
- Idowu, O.; Johnson, F.; Adefemi, O. Modeling cation exchange capacity and soil water holding capacity from basic soil properties. Eurasian J. Soil Sci. 2016, 5, 266–274. [Google Scholar]
- Freund, Y. Experiment With a New Boosting Algorithm. Morgan Kaufmann 1996, 96, 148–156. [Google Scholar]
- Liu, H.; Chen, C. Spatial air quality index prediction model based on decomposition, adaptive boosting, and three-stage feature selection: A case study in China. J. Clean Prod. 2020, 265, 121777. [Google Scholar] [CrossRef]
- Tian, Z.; Xiao, J.; Feng, H.; Wei, Y. Credit Risk Assessment based on Gradient Boosting Decision Tree. Procedia Comput. Sci. 2020, 174, 150–160. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, C.; Yu, H.; Chen, H. Use GBDT to Predict the Stock Market. Procedia Comput. Sci. 2020, 174, 161–171. [Google Scholar] [CrossRef]
- Sun, B.; Chen, S.; Wang, J.; Chen, H. A robust multi-class AdaBoost algorithm for mislabeled noisy data. Knowl.-Based Syst. 2016, 102, 87–102. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Pham, D.T.; Yokoya, N.; Nguyen, T.T.T.; Le, N.N.; Ha, N.T.; Xia, J.; Takeuchi, W.; Pham, T.D. Improvement of Mangrove Soil Carbon Stocks Estimation in North Vietnam Using Sentinel-2 Data and Machine Learning Approach. Gisci. Remote Sens. 2021, 58, 68–87. [Google Scholar] [CrossRef]
- Musial, J.P.; Bojanowski, J.S. Comparison of the Novel Probabilistic Self-Optimizing Vectorized Earth Observation Retrieval Classifier with Common Machine Learning Algorithms. Remote Sens. 2022, 14, 378. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Kutia, M.; Sarkissian, A.J.; Lin, H.; Wang, G. Estimating the Growing Stem Volume of Coniferous Plantations Based on Random Forest Using an Optimized Variable Selection Method. Sensors 2020, 20, 7248. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, W.; Wu, H. TOC prediction using a gradient boosting decision tree method: A case study of shale reservoirs in Qinshui Basin. Geoenergy Sci. Eng. 2023, 221, 111271. [Google Scholar] [CrossRef]
- Wu, W.; Wang, J.; Huang, Y.; Zhao, H.; Wang, X. A novel way to determine transient heat flux based on GBDT machine learning algorithm. Int. J. Heat Mass Transf. 2021, 179, 121746. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, S.; Tao, M.; Khandelwal, M.; Dai, Y.; Zhao, M. Stability prediction of underground entry-type excavations based on particle swarm optimization and gradient boosting decision tree. Undergr. Space. 2023, 9, 234–249. [Google Scholar] [CrossRef]
- Chen, C.; Seo, H. Prediction of rock mass class ahead of TBM excavation face by ML and DL algorithms with Bayesian TPE optimization and SHAP feature analysis. Acta Geotech. 2023, 9, 234–249. [Google Scholar] [CrossRef]
- Ozaki, Y.; Tanigaki, Y.; Watanabe, S.; Onishi, M. Multiobjective tree-structured parzen estimator for computationally expensive optimization problems. ACM 2020, 9, 533–541. [Google Scholar]
- Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for Hyper-Parameter Optimization. Adv. Neural Inf. Process. Syst. 2011, 24, 2546–2554. [Google Scholar]
- Fan, J.; Zheng, J.; Wu, L.; Zhang, F. Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models. Agric. Water Manag. 2021, 245, 106547. [Google Scholar] [CrossRef]
- Fan, J.; Wu, L.; Ma, X.; Zhou, H.; Zhang, F. Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted regions. Renew. Energy. 2020, 145, 2034–2045. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 1–10. [Google Scholar]
- Wilding, L.P. Spatial variability: Its documentation, accomodation and implication to soil surveys. Spat. Var. 1985, 1985, 166–194. [Google Scholar]
- Li, D.; Ma, C. Research on lane change prediction model based on GBDT. Phys. A: Stat. Mech. Its Appl. 2022, 608, 128290. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, X.; Zhou, H.; Wang, X.; Xing, X. Prediction model for daily reference crop evapotranspiration based on hybrid algorithm and principal components analysis in Southwest China. Comput. Electron. Agric. 2021, 190, 106424. [Google Scholar] [CrossRef]
