Effects of Dairy Cows Management Systems on the Physicochemical and Nutritional Quality of Milk and Yogurt, in a North-Eastern Romanian Farm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Feeding
2.2. Raw Milk Collecting, Sampling and Analysis
2.3. Yogurt Analysis
2.3.1. Yogurt Preparation
2.3.2. Texture Analysis
2.3.3. Physical and Chemical Analyses
2.4. Fatty Acids Analysis in Milk and Yogurt
2.4.1. Fat Extraction
2.4.2. Preparation of Fatty Acid Methyl Esters
2.4.3. Analysis of Fatty Acid Composition by GC Method
2.5. Data Analysis
3. Results
3.1. Raw Milk Quality
3.2. Yogurts Quality
3.2.1. Texture Testing
3.2.2. Physiochemical Results
4. Discussion
4.1. Raw Material Milk Quality
4.2. Yogurts Quality
4.2.1. Texture Analysis
4.2.2. Physicochemical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Saxelin, M.; Korpela, R.; Mäyrä-Mäkinen, A. Introduction: Classifying functional dairy products. In Functional Dairy Products; Mattila-Sandholm, T., Saarela, M., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2003; pp. 1–16. [Google Scholar] [CrossRef]
- Bobe, G.; Lindberg, G.; Freeman, A.; Beitz, D. Short Communication: Composition of Milk Protein and Milk Fatty Acids Is Stable for Cows Differing in Genetic Merit for Milk Production. J. Dairy Sci. 2007, 90, 3955–3960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Månsson, L. Helena Fatty acids in bovine milk fat. Food Nutr. Res. 2008, 52, 1821. [Google Scholar] [CrossRef] [Green Version]
- Fantuz, F.; Todini, L.; Ferraro, S.; Fatica, A.; Marcantoni, F.; Zannotti, M.; Salimei, E. Macro Minerals and Trace Elements in Milk of Dairy Buffaloes and Cows Reared in Mediterranean Areas. Beverages 2022, 8, 51. [Google Scholar] [CrossRef]
- Lock, A.L.; Bauman, D.E. Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids 2004, 39, 1197–1206. [Google Scholar] [CrossRef] [Green Version]
- Connor, W.E. Importance of n−3 fatty acids in health and disease. Am. J. Clin. Nutr. 2000, 71, 171S–175S. [Google Scholar] [CrossRef] [Green Version]
- Parodi, P. Conjugated Linoleic Acid and Other Anticarcinogenic Agents of Bovine Milk Fat. J. Dairy Sci. 1999, 82, 1339–1349. [Google Scholar] [CrossRef] [PubMed]
- Hanuš, O.; Samková, E.; Křížová, L.; Hasoňová, L.; Kala, R. Role of Fatty Acids in Milk Fat and the Influence of Selected Factors on Their Variability—A Review. Molecules 2018, 23, 1636. [Google Scholar] [CrossRef] [Green Version]
- Pietrzak-Fiećko, R.; Tomczyński, R.; Świstowska, A.; Borejszo, Z.; Kokoszko, E.; Smoczyńska, K. Effect of mare’s breed on the fatty acid composition of milk fat. Czech J. Anim. Sci. 2009, 54, 403–407. [Google Scholar] [CrossRef] [Green Version]
- Ellis, K.; Innocent, G.; Grove-White, D.; Cripps, P.; McLean, W.; Howard, C.; Mihm, M. Comparing the Fatty Acid Composition of Organic and Conventional Milk. J. Dairy Sci. 2006, 89, 1938–1950. [Google Scholar] [CrossRef] [Green Version]
- Melúchová, B.; Blasko, J.; Kubinec, R.; Górová, R.; Dubravská, J.; Margetìn, M.; Soják, L. Seasonal variations in fatty acid composition of pasture for age plants and CLA content in ewe milk fat. Small Rumin. Res. 2008, 78, 56–65. [Google Scholar] [CrossRef]
- Knowles, S.; Grace, N.; Knight, T.; McNabb, W.; Lee, J. Reasons and means for manipulating the micronutrient composition of milk from grazing dairy cattle. Anim. Feed Sci. Technol. 2006, 131, 154–167. [Google Scholar] [CrossRef]
- Slots, T.; Butler, G.; Leifert, C.; Kristensen, T.; Skibsted, L.; Nielsen, J. Potentials to differentiate milk composition by different feeding strategies. J. Dairy Sci. 2009, 92, 2057–2066. [Google Scholar] [CrossRef] [Green Version]
