Bibliometric Analysis of Research Trends in Agricultural Soil Organic Carbon Mineralization from 2000 to 2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis and Visualization
3. Results and Discussion
3.1. Quantity of Articles and Citations
3.2. Subject Categories Analysis
3.3. The Related Journal Analysis
3.4. The Development of Agricultural SOC Mineralization Research in the Top 10 Countries
3.5. The Academic Cooperation Relationship between Countries or Institutes
3.6. Authors Analysis and Their Academic Cooperation
3.7. Keywords Co-Occurrence, Clusters, and Evolution Analysis
3.8. Articles Analysis with High Cited Frequency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scharlemann, J.P.W.; Tanner, E.V.J.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Melillo, J.M.; Frey, S.D.; DeAngelis, K.M.; Werner, W.J.; Bernard, M.J.; Bowles, F.P.; Pold, G.; Knorr, M.A.; Grandy, A.S. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 2017, 358, 101–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, I.C.; Finzi, A.C.; Phillips, R.P. Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biol. Biochem. 2017, 106, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Rumpel, C.; Chabbi, A. Managing soil organic carbon for mitigating climate change and increasing food security. Agronomy 2021, 11, 1553. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Friedel, J.K.; Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Naresh, R.K.; Gupta, R.K.; Panwar, A.S.; Mahajan, N.C.; Singh, R.; Mandal, A. Effect of tillage and straw return on carbon footprints, soil organic carbon fractions and soil microbial community in different textured soils under rice-wheat rotation: A review. Rev. Environ. Sci. Bio/Technol. 2020, 19, 103–115. [Google Scholar] [CrossRef]
- Chen, B.; Liu, E.; Tian, Q.; Yan, C.; Zhang, Y. Soil nitrogen dynamics and crop residues. A review. Agron. Sustain. Dev. 2014, 34, 429–442. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob. Chang. Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef]
- Bernard, L.; Basile-Doelsch, I.; Derrien, D.; Fanin, N.; Fontaine, S.; Guenet, B.; Karimi, B.; Marsden, C.; Maron, P.A. Advancing the mechanistic understanding of the priming effect on soil organic matter. Funct. Ecol. 2022, 36, 1355–1377. [Google Scholar] [CrossRef]
- Blagodatskaya, E.; Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review. Biol. Fertil. Soils 2008, 45, 115–131. [Google Scholar] [CrossRef]
- Dignac, M.-F.; Derrien, D.; Barre, P.; Barot, S.; Cecillon, L.; Chenu, C.; Chevallier, T.; Freschet, G.T.; Garnier, P.; Guenet, B.; et al. Increasing soil carbon storage: Mechanisms, effects of agricultural practices and proxies. A review. Agron. Sustain. Dev. 2017, 37, 14. [Google Scholar] [CrossRef] [Green Version]
- Gougoulias, C.; Clark, J.M.; Shaw, L.J. The role of soil microbes in the global carbon cycle: Tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J. Sci. Food Agric. 2014, 94, 2362–2371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Chang. Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef] [PubMed]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Kumar, S.; Sureka, R.; Lim, W.M.; Mangla, S.K.; Goyal, N. What do we know about business strategy and environmental research? Insights from Business Strategy and the Environment. Bus. Strateg. Environ. 2021, 30, 3454–3469. [Google Scholar] [CrossRef]
- Pan, X.; Lv, J.; Dyck, M.; He, H.J.A. Bibliometric analysis of soil nutrient research between 1992 and 2020. Agriculture 2021, 11, 223. [Google Scholar] [CrossRef]
