The Contribution of Agronomic Management to Sustainably Intensify Egypt’s Wheat Production
Abstract
:1. Introduction
- (1)
- identify the current production practices used by smallholder wheat farmers in the study area, including cultivation methods, and water management;
- (2)
- identify the key constraints affecting wheat productivity in smallholder farms, both as perceived by farmers and as observed by researchers, including issues related to soil management, access to inputs and markets, and labor availability;
- (3)
- relate crop performance attributes, such as yield, to the identified constraints affecting wheat productivity;
- (4)
- outline the necessary actions to develop yield-gap-reducing production strategies that can be targeted to smallholder wheat farms in the study area and to guide policymakers and stakeholders in developing targeted interventions and policies that promote sustainable wheat production in Egypt.
2. Methods
2.1. Description of the Study Area
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Farmer Attributes and Resource Endowment
3.2. Wheat Yield and Agronomic Practices
3.3. Individual Yield-Affecting Variables
3.3.1. Crop Rotation
3.3.2. Seeding Rate
3.3.3. Organic Amendments
3.3.4. Irrigation Frequency
3.3.5. Mineral N Fertilizer
3.3.6. Mineral P Fertilizer
4. Discussion
4.1. Increasing Wheat Production
4.2. Unbalanced Nutrient Supply
4.3. Water Deficit
4.4. Future Needs
- (1)
- Climate Change: Climate change is expected to affect wheat production in Egypt, particularly in terms of water availability and quality. Future studies should focus on identifying effective adaptation strategies for wheat production in a changing climate, including the development of drought-tolerant wheat varieties and improving water management practices.
- (2)
- Soil Health: Soil health is critical for sustainable agriculture and wheat productivity. Future studies should investigate the impact of practices such as cover cropping, crop rotation, mulch culture, and reduced tillage to foster soil health, nutrient cycling, and the water-holding capacity of wheat soils.
- (3)
- Market Access: Improving market access and facilitating trade is critical for ensuring that wheat farmers receive fair prices for their crops. Future studies should examine factors influencing market access and trade, including policy and infrastructure barriers.
- (4)
- Technology Adoption: Technology adoption is critical for improving wheat productivity in Egypt. Future studies should investigate factors influencing farmers’ adaptive capacity to adopting site-specifically adapted new technologies.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Egypt; FAOSTAT: Rome, Italy, 2017; Available online: http://www.fao.org/faostat/en/#country/59 (accessed on 20 August 2020).
- Food and Agriculture Organization of the United Nations; High Level Panel of Experts on Food Security and Nutrition. Nutrition and Food Systems; Report 44; FAOSTAT: Rome, Italy, 2017; p. 150. Available online: http://www.fao.org/3/a-i7846e.pdf (accessed on 15 September 2020).
- Fathy, E.; Heba, E.; Ahmed, E. Boron: Spatial distribution in an area of North Nile Delta, Egypt. Commun. Soil Sci. Plant Anal. 2017, 3, 294–306. [Google Scholar] [CrossRef]
- Nasr, P.; Sewilam, H. Investigating fertilizer drawn forward osmosis process for groundwater desalination for irrigation in Egypt. Desalination Water Treat. 2016, 56, 26932–26942. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Land Reclamation—MARL. Wheat Cultivation and Production in Old Land; Agriculture Research Center, Central Administration for Agricultural Extension: Cairo, Egypt, 2020; Available online: http://www.arc.sci.eg/default.aspx?TabId=0&lang=ar (accessed on 10 May 2022).
- Abdalla, A.; Stellmacher, T.; Becker, M. Trends and prospects of change in wheat self-sufficiency in Egypt. Agriculture 2023, 13, 7. [Google Scholar] [CrossRef]
- Central Agency for Public Mobilization and Statistics—CAPMAS. Cairo, Egypt. 2017. Available online: https://www.capmas.gov.eg/Pages/StaticPages.aspx?page_id=5084 (accessed on 9 August 2020).