- Rego, O.A.; Portugal, P.V.; Sousa, M.B.; Rosa, H.J.; Vouzela, C.M.; Borba, A.E.; Bessa, R.J. Effect of diet on the fatty acid pattern of milk from dairy cows. Anim. Res. 2004, 53, 213–220. [Google Scholar] [CrossRef]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ayaz, M.; Ajmal, M.; Ellahi, M.Y.; Khalique, A. Antioxidant capacity and fatty acids characterization of heat treated cow and buffalo milk. Lipids Health Dis. 2017, 16, 163. [Google Scholar] [CrossRef] [Green Version]
- Ajmal, M.; Nadeem, M.; Imran, M.; Junaid, M. Lipid compositional changes and oxidation status of ultra-high temperature treated Milk. Lipids Health Dis. 2018, 17, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos Júnior, O.O.; Pedrao, M.R.; Dias, L.F.; Paula, L.N.; Coro FA, G.; De Souza, N.E. Fatty Acid Content of Bovine Milkfat From Raw Milk to Yoghurt. Am. J. Appl. Sci. 2012, 9, 1300–1306. [Google Scholar] [CrossRef]
- Tamime, A.; Robinson, R. Yoghurt Science and Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Rennó, F.P.; Júnior, J.E.D.F.; Gandra, J.R.; Verdurico, L.C.; dos Santos, M.V.; Barletta, R.V.; Venturelli, B.C.; Vilela, F.G. Fatty acid profile and composition of milk protein fraction in dairy cows fed long-chain unsaturated fatty acids during the transition period. Rev. Bras. Zootec. 2013, 42, 813–823. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yang, D.; Chen, P.; Lin, S.; Jiang, X.; Zhao, W.; Li, J.; Dong, W. Effect of dietary sources of roasted oilseeds on blood parameters and milk fatty acid composition. Czech J. Anim. Sci. 2008, 53, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Dewhurst, R.; Shingfield, K.; Lee, M.; Scollan, N. Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Anim. Feed Sci. Technol. 2006, 131, 168–206. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 20 October 2022).
- Sandu, M. Assessment of Romanian Livestock Sector Available from the Perspective of Animal Food Products. 2015. Available online: https://ideas.repec.org/a/iem/imptrs/v7y2015id2822000009382091.html (accessed on 1 November 2022).
- Trif, C. As the Economy Grows, the Number of Cattle Decreases. Farm Magazine 2018, 1, 206. [Google Scholar]
- Stampa, E.; Schipmann-Schwarze, C.; Hamm, U. Consumer perceptions, preferences, and behavior regarding pasture-raised livestock products: A review. Food Qual. Prefer. 2020, 82, 103872. [Google Scholar] [CrossRef]
- INRA. Alimentation des Bovins, Ovins et Caprins; Tables INRA 2007, mise à four 2010. Éditions Quæ, c/o INRA, RD 10; INRA: Versailles Cedex, France, 2010. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Official Method 925.23 Solids (Total) in Milk; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Dick, H.K.; Lynch, J.; Barbano, D.M.; Bloom, M.J.; Mitchell, M.W. Determination of Fat in Raw and Processed Milks by the Gerber Method: Collaborative Study. J. Aoac Int. 2001, 84, 1499–1508. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Official Method 945.46 Ash of Milk, Gravimetric Method; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Simeanu, D.; Creangă, Ş.; Cristina, S. Research on the meat quality produced by Polyodon Spathula sturgeons’ species related to human nutritional requirements. Res. J. Biotechnol. 2015, 10, 36–43. [Google Scholar]
- FIL-IDF 20B; Determination of Milk Nitrogen Content. 4. Determination of Non-Protein Nitrogen. IDF (International Dairy Federation): Brussels, Belgium, 1993.