- Mao, G.; Shi, T.; Zhang, S.; Crittenden, J.; Guo, S.; Du, H. Bibliometric analysis of insights into soil remediation. J. Soils Sed. 2018, 18, 2520–2534. [Google Scholar] [CrossRef]
- Birkle, C.; Pendlebury, D.A.; Schnell, J.; Adams, J. Web of Science as a data source for research on scientific and scholarly activity. Quant. Sci. Stud. 2020, 1, 363–376. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Prof. Inform. 2020, 29, e290103. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Guan, J. A bibliometric investigation of research performance in emerging nanobiopharmaceuticals. J. Informetr. 2011, 5, 233–247. [Google Scholar] [CrossRef]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; de Courcelles, V.D.R.; Singh, K.; et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Radajewski, S.; McDonald, I.R.; Murrell, J.C. Stable-isotope probing of nucleic acids: A window to the function of uncultured microorganisms. Curr. Opin. Biotechnol. 2003, 14, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Xia, Y.; Hu, Y.; Chen, X.; Rui, Y.; Gunina, A.; He, X.; Ge, T.; Wu, J.; Su, Y.; et al. Stoichiometry of carbon, nitrogen, and phosphorus in soil: Effects of agricultural land use and climate at a continental scale. Soil Till. Res. 2021, 209, 104903. [Google Scholar] [CrossRef]
- Yan, Z.; Zhou, J.; Yang, L.; Gunina, A.; Yang, Y.; Peixoto, L.; Zeng, Z.; Zang, H.; Kuzyakov, Y. Diversified cropping systems benefit soil carbon and nitrogen stocks by increasing aggregate stability: Results of three fractionation methods. Sci. Total Environ. 2022, 824, 153878. [Google Scholar] [CrossRef]
- Luo, Y.; Zang, H.; Yu, Z.; Chen, Z.; Gunina, A.; Kuzyakov, Y.; Xu, J.; Zhang, K.; Brookes, P.C. Priming effects in biochar enriched soils using a three-source-partitioning approach: C-14 labelling and C-13 natural abundance. Soil Biol. Biochem. 2017, 106, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Gunina, A.; Kuzyakov, Y. From energy to (soil organic) matter. Glob. Chang. Biol. 2022, 28, 2169–2182. [Google Scholar] [CrossRef]
- Qiu, H.; Liu, J.; Chen, X.; Hu, Y.; Su, Y.; Ge, T.; Li, D.; Wu, J. Rice straw carbon mineralization is affected by the timing of exogenous glucose addition in flooded paddy soil. Appl. Soil Ecol. 2022, 173, 104374. [Google Scholar] [CrossRef]
- Qiu, H.; Ge, T.; Liu, J.; Chen, X.; Hu, Y.; Wu, J.; Su, Y.; Kuzyakov, Y. Effects of biotic and abiotic factors on soil organic matter mineralization: Experiments and structural modeling analysis. Eur. J. Soil Biol. 2018, 84, 27–34. [Google Scholar] [CrossRef]
- Jian, Y.; Zhu, Z.; Xiao, M.; Yuan, H.; Wang, J.; Zou, D.; Ge, T.; Wu, J. Microbial assimilation of atmospheric CO2 into soil organic matter revealed by the incubation of paddy soils under 14C-CO2 atmosphere. Arch. Agron. Soil Sci. 2016, 62, 1678–1685. [Google Scholar] [CrossRef]
- Elrys, A.S.; Ali, A.; Zhang, H.; Cheng, Y.; Zhang, J.; Cai, Z.-C.; Muller, C.; Chang, S.X. Patterns and drivers of global gross nitrogen mineralization in soils. Glob. Chang. Biol. 2021, 27, 5950–5962. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Y.; Chang, S.X.; Xu, Q.; Guo, Z.; Gao, Q.; Qin, Z.; Yang, Y.; Chen, J.; Liang, X. Bamboo invasion of broadleaf forests altered soil fungal community closely linked to changes in soil organic C chemical composition and mineral N production. Plant Soil 2017, 418, 507–521. [Google Scholar] [CrossRef]
- Qi, L.; Pokharel, P.; Chang, S.X.; Zhou, P.; Niu, H.; He, X.; Wang, Z.; Gao, M. Biochar application increased methane emission, soil carbon storage and net ecosystem carbon budget in a 2-year vegetable-rice rotation. Agric. Ecosyst. Environ. 2020, 292, 106831. [Google Scholar] [CrossRef]
