Can Direct Marketing Increase Fishery Profitability and Environmental Quality? Empirical Evidence of Aquaculture Farm Households in Taiwan
Abstract
:1. Introduction
2. Materials and Method
2.1. Data
2.2. Econometric Model
3. Results
3.1. The Determinants of the Choice of Marketing Channels
3.2. The Impact of Marketing Channels on Economic Performance
3.3. The Impact of Marketing Channels on Inputs Used in Aquaculture Production
3.4. Results of the Statistical Tests Regarding Model Specification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Wholesaler Markets | Wholesalers | Direct Marketing | Fishery Revenue | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Coef. | S.E | Coef. | S.E | Coef. | S.E | Coef. | S.E | ||||
Wholesaler markets | 1.582 | *** | 0.515 | |||||||||
Wholesalers | 1.322 | *** | 0.113 | |||||||||
Direct marketing | 1.075 | 0.519 | ||||||||||
Age_3039 | 0.054 | 0.173 | −0.046 | 0.162 | 0.033 | 0.180 | 3.120 | 2.757 | ||||
Age_4049 | 0.111 | 0.166 | −0.086 | 0.156 | 0.227 | 0.173 | 1.881 | 2.649 | ||||
Age_5059 | 0.156 | 0.165 | −0.123 | 0.155 | 0.298 | 0.172 | 2.910 | 2.633 | ||||
Age_6069 | 0.160 | 0.165 | −0.150 | 0.156 | 0.306 | 0.173 | 3.479 | 2.647 | ||||
Age_70 | 0.110 | 0.167 | −0.158 | 0.157 | 0.250 | 0.174 | 1.495 | 2.674 | ||||
Elementary | 0.007 | 0.050 | 0.154 | *** | 0.043 | 0.056 | 0.046 | 2.190 | *** | 0.778 | ||
Junior high | 0.098 | 0.056 | 0.101 | ** | 0.050 | −0.025 | 0.053 | 1.508 | 0.908 | |||
Senior high | 0.069 | 0.058 | 0.088 | 0.051 | 0.008 | 0.055 | 3.708 | *** | 0.933 | |||
College | 0.052 | 0.064 | −0.076 | 0.057 | 0.066 | 0.034 | 7.764 | *** | 1.063 | |||
Male | 0.004 | 0.035 | 0.018 | 0.033 | 0.077 | ** | 0.035 | 0.889 | 0.598 | |||
HHSIZE_male | 0.016 | 0.012 | −0.024 | ** | 0.011 | 0.003 | 0.012 | 1.120 | *** | 0.206 | ||
HHSIZE_female | 0.023 | ** | 0.010 | −0.038 | *** | 0.010 | 0.005 | 0.010 | 0.774 | *** | 0.184 | |
Ratio_adult | 0.086 | 0.098 | 0.128 | 0.091 | −0.119 | 0.095 | 2.012 | 1.670 | ||||
Aqua_grouper | 0.087 | 0.048 | 0.334 | *** | 0.050 | −0.250 | *** | 0.052 | 14.063 | *** | 0.911 | |
Aqua_milkfish | 0.026 | 0.040 | 0.548 | *** | 0.038 | −0.222 | *** | 0.039 | −11.254 | *** | 0.686 | |
Aqua_tilapia | 0.056 | 0.041 | −0.332 | *** | 0.033 | −0.069 | 0.038 | −13.831 | *** | 0.698 | ||
Aqua_shrip | −0.096 | ** | 0.042 | 0.433 | *** | 0.041 | −0.160 | *** | 0.042 | −7.782 | *** | 0.728 |
Aqua_oyster | −0.307 | ** | 0.146 | 0.793 | *** | 0.121 | −0.258 | ** | 0.113 | −22.142 | *** | 2.414 |
Aqua_clam | −0.355 | *** | 0.059 | 0.576 | *** | 0.046 | −0.687 | *** | 0.051 | −10.638 | *** | 0.834 |
Type_marine | 0.060 | 0.135 | −0.245 | ** | 0.116 | 0.684 | *** | 0.112 | 7.097 | *** | 2.338 | |
Type_brackish water | −0.007 | 0.029 | −0.020 | 0.028 | 0.251 | *** | 0.030 | −1.010 | ** | 0.509 | ||