- Attia, H.; Kherouatou, N.; Dhouib, A. Dromedary milk lactic acid fermentation: Microbiological and rheological character-istics. J. Ind. Microbiol. Biotechnol. 2001, 265, 263–270. [Google Scholar] [CrossRef]
- Szczesniak, A.S. Texture is a sensory property. Food Qual. Prefer. 2002, 13, 215–225. [Google Scholar] [CrossRef]
- Say, D.; Soltani, M.; Guzeler, N. Physical, chemical, and microstructural properties of nonfat yogurts fortified with the addition of tara gum alone or in combination with buttermilk powder. J. Food Process. Preserv. 2019, 43, e14217. [Google Scholar] [CrossRef]
- Wijesinghe, J.A.A.C.; Wickramasinghe, I.; Saranandha, K.H. Optimizing organoleptic properties of drinking yoghurt incorporated with modified kithul (Caryota urens) flour as a stabilizer and evaluating its quality during storage. Vidyodaya J. Sci. 2018, 21, 36–48. [Google Scholar] [CrossRef] [Green Version]
- IDF 151; Yogurt: Determination of Total Solids Content (Reference Method). International Dairy Federation: Brussels, Belgium, 1991.
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 16th ed.; Method No 990.20, Methods No. 945.46, Method No 905.02, Method No. 991.20; AOAC: Washington, DC, USA, 1998. [Google Scholar]
- PN-EN ISO 1211:2011; Milk-Determination of Fat Content—GravimetricMethod (ReferenceMethod). ISO: Geneva, Switzerland, 2011.
- Christie, W.W. The isolation of lipids from tissues. Recommended Procedures. Chloroform-methanol (2:1, v/v) extraction and “Folch” wash. In Lipid Analysis. Isolation, Separation, Identification and Structural Analysis of Lipids; Pergamon Press: Oxford, UK, 1973; pp. 39–40. [Google Scholar]
- ISO 15884:2002 (IDF 182:2002); Milkfat: Preparation of Fatty Acid Methyl Esters. Available online: https://www.iso.org/obp/ui/#iso:std:iso:15884:ed-1:v1:en (accessed on 5 September 2020).
- Roach, J.A.; Mossoba, M.M.; Yurawecz, M.; Kramer, J.K. Chromatographic separation and identification of conjugated linoleic acid isomers. Anal. Chim. Acta 2002, 465, 207–226. [Google Scholar] [CrossRef]
- Kramer, J.K.G.; Cruz-Hermantez, C.; Deng, Z.; Zhou, J.; Jahreis, G.; Dugan, M.E.R. Analysis of conjugated linoleic acid and trans 18:1 isomers in syntetic and animal products. Am. J. Clin. Nutr. 2004, 79, 1137S–1145S. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, E.; Queiroga, R.; Oliveira, M.; Medeiros, A.; Sabedot, M.; Bomfim, M.; Madruga, M. Fatty Acid Profile of Cheese from Dairy Goats Fed a Diet Enriched with Castor, Sesame and Faveleira Vegetable Oils. Molecules 2014, 19, 992–1003. [Google Scholar] [CrossRef] [Green Version]
