Identifying the Best Strategies for Improving and Developing Sustainable Rain-Fed Agriculture: An Integrated SWOT-BWM-WASPAS Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Statistical Population
2.3. Methodology
2.3.1. SWOT Analysis
- SO, Strategy (offensive): the focus is on internal strengths and external opportunities.
- ST strategy (competitive): the focus is on internal strengths and external threats.
- WO strategy (conservative): taking advantage of external opportunities, this strategy seeks to improve on weaknesses.
- WT strategy (defensive): This strategy deals with internal weaknesses and external threats.
2.3.2. Best-Worst Method (BWM)
STEPS of the BWM Method
2.3.3. WASPAS Technique
- Normalizing the decision matrix using Equations (8) and (9).
- Calculating the relative significance of the alternatives based on the WSM method using Equation (10) (this equation is the weighted matrix where the normal matrix is multiplied by the weights of the criteria).
- Calculating the relative significance of the alternatives based on the WPM method via Equation (11) (this equation also states that the normal matrix must acquire the power equal to the weights of the criteria).
- Calculating the common criterion, where the significance of the alternatives is calculated with equal proportion using Equations (10) and (11).
3. Discussion and Results
3.1. The Results of the SWOT-BWM Analysis
3.2. WASPAS Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Licker, R.; Johnston, M.; Foley, J.A.; Barford, C.; Kucharik, C.J.; Monfreda, C.; Ramankutty, N. Mind the Gap: How Do Climate and Agricultural Management Explain the ‘Yield Gap’of Croplands around the World? Glob. Ecol. Biogeogr. 2010, 19, 769–782. [Google Scholar] [CrossRef]
- Fereres, E.; Orgaz, F.; Gonzalez-Dugo, V. Reflections on Food Security under Water Scarcity. J. Exp. Bot. 2011, 62, 4079–4086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elagib, N.A.; Khalifa, M.; Rahma, A.E.; Babker, Z.; Gamaledin, S.I. Performance of Major Mechanized Rainfed Agricultural Production in Sudan: Sorghum Vulnerability and Resilience to Climate since 1970. Agric. Meteorol. 2019, 276, 107640. [Google Scholar] [CrossRef]
- Raeini-Sarjaz, M.; Rostami, A. Remotely Sensed Measurements of Apple Orchard Actual Evapotranspiration and Plant Coefficient Using MODIS Images and SEBAL Algorithm (Case Study: Ahar Plain, Iran). J. Agric. Meteorol. 2016, 4, 32–43. [Google Scholar]
- Rostami, A.; Raeini-Sarjaz, M.; Chabokpour, J.; Azamathulla, H.M.; Kumar, S. Determination of Rainfed Wheat Agriculture Potential through Assimilation of Remote Sensing Data with SWAT Model Case Study: ZarrinehRoud Basin, Iran. Water Supply 2022, 22, 5331–5354. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2020. In Overcoming Water Challenges in Agriculture; FAO: Rome, Italy, 2020. [Google Scholar]
- Rockström, J.; Barron, J.; Fox, P. Water Productivity in Rain-Fed Agriculture: Challenges and Opportunities for Smallholder Farmers in Drought-Prone Tropical Agroecosystems. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; CABI Publishing: Wallingford, UK, 2003; pp. 145–162. [Google Scholar]
- Wani, S.P.; Pathak, P.; Sreedevi, T.K.; Singh, H.P.; Singh, P. Efficient Management of Rainwater for Increased Crop Productivity and Groundwater Recharge in Asia. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; Cab International: Wallingford, UK, 2003; pp. 199–215. [Google Scholar]
- Ghamghami, M.; Beiranvand, J.P. Rainfed Crop Yield Response to Climate Change in Iran. Reg. Environ. Chang. 2022, 22, 3. [Google Scholar] [CrossRef]
- Paymard, P.; Yaghoubi, F.; Nouri, M.; Bannayan, M. Projecting Climate Change Impacts on Rainfed Wheat Yield, Water Demand, and Water Use Efficiency in Northeast Iran. Theor. Appl. Climatol. 2019, 138, 1361–1373. [Google Scholar] [CrossRef]