City | 0.583 | *** | 0.036 | −0.490 | *** | 0.032 | 0.561 | *** | 0.033 | −1.533 | *** | 0.520 |
Mkt_employee | 0.016 | *** | 0.001 | −0.003 | *** | 0.001 | −0.005 | *** | 0.001 | |||
Mkt_land | 0.287 | *** | 0.020 | −0.224 | *** | 0.020 | −0.301 | *** | 0.021 | |||
Mkt_equip | 0.005 | ** | 0.002 | −0.006 | *** | 0.002 | −0.000 | 0.002 | ||||
Constant | −2.057 | *** | 0.205 | 0.787 | *** | 0.191 | −1.311 | *** | 0.209 | 0.098 | 3.440 | |
30.649 | 16.844 | |||||||||||
−0.378 | ** | 0.150 | ||||||||||
0.227 | *** | 0.017 | ||||||||||
−0.118 | 0.089 | |||||||||||
−0.338 | ** | 0.153 | ||||||||||
−0.020 | 0.021 | |||||||||||
0.028 | 0.020 | |||||||||||
Log-likelihood | −144,948 |
References
- Courtois, P.; Subervie, J. Farmer bargaining power and market information services. Am. J. Agric. Econ. 2015, 97, 953–977. [Google Scholar] [CrossRef] [Green Version]
- Rana, M.; Maharjan, K.L. Participation of Brinjal Farmers in Large and Small Wholesale Markets: Factors Influencing Farmers’ Decisions and Impact on Producers’ Prices. Sustainability 2022, 14, 2357. [Google Scholar] [CrossRef]
- Stoll, J.; Dubik, B.; Campbell, L. Local seafood: Rethinking the direct marketing paradigm. Ecol. Soc. 2015, 20, 40. [Google Scholar] [CrossRef]
- Chang, H.; Boisvert, R.; Hung, L. Land subsidence, production efficiency, and the decision of aquacultural firms in Taiwan to discontinue production. Ecol. Econ. 2010, 69, 2448–2456. [Google Scholar] [CrossRef]
- Tran, D.; Wang, S. Land subsidence due to groundwater extraction and tectonic activity in Pingtung Plain, Taiwan. Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 361–365. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.; Chen, M. Subsidy policy for the retirement of aquaculture on the southwest coast of Taiwan: A case study of Budai township, Chia-Yi county. Environ. Dev. Econ. 2008, 13, 517–536. [Google Scholar] [CrossRef]
- Liu, H.H.; Chuang, C.T.; Liang, M.H. The critical factors and managerial strategies for supply chain management established in the Taiwan milkfish industry. Agric. Econ. 2005, 35, 45–87. [Google Scholar]
- Lee, W.; Lee, H.; Yang, P. An economics assessment of adopting food safety management system in Taiwan’s clam industry. Agric. Econ. 2006, 36, 107–138. [Google Scholar]
- Shyu, C.; Liao, I. Development of sustainable aquaculture in Asia: Challenges and Strategies. J. Fish. Soc. Taiwan 2004, 31, 159–172. [Google Scholar]
- Jan, M.; Fu, T. HACCP on seafood in Taiwan—A double-bounded dichotomous choice contingent valuation. Taiwan. Agric. Econ. Rev. 2007, 12, 163–188. [Google Scholar]
- Directorate-General of Budget. Accounting, and Statistics in Taiwan; The 2015 Fishery Census Survey in Taiwan: Taipei, Taiwan, 2015. [Google Scholar]