- Steel, R.; Torrie, J.; Dickey, D. Principles and Procedures of Statistics: A Biometrical Approach, 3rd ed.; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Jenkins, T.C.; Harvatine, K.J. Lipid Feeding and Milk Fat Depression. Vet. Clin. Food Anim. Pract. 2014, 30, 623–642. [Google Scholar] [CrossRef]
- Erickson, P.S.; Kalscheurb, K.F. Nutrition and feeding of dairy cattle. In Animal Agriculture; Academic Press: Cambridge, MA, USA, 2020; pp. 157–180. [Google Scholar]
- Bilal, G.; Cue, R.I.; Mustafa, A.F.; Hayes, J.F. Effects of Parity, Age at Calving and Stage of Lactation on Fatty Acid Composition of Milk in Canadian Holsteins. Can. J. Anim. Sci. 2014, 94, 401–410. [Google Scholar] [CrossRef]
- Benchaar, C.; Petit, H.; Berthiaume, R.; Ouellet, D.; Chiquette, J.; Chouinard, P. Effects of Essential Oils on Digestion, Ruminal Fermentation, Rumen Microbial Populations, Milk Production, and Milk Composition in Dairy Cows Fed Alfalfa Silage or Corn Silage. J. Dairy Sci. 2007, 90, 886–897. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, T.; Straarup, M.; Vestergaard, M.; Sejrsen, K. Effect on Silage Type and Concentrate Level on Conjugated Linoleic Acids, Trans-C18:1 Isomers and Fat Content in Milk from Dairy Cows. Reprod. Nutr. Dev. 2006, 46, 669–712. [Google Scholar] [CrossRef] [PubMed]
- Elgersma, A.; Ellen, G.; van der Horst, H.; Boer, H.; Dekker, P.; Tamminga, S. Quick changes in milk fat composition from cows after transition from fresh grass to a silage diet. Anim. Feed Sci. Technol. 2004, 117, 13–27. [Google Scholar] [CrossRef]
- Villeneuve, M.-P.; Lebeuf, Y.; Gervais, R.; Tremblay, G.; Vuillemard, J.; Fortin, J.; Chouinard, P. Milk volatile organic compounds and fatty acid profile in cows fed timothy as hay, pasture, or silage. J. Dairy Sci. 2013, 96, 7181–7194. [Google Scholar] [CrossRef] [PubMed]
- Couvreur, S.; Hurtaud, C.; Lopez, C.; Delaby, L.; Peyraud, J. The Linear Relationship Between the Proportion of Fresh Grass in the Cow Diet, Milk Fatty Acid Composition, and Butter Properties. J. Dairy Sci. 2006, 89, 1956–1969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, H.; Chatzidimitriou, E.; Leifert, C.; Butler, G. Evidence That Forage-Fed Cows Can Enhance Milk Quality. Sustainability 2020, 12, 3688. [Google Scholar] [CrossRef]
- O’callaghan, T.F.; Hennessy, D.; McAuliffe, S.; Kilcawley, K.N.; O’donovan, M.; Dillon, P.; Ross, R.; Stanton, C. Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation. J. Dairy Sci. 2016, 99, 9424–9440. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.; Nielsen, J.; Butler, G.; Leifert, C.; Slots, T.; Kristiansen, G.; Gustafsson, A. Milk quality as affected by feeding regimens in a country with climatic variation. J. Dairy Sci. 2010, 93, 2863–2873. [Google Scholar] [CrossRef] [Green Version]