- Chapagain, T.; Good, A. Yield and Production Gaps in Rainfed Wheat, Barley, and Canola in Alberta. Front. Plant Sci. 2015, 6, 990. [Google Scholar] [CrossRef] [Green Version]
- Valverde, P.; de Carvalho, M.; Serralheiro, R.; Maia, R.; Ramos, V.; Oliveira, B. Climate Change Impacts on Rainfed Agriculture in the Guadiana River Basin (Portugal). Agric. Water Manag. 2015, 150, 35–45. [Google Scholar] [CrossRef]
- Baig, M.B.; Shahid, S.A.; Straquadine, G.S. Making Rainfed Agriculture Sustainable through Environmental Friendly Technologies in Pakistan: A Review. Int. Soil Water Conserv. Res. 2013, 1, 36–52. [Google Scholar] [CrossRef] [Green Version]
- Lamptey, S. Agronomic Practices in Soil Water Management for Sustainable Crop Production under Rain Fed Agriculture of Drylands in Sub-Sahara Africa. Afr. J. Agric. Res. 2022, 18, 18–26. [Google Scholar]
- Rezapour, S.; Jooyandeh, E.; Ramezanzade, M.; Mostafaeipour, A.; Jahangiri, M.; Issakhov, A.; Chowdhury, S.; Techato, K. Forecasting Rainfed Agricultural Production in Arid and Semi-Arid Lands Using Learning Machine Methods: A Case Study. Sustainability 2021, 13, 4607. [Google Scholar] [CrossRef]
- Mishra, A.; Ketelaar, J.W.; Uphoff, N.; Whitten, M. Food Security and Climate-Smart Agriculture in the Lower Mekong Basin of Southeast Asia: Evaluating Impacts of System of Rice Intensification with Special Reference to Rainfed Agriculture. Int. J. Agric. Sustain. 2021, 19, 152–174. [Google Scholar] [CrossRef]
- Zhang, L.; Qin, R.; Chai, N.; Wei, H.; Yang, Y.; Wang, Y.; Li, F.-M.; Zhang, F. Optimum Fertilizer Application Rate to Ensure Yield and Decrease Greenhouse Gas Emissions in Rain-Fed Agriculture System of the Loess Plateau. Sci. Total Environ. 2022, 823, 153762. [Google Scholar] [CrossRef] [PubMed]
- Ward, P.S.; Makhija, S. New Modalities for Managing Drought Risk in Rainfed Agriculture: Evidence from a Discrete Choice Experiment in Odisha, India. World Dev. 2018, 107, 163–175. [Google Scholar] [CrossRef]
- Hayashi, K.; Llorca, L.; Rustini, S.; Setyanto, P.; Zaini, Z. Reducing Vulnerability of Rainfed Agriculture through Seasonal Climate Predictions: A Case Study on the Rainfed Rice Production in Southeast Asia. Agric. Syst. 2018, 162, 66–76. [Google Scholar] [CrossRef]
- Aghasafari, H.; Karbasi, A.; Mohammadi, H.; Calisti, R. Determination of the Best Strategies for Development of Organic Farming: A SWOT—Fuzzy Analytic Network Process Approach. J. Clean. Prod. 2020, 277, 124039. [Google Scholar] [CrossRef]
- Esfandiari, S.; Dourandish, A.; Firoozzare, A.; Taghvaeian, S. Strategic Planning for Exchanging Treated Urban Wastewater for Agricultural Water with the Approach of Supplying Sustainable Urban Water: A Case Study of Mashhad, Iran. Water Supply 2022, 22, 8483–8499. [Google Scholar] [CrossRef]
- Rezaei, J.; Nispeling, T.; Sarkis, J.; Tavasszy, L. A Supplier Selection Life Cycle Approach Integrating Traditional and Environmental Criteria Using the Best Worst Method. J. Clean. Prod. 2016, 135, 577–588. [Google Scholar] [CrossRef]
- Tajer, E.; Demir, S. Ecotourism Strategy of UNESCO City in Iran: Applying a New Quantitative Method Integrated with BWM. J. Clean. Prod. 2022, 376, 134284. [Google Scholar] [CrossRef]
- Khorasan Razavi Agricultural Organization. 2020. Available online: https://koaj.ir/Modules/showframework.aspx?RelFacilityId=1241&ObjectID=252&FrameworkPageType=SEC (accessed on 14 December 2022).
- Khorasan Razavi Regional Water Company. 2019. Available online: https://www.khrw.ir. Iran (accessed on 4 January 2023).
- Sixth National Plan of Development. 2017. Available online: https://shena sname.ir/laws/tosee/plan6. Iran (accessed on 1 October 2022).