- Chou, P.; Ting, C. Feasible groundwater allocation scenarios for land subsidence area of Pingtung Plain, Taiwan. Water Resour. 2007, 34, 259–267. [Google Scholar] [CrossRef]
- Fisheries Agency. Taiwan Area Fisheries Yearbook; Fisheries Agency, Council of Agriculture, Executive Yuan: Taipei, Taiwan, 2015. [Google Scholar]
- DiNardo, J.; Lee, D. Program evaluation and research designs. Handb. Labor Econ. 2011, 4, 463–536. [Google Scholar]
- Imbens, G.W.; Wooldridge, J.M. Recent developments in the econometrics of program evaluation. J. Econ. Lit. 2009, 47, 5–86. [Google Scholar] [CrossRef] [Green Version]
- Cattaneo, M. Efficient semiparametric estimation of multi-valued treatment effects under ignorability. J. Econom. 2010, 155, 138–154. [Google Scholar] [CrossRef]
- Roodman, D. Fitting fully observed recursive mixed-process models with cmp. Stata J. 2011, 11, 159–206. [Google Scholar] [CrossRef] [Green Version]
- Maddala, G.S. Limited-Dependent and Qualitative Variables in Econometrics; Cambridge University Press: New York, NY, USA, 1986. [Google Scholar]
- LeRoux, M.N.; Schmit, T.M.; Roth, M.; Streeter, D.H. Evaluating marketing channel options for small-scale fruit and vegetable producers. Renew. Agric. Food Syst. 2010, 25, 16–23. [Google Scholar] [CrossRef]
- Bjorndal, T.; Guillen, J. Market integration between wild and farmed species in Spain. Aquac. Econ. Manag. 2017, 21, 433–451. [Google Scholar] [CrossRef]
- Cline, D. Marketing options for small aquaculture producers. Educ. Program 1996, 57, 26. [Google Scholar]
- Asogwa, V.; Asogwa, J. Marketing of fish products. J. Aquac. Mar. Biol. 2019, 8, 55–61. [Google Scholar]
- Ahmed, M.; Sultana, S.; Halim, S.; Islam, M. Marketing systems of freshwater prawns in three coastal districts of Bangladesh. Aquac. Econ. Manag. 2016, 20, 272–282. [Google Scholar] [CrossRef]
- Gomez, S.; Maynou, F. Alternative seafood marketing systems foster transformative processes in Mediterranean fisheries. Mar. Policy 2021, 127, 104432. [Google Scholar] [CrossRef]
- Wetengere, K. Constraints to marketing of farmed fish in rural areas: The case of selected villages in Morogoro region, Tanzania. Aquac. Econ. Manag. 2011, 15, 130–152. [Google Scholar] [CrossRef]
- Geng, X. Chinese aquatic farmers’ participation in modern marketing channels. Br. Food J. 2014, 116, 780–791. [Google Scholar] [CrossRef]
- Welch, F. Education in production. J. Political Econ. 1979, 78, 32–59. [Google Scholar] [CrossRef]
- Strauss, J.; Barbosa, M.; Teixeira, S.; Thomas, D.; Gomes, R., Jr. Role of education and extension in the adoption of technology: A study of upland rice and soybean farmers in central-West Brazil. Agric. Econ. 1991, 5, 341–359. [Google Scholar]