- An, R.; Tong, Z.; Ding, Y.; Tan, B.; Wu, Z.; Xiong, Q.; Liu, Y. Examining non-linear built environment effects on injurious traffic collisions: A gradient boosting decision tree analysis. J. Transp. Health. 2022, 24, 101296. [Google Scholar] [CrossRef]
- Xiao, L.; Lo, S.; Liu, J.; Zhou, J.; Li, Q. Nonlinear and synergistic effects of TOD on urban vibrancy: Applying local explanations for gradient boosting decision tree. Sust. Cities Soc. 2021, 72, 103063. [Google Scholar] [CrossRef]
- Liu, M.; Chen, H.; Wei, D.; Wu, Y.; Li, C. Nonlinear relationship between urban form and street-level PM2.5 and CO based on mobile measurements and gradient boosting decision tree models. Build. Environ. 2021, 205, 108265. [Google Scholar] [CrossRef]
- Chen, B.; Zheng, H.; Luo, G.; Chen, C.; Bao, A.; Liu, T.; Chen, X. Adaptive estimation of multi-regional soil salinization using extreme gradient boosting with Bayesian TPE optimization. Int. J. Remote Sens. 2022, 43, 778–811. [Google Scholar] [CrossRef]
- Lin, B.B.; Egerer, M.H.; Liere, H.; Jha, S.; Philpott, S.M. Soil management is key to maintaining soil moisture in urban gardens facing changing climatic conditions. Sci Rep. 2018, 8, 17565. [Google Scholar] [CrossRef]
- Cosby, B.J.; Hornberger, G.M.; Clapp, R.B.; Ginn, T.R. A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils. Water Resour. Res. 1984, 20, 682–690. [Google Scholar] [CrossRef]
- Quan, Q.; Tian, D.; Luo, Y.; Zhang, F.; Niu, S. Water scaling of ecosystem carbon cycle feedback to climate warming. Sci. Adv. 2019, 5, v1131. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Yu, X.; Xu, C.; Li, S.; Wu, G.; Yuan, W. Dynamic traceability effects of soil moisture on the precipitation–vegetation association in drylands. J. Hydrol. 2022, 615, 128645. [Google Scholar] [CrossRef]
- Zhu, Z.; Bo, Y.; Sun, T. Spatial downscaling of satellite soil moisture products based on apparent thermal inertia: Considering the effect of vegetation condition. J. Hydrol. 2023, 616, 128824. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, X.; Cheng, J.; Yin, X. Effects of black locust (Robinia pseudoacacia) on soil properties in the loessial gully region of the Loess Plateau, China. Plant Soil 2010, 332, 207–217. [Google Scholar] [CrossRef]
- Kou, M.; Garcia-Fayos, P.; Hu, S.; Jiao, J. The effect of Robinia pseudoacacia afforestation on soil and vegetation properties in the Loess Plateau (China): A chronosequence approach. For. Ecol. Manag. 2016, 375, 146–158. [Google Scholar] [CrossRef]
- Metzger, J.C.; Wutzler, T.; Valle, N.D.; Filipzik, J.; Hildebrandt, A. Vegetation impacts soil water content patterns by shaping canopy water fluxes and soil properties. Hydrol. Process. 2017, 31, 3783–3795. [Google Scholar] [CrossRef]
- Chen, M.; Willgoose, G.R.; Saco, P.M. Investigating the impact of leaf area index temporal variability on soil moisture predictions using remote sensing vegetation data. J. Hydrol. 2015, 522, 274–284. [Google Scholar] [CrossRef]
- Liu, B.; Shao, M.A. Modeling soil–water dynamics and soil–water carrying capacity for vegetation on the Loess Plateau, China. Agric. Water Manag. 2015, 159, 176–184. [Google Scholar] [CrossRef]
- Angst, Š.; Mueller, C.W.; Cajthaml, T.; Angst, G.; Lhotáková, Z.; Bartuška, M.; Špaldoňová, A.; Frouz, J. Stabilization of soil organic matter by earthworms is connected with physical protection rather than with chemical changes of organic matter. Geoderma. 2017, 289, 29–35. [Google Scholar] [CrossRef]
- Li, R.; Kan, S.; Zhu, M.; Chen, J.; Ai, X.; Chen, Z.; Zhang, J.; Ai, Y. Effect of different vegetation restoration types on fundamental parameters, structural characteristics and the soil quality index of artificial soil. Soil Tillage Res. 2018, 184, 11–23. [Google Scholar] [CrossRef]