- Hadi, R.; Ali Akbar, H.; Mahvash, S.; Alireza, K.; Mohammadali, S.; Nasim, B. Sampling in Qualitative Research: A Guide for Beginning. J. Army Univ. Med. Sci. 2012, 10, 238–250. [Google Scholar]
- Christodoulou, A.; Cullinane, K. Identifying the Main Opportunities and Challenges from the Implementation of a Port Energy Management System: A SWOT/PESTLE Analysis. Sustainability 2019, 11, 6046. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-T.; Chiang, C.-Y. Development of Strategies for Taiwan’s Corrugated Box Precision Printing Machine Industry—An Implementation for SWOT and EDAS Methods. Sustainability 2022, 14, 5144. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Kalibatas, D.; Kalibatiene, D. A Multi-Attribute Assessment Using WASPAS for Choosing an Optimal Indoor Environment. Arch. Civ. Mech. Eng. 2016, 16, 76–85. [Google Scholar] [CrossRef]
- Deveci, M.; Gokasar, I.; Pamucar, D.; Coffman, D.; Papadonikolaki, E. Safe E-Scooter Operation Alternative Prioritization Using a q-Rung Orthopair Fuzzy Einstein Based WASPAS Approach. J. Clean. Prod. 2022, 347, 131239. [Google Scholar] [CrossRef]
- Rockström, J.; Folke, C.; Gordon, L.; Hatibu, N.; Jewitt, G.; De Vries, F.P.; Rwehumbiza, F.; Sally, H.; Savenije, H.; Schulze, R. A Watershed Approach to Upgrade Rainfed Agriculture in Water Scarce Regions through Water System Innovations: An Integrated Research Initiative on Water for Food and Rural Livelihoods in Balance with Ecosystem Functions. Phys. Chem. Earth Parts A/B/C 2004, 29, 1109–1118. [Google Scholar] [CrossRef]
- Swatuk, L.; McMorris, M.; Leung, C.; Zu, Y. Seeing “Invisible Water”: Challenging Conceptions of Water for Agriculture, Food and Human Security. Can. J. Dev. Stud./Rev. Can. Études Développement 2015, 36, 24–37. [Google Scholar] [CrossRef]
- Dunkelman, A.; Kerr, M.; Swatuk, L.A. The New Green Revolution: Enhancing Rainfed Agriculture for Food and Nutrition Security in Eastern Africa. In Water, Energy, Food and People across the Global South; Springer: Berlin/Heidelberg, Germany, 2018; pp. 305–324. [Google Scholar]
- Kazemi, F.; Abbasi, M. Investigating Some Challenges in Domesticating Endemic Plants of Iran-o-Turanian Vegetation Region for Iran’s Urban Landscaping. In Proceedings of the International Symposium on Role of Plant Genetic Resources on Reclaiming Lands and Environment Deteriorated by Human and Natural Action, Shiraz, Iran, 16 May 2016. [Google Scholar]
- Kazemi, F.; Abolhassani, L.; Rahmati, E.A.; Sayyad-Amin, P. Strategic Planning for Cultivation of Fruit Trees and Shrubs in Urban Landscapes Using the SWOT Method: A Case Study for the City of Mashhad, Iran. Land Use Policy 2018, 70, 1–9. [Google Scholar] [CrossRef]
- Mortimore, M.; Anderson, S.; Cotula, L.; Davies, J.; Faccer, K.; Hesse, C.; Morton, J.; Nyangena, W.; Skinner, J.; Wolfangel, C. Dryland Opportunies: A New Paradigm for People, Ecosystems and Development; International Union for Conservation of Nature (IUCN): Gland, Switzerland, 2009. [Google Scholar]
- Hoover, D.L.; Bestelmeyer, B.; Grimm, N.B.; Huxman, T.E.; Reed, S.C.; Sala, O.; Seastedt, T.R.; Wilmer, H.; Ferrenberg, S. Traversing the Wasteland: A Framework for Assessing Ecological Threats to Drylands. Bioscience 2020, 70, 35–47. [Google Scholar] [CrossRef]
- National Rainfed Area Authority Accelerating the Growth of Rainfed Agriculture—Integrated Farmers Livelihood Approach. Available online: https://agricoop.nic.in/sites/default/files/rapfinaldraft %281%29_repaired_0.pdf (accessed on 5 October 2022).