- Ding, F.; Ji, D.; Yan, K.; Dijkstra, F.A.; Bao, X.; Li, S.; Kuzyakov, Y.; Wang, J. Increased soil organic matter after 28 years of nitrogen fertilization only with plastic film mulching is controlled by maize root biomass. Sci. Total Environ. 2022, 810, 152244. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhu, Z.; Shahbaz, M.; Chen, L.; Liu, S.; Inubushi, K.; Wu, J.; Ge, T. Split N and P addition decreases straw mineralization and the priming effect of a paddy soil: A 100-day incubation experiment. Biol. Fertil. Soils 2019, 55, 701–712. [Google Scholar] [CrossRef]
- Ma, Q.; Wen, Y.; Wang, D.; Sun, X.; Hill, P.W.; Macdonald, A.; Chadwick, D.R.; Wu, L.; Jones, D.L. Farmyard manure applications stimulate soil carbon and nitrogen cycling by boosting microbial biomass rather than changing its community composition. Soil Biol. Biochem. 2020, 144, 107760. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Fan, M.; Wu, Y.; Shangguan, Z. Interactions between biochar and nitrogen impact soil carbon mineralization and the microbial community. Soil Till. Res. 2020, 196, 104437. [Google Scholar] [CrossRef]
- Fang, Y.; Singh, B.P.; Collins, D.; Armstrong, R.; Van Zwieten, L.; Tavakkoli, E. Nutrient stoichiometry and labile carbon content of organic amendments control microbial biomass and carbon-use efficiency in a poorly structured sodic-subsoil. Biol. Fertil. Soils 2020, 56, 219–233. [Google Scholar] [CrossRef]
- Nottingham, A.T.; Turner, B.L.; Stott, A.W.; Tanner, E.V.J. Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biol. Biochem. 2015, 80, 26–33. [Google Scholar] [CrossRef]
- Don, A.; Roedenbeck, C.; Gleixner, G. Unexpected control of soil carbon turnover by soil carbon concentration. Environ. Chem. Lett. 2013, 11, 407–413. [Google Scholar] [CrossRef]
- Rousk, J.; Baath, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Fang, Y.; Luo, Y.; Li, Y.; Ge, T.; Wang, Y.; Wang, H.; Yu, B.; Song, X.; Chen, J.; et al. Linking soil carbon availability, microbial community composition and enzyme activities to organic carbon mineralization of a bamboo forest soil amended with pyrogenic and fresh organic matter. Sci. Total Environ. 2021, 801, 149717. [Google Scholar] [CrossRef] [PubMed]
- de Souza, R.F.; de Figueiredo, C.C.; Madeira, N.R.; de Alcantara, F.A. Effect of management systems and cover crops on organic matter dynamics of soil under vegetables. Rev. Bras. Cienc. Solo 2014, 38, 923–933. [Google Scholar] [CrossRef] [Green Version]
- Balota, E.L.; Colozzi, A.; Andrade, D.S.; Dick, R.P. Long-term tillage and crop rotation effects on microbial biomass and C and N mineralization in a Brazilian Oxisol. Soil Till. Res. 2004, 77, 137–145. [Google Scholar] [CrossRef]
- Wang, S.; Lu, C.; Huai, S.; Yan, Z.; Wang, J.; Sun, J.; Raza, S. Straw burial depth and manure application affect the straw-C and N sequestration: Evidence from C-13 & N-15-tracing. Soil Till. Res. 2021, 208, 104884. [Google Scholar]
- Su, L.; Bai, T.; Qin, X.; Yu, H.; Wu, G.; Zhao, Q.; Tan, L. Organic manure induced soil food web of microbes and nematodes drive soil organic matter under jackfruit planting. Appl. Soil Ecol. 2021, 166, 103994. [Google Scholar] [CrossRef]
- Guan, P.; Zhang, X.; Yu, J.; Cheng, Y.; Li, Q.; Andriuzzi, W.S.; Liang, W. Soil microbial food web channels associated with biological soil crusts in desertification restoration: The carbon flow from microbes to nematodes. Soil Biol. Biochem. 2018, 116, 82–90. [Google Scholar] [CrossRef]