- Auldist, M.J.; Walsh, B.J.; Thomson, N.A. Seasonal and lactational influences on bovine milk composition in New Zealand. J. Dairy Res. 1998, 65, 401–411. [Google Scholar] [CrossRef]
- Collomb, M.; Bisig, W.; Bütikofer, U.; Sieber, R.; Bregy, M.; Etter, L. Seasonal variation in the fatty acid composition of milk supplied to dairies in the mountain regions of Switzerland. Dairy Sci. Technol. 2008, 88, 631–647. [Google Scholar] [CrossRef] [Green Version]
- Frelich, J.; Slachta, M.; Hanus, O.; Spicka, J.; Samková, E.; Weglarz, A.; Zapletal, P. Seasonal Variation in Fatty Acid Composition of Cow Milk in Relation to the Feeding System. Anim. Sci. Pap. Rep. 2012, 30, 219–229. [Google Scholar]
- Delikanli, B.; Ozcan, T. Improving the Textural Properties of Yogurt Fortified with Milk Proteins. J. Food Process. Preserv. 2016, 41, e13101. [Google Scholar] [CrossRef]
- Wen, Y.; Kong, B.-H.; Zhao, X.-H. Quality indices of the set-yoghurt prepared from bovine milk treated with horseradish peroxidase. J. Food Sci. Technol. 2012, 51, 1525–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sah, B.N.P.; Vasiljevic, T.; Mckechnie, S.; Donkor, O.N. Physicochemical, textural and rheological properties of probiotic yogurt fortified with fibre-rich pineapple peel powder during refrigerated storage. LWT-Food Sci. Technol. 2016, 65, 978–986. [Google Scholar] [CrossRef]
- Jasińska, M.; Dmytrów, I.; Mituniewicz-Małek, A.; Wąsik, K. Cow feeding system versus milk utility for yoghurt manufacture. Acta Sci. Pol. Technol. Aliment. 2010, 9, 189–199. [Google Scholar]
- Bourne, M.C. Food Texture and Viscosity: Concept and Measurement, 2nd ed.; Elsevier Science & Technology Books; Academic Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Lucatto, J.N.; Da Silva-Buzanello, R.A.; De Mendonça, S.N.T.G.; Lazarotto, T.C.; Sanchez, J.L.; Bona, E.; Drunkler, D.A. Performance of different microbial cultures in potentially probiotic and prebiotic yoghurts from cow and goat milks. Int. J. Dairy Technol. 2020, 73, 144–156. [Google Scholar] [CrossRef]
- Al-Bedrani, D.I.J.; Alkaisy, Q.H.; Rahi, A.K.; Saadi, A.M. Evaluation of milk source on physicochemical, texture, rheological and sensory properties of yogurts. J. Appl. Nat. Sci. 2023, 15, 128–136. [Google Scholar] [CrossRef]
- Ganesan, B.; Brothersen, C.; McMahon, D. Fortifiction of nonfat yogurt with different whey protein concentrates. J. Dairy Sci. 2017, 100, 1767–1777. [Google Scholar]