- Al-Batsh, N.; Al-Khatib, I.A.; Ghannam, S.; Anayah, F.; Jodeh, S.; Hanbali, G.; Khalaf, B.; van der Valk, M. Assessment of Rainwater Harvesting Systems in Poor Rural Communities: A Case Study from Yatta Area, Palestine. Water 2019, 11, 585. [Google Scholar] [CrossRef] [Green Version]
- Celik, I.; Tamimi, L.M.A.; Al-Khatib, I.A.; Apul, D.S. Management of Rainwater Harvesting and Its Impact on the Health of People in the Middle East: Case Study from Yatta Town, Palestine. Env. Monit. Assess. 2017, 189, 271. [Google Scholar] [CrossRef] [PubMed]
- Elamathi, S.; Singh, S.; Rangaraj, T.; Anandhi, P. Integrated Farming System Model for Sustained Farm Income and Employment Generation under Rainfed Vertisol of Southern Zone of Tamil Nadu. Natl. Acad. Sci. Lett. 2021, 44, 485–487. [Google Scholar] [CrossRef]
- Brooks, M.L.; D’antonio, C.M.; Richardson, D.M.; Grace, J.B.; Keeley, J.E.; DiTomaso, J.M.; Hobbs, R.J.; Pellant, M.; Pyke, D. Effects of Invasive Alien Plants on Fire Regimes. Bioscience 2004, 54, 677–688. [Google Scholar] [CrossRef] [Green Version]
- Kurup, S.A.; Reddy, A.A.; Singh, D.R.; Praveen, K.V. Risks in Rainfed Agriculture and Adaptation Strategies in India: Profile and Socio-Economic Correlates. In Proceedings of the 2021 International Association of Agricultural Economists, Virtual, 17–31 August 2021. [Google Scholar]
- Kassam, A.; Derpsch, R.; Friedrich, T. Global Achievements in Soil and Water Conservation: The Case of Conservation Agriculture. Int. Soil Water Conserv. Res. 2014, 2, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, A.U.; Khan, M.M. Soil Management in Mitigating the Adverse Effects of Climate Change. Soil Environ. 2012, 31, 1–10. [Google Scholar]
- Chukalla, A.D.; Krol, M.S.; Hoekstra, A.Y. Trade-off between Blue and Grey Water Footprint of Crop Production at Different Nitrogen Application Rates under Various Field Management Practices. Sci. Total Environ. 2018, 626, 962–970. [Google Scholar] [CrossRef] [Green Version]
- Mirshekar, H.; Arab, A.R. Houtak and Dagar, Traditional Methods of Rainwater Collection in South Baluchistan. In Water Harvesting and Watershed Management Congress; University of Birjand: Birjand, Iran, 2014. [Google Scholar]
- Atinmo, T.; Mirmiran, P.; Oyewole, O.E.; Belahsen, R.; Serra-Majem, L. Breaking the Poverty/Malnutrition Cycle in Africa and the Middle East. Nutr. Rev. 2009, 67, S40–S46. [Google Scholar] [CrossRef]
- Ataei, Y.; Mahmoudi, A.; Feylizadeh, M.R.; Li, D.-F. Ordinal Priority Approach (OPA) in Multiple Attribute Decision-Making. Appl. Soft Comput. 2020, 86, 105893. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Javed, S.A.; Mardani, A. Gresilient Supplier Selection through Fuzzy Ordinal Priority Approach: Decision-Making in Post-COVID Era. Oper. Manag. Res. 2022, 15, 208–232. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Abbasi, M.; Deng, X. A Novel Project Portfolio Selection Framework towards Organizational Resilience: Robust Ordinal Priority Approach. Expert Syst. Appl. 2022, 188, 116067. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, A.; Abbasi, M.; Deng, X. Evaluating the Performance of the Suppliers Using Hybrid DEA-OPA Model: A Sustainable Development Perspective. Group Decis. Negot. 2022, 31, 335–362. [Google Scholar] [CrossRef]
Participants | Number of Participants |
---|---|
Managers and employees of governmental Organizations | 7 |
Academia | 7 |
Exemplary farmers | 5 |
Total | 19 |
SWOT Factors | SWOT Sub-Factors | Weight | |
---|---|---|---|
Strengths (S) | S1 | The healthiness of rain-fed products | 0.103 |
S2 | Economical nature of rain-fed agriculture | 0.154 | |
S3 | Unnecessity of irrigation | 0.309 | |
S4 | Historical background of rain-fed agriculture in Khorasan Razavi province | 0.164 | |
S5 | The existence of potential lands for rain-fed agriculture in Khorasan Razavi province | 0.108 | |
S6 | Sustainable exploitation of water and soil resources | 0.163 | |
Weaknesses (W) | W1 | The farmers’ lack of knowledge and skills in rain-fed agriculture | 0.093 |
W2 | Low performance of rain-fed agriculture | 0.078 | |
W3 | Low marketability of rain-fed products | 0.112 | |