- Chang, H.; Meyerhoefer, C. COVID-19 and the demand for online food shopping services: Empirical Evidence from Taiwan. Am. J. Agric. Econ. 2021, 103, 448–465. [Google Scholar] [CrossRef]
- Khan, M.; Hossain, M.; Rahman, M.; Dey, M. COVID-19’s effects and adaptation strategies in fisheries and aquaculture sector: An empirical evidence from Bangladesh. Aquaculture 2023, 562, 738822. [Google Scholar] [CrossRef]
N | Wholesale Markets | Wholesalers | Direct Marketing | Revenue (TWD Million) | Profit (TWD Million) | Non-Fishery Work (0/1) | Hired Labor (Person) | Land (Hectare) | Groundwater (0/1) |
---|---|---|---|---|---|---|---|---|---|
1784 | No | No | No | 2.952 | 1.067 | 0.497 | 1.960 | 0.807 | 0.292 |
653 | No | No | Yes | 7.936 | 3.374 | 0.250 | 4.510 | 0.945 | 0.271 |
18,677 | No | Yes | No | 16.290 | 5.971 | 0.136 | 9.478 | 1.581 | 0.251 |
1631 | No | Yes | Yes | 14.129 | 5.249 | 0.142 | 9.641 | 1.828 | 0.149 |
550 | Yes | No | No | 16.476 | 6.529 | 0.229 | 7.480 | 1.603 | 0.275 |
158 | Yes | No | Yes | 14.519 | 5.473 | 0.196 | 6.703 | 1.691 | 0.222 |
1408 | Yes | Yes | No | 23.741 | 8.047 | 0.145 | 12.830 | 1.986 | 0.271 |
319 | Yes | Yes | Yes | 34.769 | 11.978 | 0.110 | 16.539 | 4.754 | 0.147 |
F-test | 77.53 | 67.20 | 243.67 | 82.30 | 46.54 | 18.85 |
All | Wholesale Markets | Wholesalers | Direct Marketing | ||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Definition | Mean | S.D | Mean | S.D | Mean | S.D | Mean | S.D |
Wholesaler markets | If use wholesaler markets (=1). | 0.097 | 0.296 | 1.000 | 0.000 | 0.078 | 0.269 | 0.173 | 0.378 |
Wholesalers | If use wholesalers (=1). | 0.875 | 0.331 | 0.709 | 0.454 | 1.000 | 0.000 | 0.706 | 0.456 |
Direct marketing | If use direct marketing (=1). | 0.110 | 0.312 | 0.196 | 0.397 | 0.088 | 0.284 | 1.000 | 0.000 |
Revenue | Fishery revenue (TWD million). | 15.632 | 32.092 | 22.947 | 48.164 | 16.873 | 31.943 | 15.071 | 35.822 |
Profit | Fishery profit (TWD million). | 5.711 | 11.792 | 8.052 | 18.259 | 6.137 | 11.776 | 5.596 | 14.689 |
Non-fishery work | If operator has a non-fishery job (=1). | 0.167 | 0.373 | 0.163 | 0.369 | 0.136 | 0.343 | 0.167 | 0.373 |
Hired labor | Number of hired labor (person). | 9.043 | 16.173 | 11.710 | 21.018 | 9.807 | 16.563 | 9.057 | 18.565 |
Groundwater | If groundwater is the main water source in fish production (=1). | 0.248 | 0.432 | 0.253 | 0.435 | 0.244 | 0.429 | 0.182 | 0.386 |
Land | Land area in fish production (hectare). | 1.589 | 3.893 | 2.243 | 8.279 | 1.671 | 4.043 | 1.949 | 7.903 |
Age_29 | If operator age ≤29 (=1). | 0.006 | 0.075 | 0.004 | 0.064 | 0.006 | 0.075 | 0.004 | 0.063 |
Age_3039 | If operator age 30–39 (=1). | 0.042 | 0.201 | 0.036 | 0.187 | 0.043 | 0.203 | 0.032 | 0.175 |
Age_4049 | If operator age 40–49 (=1). | 0.140 | 0.347 | 0.143 | 0.350 | 0.142 | 0.349 | 0.130 | 0.336 |