- Schimel, J.P.; Schaeffer, S.M. Microbial control over carbon cycling in soil. Front. Microbiol. 2012, 3, 348. [Google Scholar] [CrossRef] [Green Version]
- Fontaine, S.; Henault, C.; Aamor, A.; Bdioui, N.; Bloor, J.M.G.; Maire, V.; Mary, B.; Revaillot, S.; Maron, P.A. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol. Biochem. 2011, 43, 86–96. [Google Scholar] [CrossRef]
- Kallenbach, C.M.; Grandy, A.S.; Frey, S.D.; Diefendorf, A.F. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol. Biochem. 2015, 91, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Mehnaz, K.R.; Corneo, P.E.; Keitel, C.; Dijkstra, F.A. Carbon and phosphorus addition effects on microbial carbon use efficiency, soil organic matter priming, gross nitrogen mineralization and nitrous oxide emission from soil. Soil Biol. Biochem. 2019, 134, 175–186. [Google Scholar] [CrossRef]
- Schimel, D.; Stephens, B.B.; Fisher, J.B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. USA 2015, 112, 436–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuzyakov, Y.; Horwath, W.R.; Dorodnikov, M.; Blagodatskaya, E. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: No changes in pools, but increased fluxes and accelerated cycles. Soil Biol. Biochem. 2019, 128, 66–78. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Ok, Y.S.; Awad, Y.M.; Lee, S.S.; Sung, J.-K.; Koutsospyros, A.; Moon, D.H. Impacts of biochar application on upland agriculture: A review. J. Environ. Manag. 2019, 234, 52–64. [Google Scholar] [CrossRef]
- Heggelund, G.M. China’s climate and energy policy: At a turning point? Int. Environ. Agreem. 2021, 21, 9–23. [Google Scholar] [CrossRef]
Rank | Journal | Number of Articles | Total Link Strength | Cited Frequency | Average IF in Five Years | Citation Indicator in 2021 |
---|---|---|---|---|---|---|
1 | Soil Biology & Biochemistry | 178 | 881 | 10,565 | 9.956 | 1.9 |
2 | Agriculture, Ecosystems & Environment | 155 | 670 | 6606 | 7.089 | 1.7 |
3 | Soil & Tillage Research | 123 | 531 | 5074 | 7.829 | 1.59 |
4 | Geoderma | 154 | 524 | 4042 | 7.444 | 1.66 |
5 | Biology and Fertility of Soils | 100 | 413 | 3800 | 7.116 | 1.5 |
6 | Applied Soil Ecology | 112 | 403 | 3451 | 5.678 | 1.16 |
7 | Plant and Soil | 109 | 397 | 3340 | 5.440 | 1.3 |
8 | Soil Science Society of America Journal | 99 | 390 | 4122 | 3.564 | 0.65 |
9 | Nutrient Cycling in Agroecosystems | 91 | 245 | 2074 | 4.504 | 0.8 |
10 | Science of the Total Environment | 98 | 245 | 1759 | 10.237 | 1.77 |
Rank | Institute | Articles | Percentage | Centrality † | Country |
---|---|---|---|---|---|
1 | Chinese Academy of Sciences | 395 | 12.0% | 0.43 | China |
2 | Chinese Academy of Agricultural Sciences | 88 | 2.6% | 0.04 | China |
3 | USDA-agricultural research service | 79 | 2.4% | 0.07 | USA |
4 | Northwest A&F University of China | 75 | 2.2% | 0.04 | China |
5 | Agriculture & Agri-Food Canada | 72 | 2.1% | 0.09 | Canada |
6 | China Agricultural University | 62 | 1.8% | 0.07 | China |
7 | Iowa State University | 41 | 1.2% | 0.02 | USA |
8 | Spanish National Research Council (CSIC) | 40 | 1.2% | 0.04 | Spain |
9 | University of California Davis | 39 | 1.1% | 0.04 | USA |
10 | Zhejiang University | 38 | 1.1% | 0.01 | China |
Rank | Author | Institution | Country | Articles | Centrality † |
---|---|---|---|---|---|
1 | Kuzyakov Yakov | University of Göttingen | Germany | 36 | 0.01 |
2 | Ge Tida | Ningbo University | China | 21 | 0.00 |
3 | Wu Jinshui | Institute of Subtropical Agriculture, Chinese Academy of Sciences | China | 12 | 0.00 |
4 | Joergensen Rainer Georg | University of Kassel | Germany | 8 | 0.00 |