- Central Agency for Public Mobilization and Statistics—CAPMAS. Cairo, Egypt. 2022. Available online: https://www.capmas.gov.eg/Pages/StaticPages.aspx?page_id=5035 (accessed on 2 February 2023).
- Azoz, A.; Ahmed, A.; Tawfik, M. Wheat Production in Old Land; Central Management of Agriculture Extension in Egypt: Cairo, Egypt, 2020; Available online: http://www.caaes.org/ (accessed on 2 January 2023).
- Central Agency for Public Mobilization and Statistics—CAPMAS. Cairo, Egypt. 2020. Available online: https://censusinfo.capmas.gov.eg/Metadata-ar-v4.2/index.php/catalog/1195 (accessed on 6 August 2022).
- Barrett, C.B.; Place, F.; Aboud, A.A. Natural Resources Management in African Agriculture: Understanding and Improving Current Practices; CAB International: Wallingford, UK, 2002. [Google Scholar] [CrossRef]
- Ouda, S.A.H.; Zohry, A.E.H. Future of Food Gaps in Egypt; Springer Briefs in Agriculture; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Afifi, A.A.; Darwish, K.M. Detection and impact of land encroachment in El-Beheira governorate, Egypt. Model. Earth Syst. Environ. 2018, 4, 517–526. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations—FAO. Country Programming Framework (CPF) Government of Egypt 2012–2017; FAO: Cairo, Egypt, 2013; Available online: https://www.fao.org/3/bp605e/bp605e.pdf (accessed on 26 August 2020).
- Wooldridge, J.M. Introductory Econometrics: A Modern Approach, 4th ed.; South-Western College Publishing: Cincinnati, OH, USA; Cengage Learning: Boston, MA, USA, 2009; pp. 22–68. Available online: https://books.google.de/books?id=4TZnpwAACAAJ (accessed on 8 February 2023).
- Machado, J.A.F. Robust model selection and M-estimation. Econom. Theory 1993, 9, 478–493. [Google Scholar] [CrossRef]
- Cook, R.D. Detection of influential observation in linear regression. Technometrics 1977, 19, 15–18. [Google Scholar] [CrossRef]
- Gruet, M.A.; Huet, S.; Jolivet, E. Practical use of bootstrap in regression. In Computer Intensive Methods in Statistics; Härdle, W., Simar, L., Eds.; Statistics and Computing Series; Physica: Heidelberg, Germany, 1993. [Google Scholar] [CrossRef]
- Clarke, G.M. The Method of Paired Comparisons. J. R. Stat. Soc. Ser. D Stat. 1989, 38, 307–308. [Google Scholar] [CrossRef]
- Stang, A.; Rothman, K.J. Epidemiology: An Introduction; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Ge, D.; Long, H.; Zhang, Y.; Ma, L.; Li, T. Farmland transition and its influences on grain production in China. Land Use Policy 2018, 70, 94–105. [Google Scholar] [CrossRef]
- Mamine, F.; Farès, M. Barriers and levers to developing wheat–pea intercropping in Europe: A review. Sustainability 2020, 12, 6962. [Google Scholar] [CrossRef]
- Kataki, P.K.; Hobbs, P.; Adhikary, B. The rice-wheat cropping system of South Asia. J. Crop Prod. 2008, 3, 1–26. [Google Scholar] [CrossRef]
- Bakheit, B.R. Egyptian clover (Trifolium alexandrinum L.) breeding in Egypt: A review. Asian J. Crop Sci. 2013, 5, 325–337. [Google Scholar] [CrossRef]
- Mahmoud, S.; Emara, R.; Ata, S. An economic study of the impact of the varietal distribution of wheat in the application of import substitution. Egypt J. Agric. Econ. 2022, 32, 1110–6832. [Google Scholar]
- Aravindakshan, S.; Krupnik, T.J.; Jeroen, C.J.; Groot, J.C.J.; Speelman, E.N.; Amjath- Babu, T.S.; Tittonell, P. Multi-level socioecological drivers of agrarian change: Longitudinal evidence from mixed rice-livestock-aquaculture farming systems of Bangladesh. Agric. Syst. 2020, 177, 102695. [Google Scholar] [CrossRef]
- Statista. Total Population of Egypt as of 2022. 2022. Available online: https://www.statista.com/ (accessed on 12 January 2023).