- Giri, A.; Osman, A. Rheology, texture profile, and sensory characteristics of yogurt fortified with soluble and insoluble dietary fibers. J. Food Sci. Technol. 2016, 53, 3540–3548. [Google Scholar]
- Ocak, E.; Köse, Ş. The effects of fortifying milk with Cu, Fe and Zn minerals on the production and texture of yoghurt. J. Food Agric. Environ. 2010, 8, 122–125. [Google Scholar] [CrossRef]
- Weerathilake, W.A.D.V.; Rasika, D.M.D.; Ruwanmali, J.K.U.; Munasinghe, M.A.D.D. The evolution, processing, varieties and health benefits of yogurt. Int. J. Sci. Res. Publ. 2014, 4, 1–10. [Google Scholar]
- Jambi, H.A. Evaluation of physio-chemical and sensory properties of yoghurt prepared with date pits powder. Curr. Sci. Int. 2018, 7, 1–9. [Google Scholar]
- Rani, R.; Dharaiya, C.; Singh, B. Factors affecting of Syneresis in Yogurt: A Review. Indian J. Dairy Biosci. 2012, 23, 1–9. [Google Scholar]
- Aly, S.A.; Gal, A.; Elewa, N.A. Carrot yoghurt: Sensory, chemical, microbiological properties and consumer acceptance. Pak. J. Nutr. 2004, 3, 322–330. [Google Scholar] [CrossRef]
- Haj, M.H.M.; El-Owni, O.A.O.; El-Zubeir, I.E.M. Assessment of chemical and microbiological quality of stirred yogurt in Khartoum state Sudan. Res. J. Anim. Vet. Sci. 2007, 2, 56–60. [Google Scholar]
- Lock, L.A.; Shingfield, K.J. Optimising Milk Composition. BSAP Occas. Public. 2004, 29, 107–188. [Google Scholar] [CrossRef]
- Alothman, M.; Hogan, S.A.; Hennessy, D.; Dillon, P.; Kilcawley, K.N.; O’donovan, M.; Tobin, J.; Fenelon, M.A.; O’callaghan, T.F. The “Grass-Fed” Milk Story: Understanding the Impact of Pasture Feeding on the Composition and Quality of Bovine Milk. Foods 2019, 8, 350. [Google Scholar] [CrossRef] [Green Version]
- Akbaridoust, G.; Plozza, T.; Trenerry, V.C.; Wales, W.J.; Auldist, M.J.; Ajlouni, S. Influence of pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt. J. Dairy Res. 2015, 82, 279–286. [Google Scholar] [CrossRef]
Daily Diet Type, Structure and Proximate Composition | Nutritional Requirements: | ||||||
---|---|---|---|---|---|---|---|
IDM (kg) | MLDU | NEMU | PDI-N (g) | PDI-E (g) | Ca (g) | P (g) | |
Up to 19.5 | Up to 17.10 | 16.6 | 1645.00 | 1645.00 | 136.00 | 76.00 | |
Cows maintained on pasture (GC) Pasture–graminaea, 66.0 kg (9.5 kg IDM); Corn silage, 20.5 kg (5 kg IDM); Corn crumbles, 2.9 kg (2.5 kg IDM); Rapeseed meal, 1.8 kg (1.6 kg IDM); Limestone, 0.1 kg (0.1 kg IDM); Sodium bicarbonate, 0.1 kg (0.1 kg IDM); Salt, 0.1 kg (0.1 kg IDM); Premix Vitafort Bio, 0.1 kg (0.1 kg IDM) Diet proximate composition per 1000 g IDM 87.3 g CAsh, 912.7 g OM, 230.8 g CP, 45.1 g EE, 183.2 g CF, 230.3 g ADF, 355.5 g NDF, 453.5 g NFC | Covered: | ||||||