Age_5059 | If operator age 50–59 (=1). | 0.281 | 0.450 | 0.311 | 0.463 | 0.281 | 0.449 | 0.294 | 0.456 |
Age_6069 | If operator age 60–69 (=1). | 0.280 | 0.449 | 0.284 | 0.451 | 0.278 | 0.448 | 0.298 | 0.457 |
Age_70 | If operator age ≥70 (=1). | 0.251 | 0.434 | 0.222 | 0.416 | 0.251 | 0.433 | 0.243 | 0.429 |
Illiteracy | If operator is illiterate (=1). | 0.088 | 0.283 | 0.058 | 0.234 | 0.087 | 0.282 | 0.071 | 0.256 |
Elementary | If finished elementary school (=1). | 0.313 | 0.464 | 0.269 | 0.444 | 0.316 | 0.465 | 0.339 | 0.473 |
Junior high | If finished junior high school (=1). | 0.234 | 0.423 | 0.250 | 0.433 | 0.235 | 0.424 | 0.230 | 0.421 |
Senior high | If finished senior high school (=1). | 0.265 | 0.441 | 0.300 | 0.458 | 0.264 | 0.441 | 0.256 | 0.437 |
College | If college or higher education (=1). | 0.101 | 0.302 | 0.123 | 0.328 | 0.097 | 0.296 | 0.104 | 0.306 |
Male | If male operator (=1). | 0.856 | 0.351 | 0.861 | 0.346 | 0.857 | 0.350 | 0.873 | 0.333 |
HHSIZE_male | Male household members (person). | 1.806 | 1.112 | 1.858 | 1.107 | 1.796 | 1.105 | 1.840 | 1.121 |
HHSIZE_female | Female household members (person). | 1.558 | 1.196 | 1.628 | 1.236 | 1.546 | 1.192 | 1.576 | 1.207 |
Ratio_adult | Ratio of adult household members. | 0.946 | 0.133 | 0.947 | 0.131 | 0.947 | 0.133 | 0.944 | 0.134 |
Type_marine | If marine aquaculture (=1). | 0.094 | 0.292 | 0.055 | 0.228 | 0.104 | 0.305 | 0.137 | 0.344 |
Type_brackish water | If inland brackish water aquaculture (=1). | 0.543 | 0.498 | 0.531 | 0.499 | 0.556 | 0.497 | 0.362 | 0.481 |
Type_fresh water | If inland freshwater aquaculture (=1). | 0.363 | 0.481 | 0.415 | 0.493 | 0.340 | 0.474 | 0.502 | 0.500 |
Aqua_grouper | If grouper aquaculture (=1). | 0.079 | 0.270 | 0.115 | 0.320 | 0.082 | 0.274 | 0.078 | 0.269 |
Aqua_milkfish | If milkfish aquaculture (=1). | 0.239 | 0.427 | 0.304 | 0.460 | 0.253 | 0.435 | 0.229 | 0.420 |
Aqua_tilapia | If tilapia aquaculture (=1). | 0.163 | 0.370 | 0.184 | 0.387 | 0.134 | 0.341 | 0.175 | 0.380 |
Aqua_shrip | If shrimp aquaculture (=1). | 0.128 | 0.334 | 0.129 | 0.335 | 0.134 | 0.341 | 0.108 | 0.311 |
Aqua_oyster | If oyster aquaculture (=1). | 0.088 | 0.283 | 0.045 | 0.207 | 0.093 | 0.291 | 0.157 | 0.364 |
Aqua_clam | If clam aquaculture (=1). | 0.136 | 0.343 | 0.043 | 0.203 | 0.145 | 0.352 | 0.053 | 0.225 |
Aqua_other | If other types of fish (=1). | 0.168 | 0.373 | 0.181 | 0.385 | 0.159 | 0.366 | 0.198 | 0.399 |
City | If located in a city area (=1). | 0.398 | 0.489 | 0.557 | 0.497 | 0.393 | 0.488 | 0.453 | 0.498 |
Mkt_employee | Number of employees in wholesaler markets (person). | 54.447 | 24.878 | 59.788 | 25.307 | 55.243 | 24.700 | 48.175 | 20.673 |
Mkt_land | Land area of wholesaler markets (hectare) | 2.565 | 1.633 | 2.752 | 1.724 | 2.618 | 1.631 | 2.121 | 1.223 |