- Mansour, T.G.I.; Abdelazez, M.A.; Eleshmawiy, K.H. Challenges and constraints facing the agricultural extension system in Egypt. J. Agric. Sci. 2022, 17, 241–257. [Google Scholar] [CrossRef]
- McDonough, C.; Nuberg, I.K.; Pitchford, W.S. Barriers to participatory extension in Egypt: Agricultural Workers’ Perspectives. J. Agric. Educ. Ext. 2015, 21, 159–176. [Google Scholar] [CrossRef]
- Global Yield Gap Atlas (GYGA). 2022. Available online: https://www.yieldgap.org/gygaviewer/index.html?roi_id=5&extended=1 (accessed on 22 January 2023).
- Hatfield, J.L.; Beres, B.L. Yield gaps in wheat: Path to enhancing productivity. Frontiers in. Plant Science. Crop Prod. Physiol. 2019, 10, 1603. [Google Scholar] [CrossRef]
- Bélanger, G.; Ziadi, N.; Pageau, D.; Grant, C.; Högnäsbacka, M.; Perttu Virkajärvi, P.; Hu, Z.; Lu, J.; Lafond, J.; Nyiraneza, J. A Model of critical phosphorus concentration in the shoot biomass of wheat. Agron. J. 2015, 107, 963–970. [Google Scholar] [CrossRef]
- Reynolds, M.P.; Rajaram, S.; Sayre, K.D. Physiological and genetic changes of irrigated wheat in the post–green revolution period and approaches for meeting projected global demand. Crop Sci. J. 1999, 39, 1611–1621. [Google Scholar] [CrossRef]
- El-Bendary, A.A.; El-Masry, M.; Fekry, M.; El-Fouly, M.M. Zinc efficiency of some Egyptian wheat genotypes grown in Zn-deficient soil. Int. J. AgriScience 2013, 3, 263–274. [Google Scholar]
- Zeidan, M.; Mohamed, M.; Hamouda, H. Effect of foliar fertilization of Fe, Mn and Zn on wheat yield and quality in low sandy soils fertility. World J. Agric. Sci. 2010, 6, 696–699. [Google Scholar]
- El-Nasharty, A.B.; Rezk, A.I.; Abou El-Nour, E.A.A.; Nofal, O.A. Utilization efficiency of zinc by some wheat cultivars under stress condition of zinc deficiency. World Appl. Sci. J. 2013, 25, 1485–1489. [Google Scholar] [CrossRef]
- Kihara, J.; Bolo, P.; Kinyua, M.; Rurinda, J.; Piikki, K. Micronutrient deficiencies in African soils and the human nutritional nexus: Opportunities with staple crops. Environ. Geochem. Health 2020, 42, 3015–3033. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Satar, A.M.; Ali, M.H.; Gohe, M.E. Indices of water quality and metal pollution of Nile River, Egypt, 2017. Egypt. J. Aquat. Res. 2017, 43, 21–29. [Google Scholar] [CrossRef]
- El-Kholy, R.A.; Zaghlool, E.; Isawi, H.; Soliman, E.A.; Khalil, M.M.; El-Aassar, A.H.M.; Said, M.M. Groundwater quality assessment using water quality index and multivariate statistical analysis case study: East Matrouh, Northwestern coast, Egypt. Environ. Sci. Pollut. Res. 2022, 29, 65699–65722. [Google Scholar] [CrossRef] [PubMed]