19.0 | 15.9 | 17.2 | 1705 | 1645 | 138 | 78 | |
Cows maintained in stable (GS) Meadow hay–graminaea, 11.6 kg (9 kg IDM); Corn silage, 14.4 kg (3.5 kg IDM); Corn grains crumbles, 4.3 kg (3.8 kg IDM); Rapeseed meal, 3.0 kg (2.7 kg IDM); Limestone, 0.2 kg (0.2 kg IDM); Sodium bicarbonate, 0.1 kg (0.1 kg IDM); Salt, 0.1 kg (0.1 kg IDM); Premix Vitafort Bio, 0.1 kg (0.1 kg IDM) Diet proximate composition per 1000 g IDM 82.0 g CAsh, 918.0 g OM, 220.9 g CP, 45.2 g EE, 171.5 g CF, 215.6 g ADF, 332.8 g NDF, 480.5 g NFC | Covered: | ||||||
19.5 | 13.8 | 17.3 | 1661 | 1654 | 139 | 76 |
Physical–Chemical Trait | System of Exploitation | The Experimental Period | Overall | ||
---|---|---|---|---|---|
May | July | September | |||
pH | MGC | 6.51 ± 0.02 xA | 6.44 ± 0.03 yB | 6.45 ± 0.02 yB | 6.47 ± 0.04 y |
MCS | 6.52 ± 0.04 xA | 6.50 ± 0.04 xA | 6.51 ± 0.04 xA | 6.51 ± 0.04 x | |
Water (W) (%) | MGC | 87.32 ± 0.10 xA | 87.13 ± 0.13 xB | 87.10 ± 0.08 xB | 87.18 ± 0.14 x |
MCS | 87.23 ± 0.14 xA | 87.24 ± 0.14 xA | 87.22 ± 0.14 xA | 87.23 ± 0.14 x | |
Total solids (TS) (%) | MGC | 12.68 ± 0.10 xC | 12.87 ± 0.13 xB | 12.90 ± 0.08 xAB | 12.82 ± 0.14 x |
MCS | 12.77 ± 0.14 yA | 12.78 ± 0.14 yA | 12.80 ± 0.14 yA | 12.78 ± 0.14 y | |
Fat (%) | MGC | 4.18 ± 0.04 xC | 4.37 ± 0.05 xB | 4.41 ± 0.06 xAB | 4.32 ± 0.09 x |
MCS | 4.20 ± 0.06 yA | 4.20 ± 0.06 yA | 4.23 ± 0.04 yA | 4.21 ± 0.05 y | |
Solid non-fat (SNF) (%) | MGC | 8.63 ± 0.10 xB | 8.50 ± 0.15 xA | 8.49 ± 0.06 xBA | 8.54 ± 0.12 x |
MCS | 8.57 ± 0.17 yA | 8.58 ± 0.17 yA | 8.57 ± 0.18 yA | 8.57 ± 0.17 x | |
Ash (%) | MGC | 0.75 ± 0.03 xA | 0.79 ± 0.02 yA | 0.80 ± 0.05 xA | 0.78 ± 0.04 x |
MCS | 0.77 ± 0.05 xA | 0.76 ± 0.05 xA | 0.78 ± 0.05 yA | 0.77 ± 0.04 x | |
The protein fractions of milk | |||||
Crude protein (CP) (%) | MGC | 3.45 ± 0.07 xA | 3.46 ± 0.07 xA | 3.48 ± 0.07 xA | 3.46 ± 0.07 x |
MCS | 3.34 ± 0.04 yB | 3.32 ± 0.04 yB | 3.36 ± 0.04 yA | 3.34 ± 0.09 y | |
True protein (TP) (%) | MGC | 3.16 ± 0.04 xB | 3.15 ± 0.05 xB | 3.19 ± 0.05 xA | 3.17 ± 0.08 x |
MCS | 3.04 ± 0.06 yA | 3.02 ± 0.06 yA | 3.06 ± 0.06 yA | 3.04 ± 0.06 y | |
Casein (%) | MGC | 2.44 ± 0.06 xA | 2.42 ± 0.06 xA | 2.48 ± 0.06 xA | 2.45 ± 0.06 x |
MCS | 2.30 ± 0.05 yA | 2.29 ± 0.06 yA | 2.33 ± 0.04 xA | 2.33 ± 0.07 y | |
Whey protein (WP) (%) | MGC | 0.44 ± 0.02 xC | 0.42 ± 0.02 xB | 0.47 ± 0.02 xAC | 0.44 ± 0.02 x |
MCS | 0.41 ± 0.01 xA | 0.40 ± 0.02 xA | 0.42 ± 0.02 yA | 0.41 ± 0.02 y |
Physical–Chemical Trait | Type of Nutrition | The Experimental Period | Overall | ||