W4 | Low variety of crops in rain-fed agriculture | 0.200 | |
W5 | Sensitivity to the cultivation time | 0.072 | |
W6 | Smallholder farmers | 0.217 | |
W7 | Lack of rain-fed-agriculture-savvy technologies | 0.229 |
SWOT Factors | SWOT Sub-Factors | Weight | |
---|---|---|---|
Opportunities (O) | O1 | Large market of agricultural products in Iran | 0.116 |
O2 | The presence of an active private sector in Khorasan Razavi province | 0.115 | |
O3 | Increasing demand for food | 0.298 | |
O4 | The high diversity of drought-resistant native plant species | 0.472 | |
Threats (T) | T1 | Climate change and drought | 0.081 |
T2 | Improper time distribution of rain | 0.092 | |
T3 | Disproportionate governmental support | 0.195 | |
T4 | Plant pests and diseases | 0.089 | |
T5 | Misconceptions concerning rain-fed ecosystems | 0.425 | |
T6 | Lack of rain-fed agriculture research centers | 0.118 |
No | Strategy | λ | Qi | Rank | |
---|---|---|---|---|---|
1 | SO1 | Using indigenous knowledge in dry farming | 0.597 | 0.136 | 19 |
2 | WT1 | Using seeds resistant to drought, salinity, and pests | 0.782 | 0.175 | 14 |
3 | SO2 | Promoting integrated agricultural systems in rain-fed areas | 0.787 | 0.196 | 11 |
4 | WO1 | Teaching and promoting the principles of rain-fed agriculture | 0.798 | 0.220 | 6 |
5 | SO3 | Using drought-resistant native plant species | 0.783 | 0.195 | 13 |
6 | ST1 | Developing water protection services and improving water consumption efficiency | 0.753 | 0.200 | 10 |
7 | ST2 | Socio-cultural intervention to raise awareness regarding rain-fed cultivation and arid lands | 0.778 | 0.211 | 9 |
8 | WT2 | Subsidizing inputs and guaranteed purchase of rain-fed agricultural products | 0.505 | 0.166 | 16 |
9 | WT3 | Improving the conditions of comprehensive insurance for rain-fed agriculture | 0.797 | 0.196 | 12 |
10 | SO4 | Encouraging the private sector to invest in rain-fed agriculture | 0.561 | 0.224 | 5 |
11 | WT4 | Protection of water and soil using conservation agriculture methods | 0.574 | 0.151 | 17 |
12 | WO2 | Use of new technologies suitable for sustainable rain-fed agriculture | 0.671 | 0.213 | 8 |
13 | ST3 | Reforming water governance | 0.650 | 0.233 | 3 |
14 | WO3 | Providing the farmers using rain-fed agriculture with low-interest long-term banking facilities | 0.652 | 0.196 | 15 |
15 | WO4 | Improving and expanding rain-fed agriculture research centers | 0.669 | 0.232 | 4 |
16 | WT5 | Dedicating a fair share of public resources to rain-fed agriculture | 0.773 | 0.248 | 2 |
17 | WT6 | Devising solutions to increase the efficiency of fertilizers and applying more effective ways to control weeds and pests | 0.702 | 0.146 | 18 |
18 | WT7 | Institutional framework to accelerate the growth of sustainable rain-fed agriculture | 0.725 | 0.275 | 1 |
19 | WT8 | Developing the use of information and communication technology (ICT) in rain-fed agriculture | 0.700 | 0.218 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Firoozzare, A.; Saghaian, S.; Bahraseman, S.E.; Dehghani Dashtabi, M. Identifying the Best Strategies for Improving and Developing Sustainable Rain-Fed Agriculture: An Integrated SWOT-BWM-WASPAS Approach. Agriculture 2023, 13, 1215. https://doi.org/10.3390/agriculture13061215
Firoozzare A, Saghaian S, Bahraseman SE, Dehghani Dashtabi M. Identifying the Best Strategies for Improving and Developing Sustainable Rain-Fed Agriculture: An Integrated SWOT-BWM-WASPAS Approach. Agriculture. 2023; 13(6):1215. https://doi.org/10.3390/agriculture13061215
Chicago/Turabian StyleFiroozzare, Ali, Sayed Saghaian, Sasan Esfandiari Bahraseman, and Maryam Dehghani Dashtabi. 2023. "Identifying the Best Strategies for Improving and Developing Sustainable Rain-Fed Agriculture: An Integrated SWOT-BWM-WASPAS Approach" Agriculture 13, no. 6: 1215. https://doi.org/10.3390/agriculture13061215
APA StyleFiroozzare, A., Saghaian, S., Bahraseman, S. E., & Dehghani Dashtabi, M. (2023). Identifying the Best Strategies for Improving and Developing Sustainable Rain-Fed Agriculture: An Integrated SWOT-BWM-WASPAS Approach. Agriculture, 13(6), 1215. https://doi.org/10.3390/agriculture13061215