- El-Kader, M.M.A.; Reda, F.M. Impact of agricultural activities on the environment: A case study of the Nile Delta, Egypt. Environ. Sci. Pollut. Res. 2019, 26, 19273–19284. [Google Scholar] [CrossRef]
- O’Neill, D.W.; Fanning, A.L.; Lamb, W.F.; Steinberger, J.K. A good life for all within planetary boundaries. Nat. Sustain. 2018, 1, 88–95. [Google Scholar] [CrossRef]
- Asseng, S.; Kheir, A.M.S.; Kassie, B.T.; Hoogenboom, G.; Abdelaal, A.I.N.; Haman, D.Z.; Ruane, A.C. Can Egypt become self-sufficient in wheat? Environ. Res. Lett. 2018, 13, 094012. [Google Scholar] [CrossRef]
- El-Hadidi, E.; Ibrahim, M.; Abdel-Hafez, S.; Eid, M. Effect of deficit irrigation and raised bed on wheat yield, water productivity and water saving in North Nile Delta, Egypt. J. Soil Sci. Agric. Eng. 2015, 6, 845–862. [Google Scholar] [CrossRef]
- El-Rahman, G.A. Water use efficiency of wheat under drip irrigation systems at al—Maghara area, North Sinai, Egypt. J. Soil Sci. Agric. Eng. 2009, 34, 2537–2546. [Google Scholar] [CrossRef]
- Zoghdan, M.; Ali, O. The integrated levels impacts of farmyard manure with phosphorus fertilizers and irrigation on soil properties and wheat productivity under saline soils in north delta, Egypt. J. Soil Sci. Agric. Eng. 2019, 10, 123–131. [Google Scholar] [CrossRef]
- Rasool, R.; Kukal, S.S.; Hira, G.S. Soil physical fertility and crop performance as affected by long-term application of FYM and inorganic fertilizers in rice–wheat system. Soil Tillage Res. 2007, 96, 64–72. [Google Scholar] [CrossRef]
- Alwang, J.; Sabry, S.; Shideed, K.; Swelam, A.; Halila, H. Economic and food security benefits associated with raised-bed wheat production in Egypt. Food Secur. 2018, 10, 589–601. [Google Scholar] [CrossRef]
Age of Farmer (Years) | Farming Experience (Years) | Farm Size (ha) | Wheat Yield (t/ha) | |
---|---|---|---|---|
Mean | 56 | 30 | 1.05 | 6.4 |
Range | 47 | 40 | 2.1 | 4.2 |
Minimum | 32 | 10 | 0.2 | 4.2 |
Maximum | 79 | 50 | 2.3 | 8.5 |
Count (n) | 246 | 246 | 246 | 246 |
Variable | Df | F Value | P > f |
---|---|---|---|
Preceding crop (category) | 4 | 7.5 | 0.001 |
Seeding rate (kg/ha) | 3 | 3.74 | 0.012 |
Manure amount (t/ha) | 3 | 4.31 | 0.006 |
Irrigation frequency (#) | 3 | 38.31 | 0.001 |
Mineral n rate (kg/ha) | 4 | 2.68 | 0.033 |
Mineral p rate (kg/ha) | 5 | 3.19 | 0.008 |
Denominator | 212 |
Preceding Summer Crop | Wheat Yield (t/ha) | Standard Error | T | P > t | [95% Conf. Interval] | |
---|---|---|---|---|---|---|
Rice | 6.27 b | 0.078 | 80.2 | <0.001 | 6.11 | 6.42 |
Maize | 6.44 ab | 0.075 | 85.6 | <0.001 | 6.30 | 6.59 |
Sesame | 5.51 c | 0.260 | 21.2 | <0.001 | 5.00 | 6.03 |
Potatoes | 6.73 a | 0.301 | 22.3 | <0.001 | 6.14 | 7.33 |
Sunflower | 5.83 bc | 0.184 | 31.6 | <0.001 | 5.47 | 6.20 |