Mkt_equip | Investment in equipment (TWD 1000/m2). | 3.758 | 5.542 | 5.362 | 6.970 | 3.653 | 4.801 | 4.790 | 8.629 |
N | 25,180 | 2435 | 22,035 | 2761 |
Wholesale Markets | Wholesalers | Direct Marketing | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Mar. Eff | S.E | Mar. Eff | S.E | Mar. Eff | S.E | |||
Age_3039 | 0.009 | 0.028 | −0.008 | 0.030 | 0.006 | 0.031 | |||
Age_4049 | 0.018 | 0.027 | −0.016 | 0.028 | 0.039 | 0.029 | |||
Age_5059 | 0.025 | 0.027 | −0.023 | 0.028 | 0.051 | 0.029 | |||
Age_6069 | 0.026 | 0.027 | −0.027 | 0.028 | 0.052 | 0.029 | |||
Age_70 | 0.018 | 0.027 | −0.029 | 0.029 | 0.043 | 0.030 | |||
Elementary | 0.001 | 0.008 | 0.028 | *** | 0.008 | 0.010 | 0.008 | ||
Junior high | 0.016 | 0.009 | 0.018 | ** | 0.009 | −0.004 | 0.009 | ||
Senior high | 0.011 | 0.009 | 0.016 | 0.009 | 0.001 | 0.009 | |||
College | 0.008 | 0.010 | −0.014 | 0.010 | 0.011 | 0.005 | |||
Male | 0.001 | 0.006 | 0.003 | 0.006 | 0.013 | ** | 0.006 | ||
HHSIZE_male | 0.003 | 0.002 | −0.004 | ** | 0.002 | 0.001 | 0.002 | ||
HHSIZE_female | 0.004 | ** | 0.002 | −0.007 | *** | 0.002 | 0.001 | 0.002 | |
Ratio_adult | 0.014 | 0.016 | 0.023 | 0.017 | −0.020 | 0.016 | |||
Aqua_grouper | 0.014 | 0.008 | 0.061 | *** | 0.009 | −0.043 | *** | 0.009 | |
Aqua_milkfish | 0.004 | 0.006 | 0.100 | *** | 0.007 | −0.038 | *** | 0.007 | |
Aqua_tilapia | 0.009 | 0.007 | −0.061 | *** | 0.006 | −0.012 | 0.007 | ||
Aqua_shrip | −0.015 | ** | 0.007 | 0.079 | *** | 0.008 | −0.027 | *** | 0.007 |
Aqua_oyster | −0.050 | ** | 0.023 | 0.144 | *** | 0.022 | −0.044 | ** | 0.019 |
Aqua_clam | −0.057 | *** | 0.009 | 0.105 | *** | 0.008 | −0.117 | *** | 0.009 |
Type_marine | 0.010 | 0.022 | −0.045 | ** | 0.021 | 0.116 | *** | 0.019 | |
Type_brackish water | −0.001 | 0.005 | −0.004 | 0.005 | 0.043 | *** | 0.005 | ||
City | 0.094 | *** | 0.006 | −0.089 | *** | 0.006 | 0.096 | *** | 0.006 |
Mkt_employee | 0.003 | *** | 0.000 | −0.001 | *** | −0.000 | 0.001 | *** | 0.000 |
Mkt_land | 0.046 | *** | 0.003 | −0.041 | *** | −0.004 | −0.051 | *** | 0.004 |
Mkt_equip | 0.001 | ** | 0.000 | −0.001 | *** | −0.000 | 0.000 | 0.000 |
Fishery Revenue | Fishery Profit | Land in Fishery Production | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(A1) | (A2) | (B1) | (B2) | (C1) | (C2) | |||||||||||||
Variable | Coef. | S.E | Coef. | S.E | Coef. | S.E | Coef. | S.E | Coef. | S.E | Coef. | S.E | ||||||
Wholesaler markets | 1.58 | *** | 0.515 | 1.29 | *** | 0.343 | 0.45 | *** | 0.108 | 0.39 | *** | 0.098 | 0.07 | *** | 0.008 | 0.27 | *** | 0.086 |
Wholesalers | 1.32 | *** | 0.113 | 1.39 | *** | 0.118 | 0.46 | *** | 0.038 | 0.50 | *** | 0.040 | 0.08 | *** | 0.008 | 0.44 | *** | 0.084 |
Direct marketing | 1.07 | 0.519 | 0.68 | 0.358 | 0.07 | 0.040 | 0.03 | 0.018 | 0.04 | *** | 0.008 | 0.33 | ** | 0.154 | ||||