- Liu, Z.; Notaro, M.; Gallimore, R. Indirect vegetation–soil moisture feedback with application to Holocene North Africa climate. Glob. Change Biol. 2010, 16, 1733–1743. [Google Scholar] [CrossRef]
- Ivanov, V.Y.; Fatichi, S.; Jenerette, G.D.; Espeleta, J.F.; Troch, P.A.; Huxman, T.E. Hysteresis of soil moisture spatial heterogeneity and the “homogenizing” effect of vegetation. Water Resour. Res. 2015, 46, 1–15. [Google Scholar] [CrossRef]
- D’Odorico, P.; Caylor, K.; And, G.; Scanlon, T.M. On soil moisture–vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. J. Geophys. Res. Biogeosciences 2007, 112, 1–10. [Google Scholar] [CrossRef]
- Zkan, U.; Kbulak, F.G. Effect of vegetation change from forest to herbaceous vegetation cover on soil moisture and temperature regimes and soil water chemistry. Catena 2017, 149, 158–166. [Google Scholar]
- Wang, S.; Fu, B.; Gao, G.; Zhou, J.; Jiao, L.; Liu, J. Linking the soil moisture distribution pattern to dynamic processes along slope transects in the Loess Plateau, China. Environ. Monit. Assess. 2015, 187, 778. [Google Scholar] [CrossRef] [PubMed]
- Melliger, J.J.; Niemann, J.D. Effects of gullies on space–time patterns of soil moisture in a semiarid grassland. J. Hydrol. 2010, 389, 289–300. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, X.; Wu, P.; Brocca, L.; Zhang, B. Effects of large gullies on catchment-scale soil moisture spatial behaviors: A case study on the Loess Plateau of China. Geoderma 2016, 261, 1–10. [Google Scholar] [CrossRef]
- Soares, P.M.M.; Lima, D.C.A. Water scarcity down to earth surface in a Mediterranean climate: The extreme future of soil moisture in Portugal. J. Hydrol. 2022, 615, 128731. [Google Scholar] [CrossRef]
- Fan, K.; Slater, L.; Zhang, Q.; Sheffield, J.; Gentine, P.; Sun, S.; Wu, W. Climate warming accelerates surface soil moisture drying in the Yellow River Basin, China. J. Hydrol. 2022, 615, 128735. [Google Scholar] [CrossRef]
- Cook, B.I.; Mankin, J.S.; Anchukaitis, K.J. Climate Change and Drought: From Past to Future. Curr. Clim. Chang. Rep. 2018, 4, 164–179. [Google Scholar] [CrossRef]
- Berg, A.; Sheffield, J. Climate Change and Drought: The Soil Moisture Perspective. Curr. Clim. Chang. Rep. 2018, 4, 180–191. [Google Scholar] [CrossRef]
- Zheng, W.; Zhangzhong, L.; Zhang, X.; Wang, C.; Zhang, S.; Sun, S.; Niu, H. A Review on the Soil Moisture Prediction Model and Its Application in the Information System; Springer International Publishing: Cham, Switzerland, 2019; pp. 352–364. [Google Scholar]
- Liu, Y.; Liu, Y.; Wang, W.; Fan, X.; Cui, W. Soil moisture droughts in East Africa: Spatiotemporal patterns and climate drivers. J. Hydrol. Reg. Stud. 2022, 40, 101013. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Rudnicki, J.W.; Rodell, M. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. J. Hydrol. 1998, 210, 259–281. [Google Scholar] [CrossRef]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; Rosnay, P.D.; Ryu, D.; Walker, J.P. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 2012, 50, 1–20. [Google Scholar] [CrossRef]
- Gaur, N.; Mohanty, B.P. Land-surface controls on near-surface soil moisture dynamics: Traversing remote sensing footprints. Water Resour. Res. 2016, 52, 6365–6385. [Google Scholar] [CrossRef]
- Peng, D.; Zhou, Q.; Tang, X.; Yan, W.; Chen, M. Changes in soil moisture caused solely by vegetation restoration in the karst region of southwest China. J. Hydrol. 2022, 613, 128460. [Google Scholar] [CrossRef]
- Rockstrm, J.; Karlberg, L.; Wani, S.P.; Barron, J.; Qiang, Z. Managing Water in Rainfed Agriculture—The Need for a Paradigm Shift. Agric. Water Manag. 2010, 97, 543–550. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Tugwell-Wootton, T.; Skrzypek, G.; Dogramaci, S.; McCallum, J.; Grierson, P.F. Soil moisture evaporative losses in response to wet-dry cycles in a semiarid climate. J. Hydrol. 2020, 590, 125533. [Google Scholar] [CrossRef]