Seeding Rate (kg/ha) | Wheat Yield (t/ha) | Standard Error | T | P > t | [95% Conf. Int.] | Share (%) | |
---|---|---|---|---|---|---|---|
>100 | 6.56 a | 0.0780 | 83.25 | <0.001 | 6.414 | 6.72 | 29.3 |
100–130 | 6.33 ab | 0.0512 | 123.72 | <0.001 | 6.23 | 6.44 | 52.0 |
130–150 | 6.43 a | 0.0996 | 64.59 | <0.001 | 6.23 | 6.63 | 17.9 |
<150 | 6.06 b | 0.1421 | 42.65 | <0.001 | 5.78 | 6.34 | 0.8 |
Manure Applied (m3/ha) | Wheat Yield (t/ha) | Standard Error | T | P > t | [95% Conf. Interval] | Share (%) | |
---|---|---|---|---|---|---|---|
NONE | 6.25 b | 0.121 | 52.6 | <0.001 | 6.11 | 6.58 | 14.2 |
8 | 6.27 b | 0.070 | 89.5 | <0.001 | 6.13 | 6.40 | 36.6 |
16 | 6.51 ab | 0.072 | 90.2 | <0.001 | 6.37 | 6.65 | 35.4 |
20 | 6.79 a | 0.101 | 66.1 | <0.001 | 6.49 | 6.89 | 11.8 |
Irrigation Events | Wheat Yield (t/ha) | Standard Error | T | P > t | [95% Conf. Interval] | Share (%) | |
---|---|---|---|---|---|---|---|
Once | 5.82 c | 0.1049 | 55.5 | <0.001 | 5.62 | 6.03 | 18.3 |
Twice | 6.36 b | 0.0473 | 134.5 | <0.001 | 6.26 | 6.45 | 58.5 |
3–4 times | 6.81 b | 0.1462 | 46.7 | <0.001 | 6.53 | 7.10 | 12.6 |
≥5 times | 7.83 a | 0.1762 | 44.4 | <0.001 | 7.48 | 8.17 | 6.9 |
N Application Rate (kg/ha) | Wheat Yield (t/ha) | Standard Error | T | P > t | [95% Conf. Int.] | Share (%) | |
---|---|---|---|---|---|---|---|
>250 | 6.24 ab | 0.091 | 68.05 | <0.001 | 6.06 | 6.42 | 29.7 |
250–400 | 6.27 ab | 0.077 | 81.97 | <0.001 | 6.12 | 6.42 | 33.7 |
400–550 | 6.38 a | 0.083 | 76.75 | <0.001 | 6.22 | 6.54 | 23.9 |
<550 | 6.12 b | 0.095 | 64.42 | <0.001 | 5.93 | 6.30 | 12.6 |
P Application (kg/ha) | Wheat Yield (t/ha) | Standard Error | t | P > t | [95% Conf. Interval] | Share (%) | |
---|---|---|---|---|---|---|---|
>150 | 6.64 a | 0.121 | 54.7 | <0.001 | 6.40 | 6.88 | 26.0 |
150–210 | 6.26 b | 0.152 | 41.1 | <0.001 | 5.96 | 6.56 | 10.2 |
210–260 | 6.27 b | 0.056 | 110.2 | <0.001 | 6.06 | 6.28 | 42.7 |
260–300 | 6.30 ab | 0.134 | 47.7 | <0.001 | 6.13 | 6.66 | 11.8 |
<300 | 6.34 ab | 0.100 | 63.0 | <0.001 | 6.14 | 6.54 | 9.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdalla, A.; Becker, M.; Stellmacher, T. The Contribution of Agronomic Management to Sustainably Intensify Egypt’s Wheat Production. Agriculture 2023, 13, 978. https://doi.org/10.3390/agriculture13050978
Abdalla A, Becker M, Stellmacher T. The Contribution of Agronomic Management to Sustainably Intensify Egypt’s Wheat Production. Agriculture. 2023; 13(5):978. https://doi.org/10.3390/agriculture13050978
Chicago/Turabian StyleAbdalla, Ahmed, Mathias Becker, and Till Stellmacher. 2023. "The Contribution of Agronomic Management to Sustainably Intensify Egypt’s Wheat Production" Agriculture 13, no. 5: 978. https://doi.org/10.3390/agriculture13050978