Direct marketing × wholesaler markets | 0.05 | 0.029 | 0.13 | ** | 0.051 | 0.05 | 0.031 | |||||||||||
Direct marketing × wholesalers | 0.04 | ** | 0.016 | 0.21 | *** | 0.059 | 0.11 | *** | 0.016 | |||||||||
Direct marketing × markets × wholesalers | 0.09 | ** | 0.033 | 0.32 | ** | 0.123 | 0.09 | ** | 0.036 | |||||||||
Non-fishery work | Hired labor in fishery production | Groundwater in fishery production | ||||||||||||||||
(D1) | (D2) | (E1) | (E2) | (F1) | (F2) | |||||||||||||
Wholesaler market | −0.06 | *** | 0.008 | −0.01 | *** | 0.002 | 0.429 | *** | 0.035 | 1.25 | *** | 0.079 | 0.01 | 0.013 | 0.00 | 0.014 | ||
Wholesalers | −0.02 | *** | 0.007 | −0.03 | *** | 0.002 | 0.102 | 0.052 | 0.74 | 0.391 | 0.02 | ** | 0.010 | 0.01 | 0.011 | |||
Direct marketing | 0.04 | *** | 0.007 | 0.02 | *** | 0.002 | 0.133 | *** | 0.033 | 1.12 | 0.065 | −0.04 | *** | 0.007 | −0.04 | *** | 0.013 | |
Direct marketing × wholesaler markets | −0.00 | 0.003 | −0.21 | 0.107 | 0.01 | ** | 0.002 | |||||||||||
Direct marketing × wholesalers | 0.02 | *** | 0.002 | 0.18 | ** | 0.061 | 0.00 | ** | 0.001 | |||||||||
Direct marketing × markets × wholesalers | 0.01 | 0.038 | 0.12 | 0.124 | −0.00 | 0.003 |
H0: ρ = 0 #1 | H0: Z = 0 #2 | |
---|---|---|
Outcome Equation | ||
Fishery revenue | 111 | 243 |
Fishery profit | 120 | 252 |
Land in fish production | 121 | 251 |
Number of hired labor | 109 | 241 |
Non-fishery work | 231 | 238 |
Groundwater use | 641 | 287 |
Critical value | x2(6, 0.01) = 16.8 | x2(9, 0.01) = 21.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, T.-H.; Liu, S.-Y.; Huang, C.-L.; Chang, H.-H.; Wang, J.-H. Can Direct Marketing Increase Fishery Profitability and Environmental Quality? Empirical Evidence of Aquaculture Farm Households in Taiwan. Agriculture 2023, 13, 1270. https://doi.org/10.3390/agriculture13061270
Lee T-H, Liu S-Y, Huang C-L, Chang H-H, Wang J-H. Can Direct Marketing Increase Fishery Profitability and Environmental Quality? Empirical Evidence of Aquaculture Farm Households in Taiwan. Agriculture. 2023; 13(6):1270. https://doi.org/10.3390/agriculture13061270
Chicago/Turabian StyleLee, Tzong-Haw, Song-Yue Liu, Chiou-Lien Huang, Hung-Hao Chang, and Jiun-Hao Wang. 2023. "Can Direct Marketing Increase Fishery Profitability and Environmental Quality? Empirical Evidence of Aquaculture Farm Households in Taiwan" Agriculture 13, no. 6: 1270. https://doi.org/10.3390/agriculture13061270
APA StyleLee, T. -H., Liu, S. -Y., Huang, C. -L., Chang, H. -H., & Wang, J. -H. (2023). Can Direct Marketing Increase Fishery Profitability and Environmental Quality? Empirical Evidence of Aquaculture Farm Households in Taiwan. Agriculture, 13(6), 1270. https://doi.org/10.3390/agriculture13061270