- Bartels, G.K.; Castro, N.M.D.R.; Pedrollo, O.; Collares, G.L. Soil moisture estimation in two layers for a small watershed with neural network models: Assessment of the main factors that affect the results. Catena 2021, 207, 105631. [Google Scholar] [CrossRef]
Index | Formula | Reference |
---|---|---|
MTCI | [23] | |
MNDVI | [23] | |
MCARI | [24] | |
PSRI | [25] | |
RENDVI | [26] | |
S2REP | [23] | |
IRECI | [23] | |
OSAVI | [27] | |
SAVIred | [28] | |
MSR | [29] |
Hyperparameters | Type | Default Value | Range | Explanation | Final Hyperparameters |
---|---|---|---|---|---|
n_estimators | int | 50 | [10, 500] | number of trees | 58 |
learning_rate | float | 1.0 | [0.01, 3] | learning speed in the iterative process | 0.973 |
loss | string | “linear” | [“linear”, “square”, “exponential”] | type of loss function | “linear” |
Hyperparameters | Type | Default Value | Range | Explanation | Final Hyperparameters |
---|---|---|---|---|---|
n_estimators | int | 100 | [10, 500] | number of trees | 94 |
max_depth | int | 1.0 | [1, 10] | the maximum depth of each tree | 6 |
min_impurity_decrease | float | 0 | [0, 5] | minimum impurity of node partition | 0.8 |
min_samples_split | int | 2 | [1, 15] | the minimum number of samples required for internal node re-division | 2 |
max_features | int, float, string | 1.0 | [“log2”, “sqrt”, 2, 4, 16, 32, None] | the number of features to consider when finding the best segmentation | 2 |
criterion | string | “squared_error” | [“mae”, “mse”, “squared_error”] | node division standard | “squared_error” |
Hyperparameters | Type | Default Value | Range | Explanation | Final Hyperparameters |
---|---|---|---|---|---|
criterion | string | friedman_mse | [“friedman_mse”, “squared_error”] | specify the evaluation criteria for partitioning subtrees. | “squared_error” |
loss | string | squared_error | [“squared_error”, ”absolute_error”, “huber”, “quantile”] | specify the loss function type | “squared_error” |
n_estimators | int | 100 | [10, 500] | specifies the number of iterations, the number of trees | 97 |
learning_rate | float | 0.1 | [0.01, 3] | specify the learning speed of the model | 0.5 |
subsample | float | 1.0 | [0.3, 1] | specify the proportion of subsampling in the modeling process | 0.66 |
max_depth | int | 3 | [1, 20] | specify the maximum depth of each tree | 2 |
max_features | int, float, string | None | [“log2”, “sqrt”, 2, 4, 16, 32, None] | limit the number of features considered when branching the tree | 4 |
min_impurity_decrease | float | 0 | [0, 5] | limit the amount of information gain when splitting nodes | 0.15 |
Model | RMSE (%) | R2 |
---|---|---|
MLR | 7.92 | 0.44 |
GBDT | 6.02 | 0.71 |
RF | 6.94 | 0.50 |
AdaBoost | 7.08 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, D.; Mu, Y.; Duan, W.; Ye, M.; Song, Y.; Song, Z.; Yao, K.; Sun, D.; Ding, Z. Spatial Prediction and Mapping of Soil Water Content by TPE-GBDT Model in Chinese Coastal Delta Farmland with Sentinel-2 Remote Sensing Data. Agriculture 2023, 13, 1088. https://doi.org/10.3390/agriculture13051088
Zhan D, Mu Y, Duan W, Ye M, Song Y, Song Z, Yao K, Sun D, Ding Z. Spatial Prediction and Mapping of Soil Water Content by TPE-GBDT Model in Chinese Coastal Delta Farmland with Sentinel-2 Remote Sensing Data. Agriculture. 2023; 13(5):1088. https://doi.org/10.3390/agriculture13051088
Chicago/Turabian StyleZhan, Dexi, Yongqi Mu, Wenxu Duan, Mingzhu Ye, Yingqiang Song, Zhenqi Song, Kaizhong Yao, Dengkuo Sun, and Ziqi Ding. 2023. "Spatial Prediction and Mapping of Soil Water Content by TPE-GBDT Model in Chinese Coastal Delta Farmland with Sentinel-2 Remote Sensing Data" Agriculture 13, no. 5: 1088. https://doi.org/10.3390/agriculture13051088
APA StyleZhan, D., Mu, Y., Duan, W., Ye, M., Song, Y., Song, Z., Yao, K., Sun, D., & Ding, Z. (2023). Spatial Prediction and Mapping of Soil Water Content by TPE-GBDT Model in Chinese Coastal Delta Farmland with Sentinel-2 Remote Sensing Data. Agriculture, 13(5), 1088. https://doi.org/10.3390/agriculture13051088