5 | Zhu Zhenke | Institute of Subtropical Agriculture, Chinese Academy of Sciences | China | 8 | 0.00 |
6 | Chang Scott X. | University of Alberta | Canada | 8 | 0.01 |
7 | Ok Yong Sik | University of Sejong | South Korea | 8 | 0.00 |
8 | Six John | University of Colorado State | USA | 8 | 0.00 |
9 | Castellano Michael J. | Iowa State University | USA | 7 | 0.00 |
10 | Jones Davey L. | University of Western Australia | Australia | 7 | 0.00 |
ID | Cluster Name | Size | Main Keywords (Top 5) |
---|---|---|---|
0 | Carbon sequestration | 46 | organic matter; soil enzyme activity; nitrogen use efficiency; mineralization rates; soil fertility; |
1 | Soil organic carbon | 41 | organic carbon; microbial biomass; carbon isotopes; soil constraints; N uptake |
2 | System | 38 | organic carbon; dynamics; system; total nitrogen; cover change straw; |
3 | Enzyme activity | 29 | microbial biomass; growth-promoting rhizobacteria; plant yield; soil food web; ecological significance |
4 | Microbial biomass | 20 | microbial biomass; soil quality; conservation agriculture; microbial respiration; free-living nematodes |
ID | Keywords | Year | Strength | Begin | End | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|---|
1 | CO2 efflux | 2018 | 3.13 | 2018 | 2019 | |||||
2 | China | 2018 | 2.78 | 2018 | 2019 | |||||
3 | Carbon sequestration | 2018 | 2.43 | 2018 | 2019 | |||||
4 | Carbon storage | 2018 | 2.43 | 2018 | 2019 | |||||
5 | Addition | 2018 | 2.43 | 2018 | 2019 | |||||
6 | Black carbon | 2018 | 2.10 | 2018 | 2019 | |||||
7 | Soil moisture | 2019 | 2.68 | 2019 | 2020 | |||||
8 | Sensitivity | 2019 | 2.41 | 2019 | 2020 | |||||
9 | Manure application | 2019 | 2.15 | 2019 | 2020 | |||||
10 | Straw incorporation | 2020 | 2.26 | 2020 | 2022 |
Rank | Average Cited Frequency per Year | Title | Authors (Year) | Country | Journal |
---|---|---|---|---|---|
1 | 89 | Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils | Zimmerman et al. (2011) | France | Soil Biology & Biochemistry |
2 | 65 | Biochar-mediated changes in soil quality and plant growth in a three-year field trial | Jones et al. (2012) | UK | Soil Biology & Biochemistry |
3 | 41 | Decreased soil microbial biomass and nitrogen mineralization with Eucalyptus biochar addition to a coarse textured soil | Dempster et al. (2012) | Australia | Plant and Soil |
4 | 38 | Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments | Luo et al. (2010) | China | Agriculture, Ecosystems & Environment |
5 | 36 | Life in the ‘charosphere’—Does biochar in agricultural soil provide a significant habitat for microorganisms? | Quilliam et al. (2013) | Scotland | Soil Biology & Biochemistry |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Liu, Y.; Zhang, Y. Bibliometric Analysis of Research Trends in Agricultural Soil Organic Carbon Mineralization from 2000 to 2022. Agriculture 2023, 13, 1248. https://doi.org/10.3390/agriculture13061248
Zhang F, Liu Y, Zhang Y. Bibliometric Analysis of Research Trends in Agricultural Soil Organic Carbon Mineralization from 2000 to 2022. Agriculture. 2023; 13(6):1248. https://doi.org/10.3390/agriculture13061248
Chicago/Turabian StyleZhang, Futao, Yuedong Liu, and Yueling Zhang. 2023. "Bibliometric Analysis of Research Trends in Agricultural Soil Organic Carbon Mineralization from 2000 to 2022" Agriculture 13, no. 6: 1248. https://doi.org/10.3390/agriculture13061248
APA StyleZhang, F., Liu, Y., & Zhang, Y. (2023). Bibliometric Analysis of Research Trends in Agricultural Soil Organic Carbon Mineralization from 2000 to 2022. Agriculture, 13(6), 1248. https://doi.org/10.3390/agriculture13061248