---|---|---|---|---|---|
May | July | September | |||
Butyric acid-C4:0 | MGC | 3.08 ± 0.31 xB | 3.29 ± 0.14 Xa | 2.95 ± 0.20 xB | 3.11 ± 0.26 x |
MCS | 2.82 ± 0.20 yA | 2.83 ± 0.20 yA | 2.81 ± 0.20 xA | 2.82 ± 0.19 y | |
Caprionic acid-C6:0 | MGC | 1.99 ± 0.19 xB | 2.11 ± 0.14 xA | 1.82 ± 0.15 yC | 1.97 ± 0.20 y |
MCS | 2.07 ± 0.04 xA | 2.08 ± 0.04 xA | 2.06 ± 0.04 xA | 2.07 ± 0.04 x | |
Caprylic acid-C8:0 | MGC | 1.19 ± 0.07 yB | 1.45 ± 0.07 xA | 1.24 ± 0.06 yB | 1.29 ± 0.13 x |
MCS | 1.30 ± 0.02 xA | 1.31 ± 0.02 yA | 1.29 ± 0.02 xA | 1.30 ± 0.02 x | |
Capric acid-C10:0 | MGC | 3.03 ± 0.16 yA | 2.91 ± 0.12 yB | 2.44 ± 0.12 yC | 2.79 ± 0.29 y |
MCS | 3.13 ± 0.08 xA | 3.14 ± 0.08 xA | 3.12 ± 0.08 xA | 3.13 ± 0.07 x | |
Lauric acid-C12:0 | MGC | 3.18 ± 0.10 yB | 3.17 ± 0.09 yB | 2.64 ± 0.33 yA | 2.99 ± 0.33 y |
MCS | 3.50 ± 0.08 xA | 3.51 ± 0.08 xA | 3.49 ± 0.08 xA | 3.50 ± 0.08 x | |
Myristic acid-C14:0 | MGC | 9.61 ± 0.48 yC | 11.22 ± 0.31 yA | 10.24 ± 0.32 yB | 10.36 ± 0.77 y |
MCS | 12.13 ± 0.09 xA | 12.14 ± 0.09 xA | 12.12 ± 0.09 xA | 12.13 ± 0.08 x | |
Myristoleic acid-C14:1 | MGC | 1.20 ± 0.04 xB | 1.15 ± 0.04 xC | 1.26 ± 0.04 xA | 1.20 ± 0.06 x |
MCS | 0.65 ± 0.04 yA | 0.66 ± 0.04 yA | 0.64 ± 0.04 yA | 0.65 ± 0.04 y | |
Pentadecylic acid-C15:0 | MGC | 1.26 ± 0.05 yA | 1.15 ± 0.03 yB | 1.12 ± 0.04 yC | 1.18 ± 0.07 y |
MCS | 1.34 ± 0.03 xA | 1.35 ± 0.03 xA | 1.33 ± 0.03 xA | 1.34 ± 0.03 x | |
Palmitic acid-C16:0 | MGC | 28.64 ± 1.07 yA | 27.85 ± 0.83 yB | 27.65 ± 0.67 yB | 28.05 ± 0.95 y |
MCS | 35.31 ± 0.31 xA | 35.32 ± 0.31 xA | 35.30 ± 0.31 xA | 35.31 ± 0.30 x | |
Palmitoleic acid-C16:1 | MGC | 2.12 ± 0.09 xA | 1.94 ± 0.09 xC | 2.02 ± 0.07 xB | 2.02 ± 0.11 x |
MCS | 1.14 ± 0.04 yA | 1.15 ± 0.04 yA | 1.13 ± 0.04 yA | 1.14 ± 0.04 y | |
Margaric acid-C17:0 | MGC | 0.72 ± 0.11 xA | 0.67 ± 0.06 xA | 0.60 ± 0.07 xB | 0.66 ± 0.10 x |
MCS | 0.62 ± 0.02 yA | 0.63 ± 0.02 xA | 0.61 ± 0.02 xA | 0.62 ± 0.02 y | |
Stearic acid-C18:0 | MGC | 9.56 ± 0.43 xB | 11.08 ± 0.82 xA | 8.80 ± 0.37 xC | 9.81 ± 1.11 x |
MCS | 8.91 ± 0.48 yA | 8.92 ± 0.48 yA | 8.90 ± 0.48 xA | 8.91 ± 0.46 y | |
Vaccenic acid-C18:1 trans-11 | MGC | 2.39 ± 0.14 xB | 2.30 ± 0.14 xB | 2.50 ± 0.14 xA | 2.40 ± 0.16 x |
MCS | 0.62 ± 0.06 yA | 0.63 ± 0.06 yA | 0.61 ± 0.06 yA | 0.62 ± 0.06 y | |
C18:2 | MGC | 2.52 ± 0.20 xA | 2.46 ± 0.18 xA | 1.96 ± 0.18 xB | 2.31 ± 0.31 x |
MCS | 1.51 ± 0.03 yA | 1.52 ± 0.03 yA | 1.50 ± 0.03 yA | 1.51 ± 0.03 y | |
C18:3 | MGC | 1.13 ± 0.10 xA | 0.91 ± 0.05 xC | 1.02 ± 0.05 xB | 1.02 ± 0.12 x |
MCS | 0.24 ± 0.02 yA | 0.25 ± 0.02 yA | 0.23 ± 0.02 yA | 0.24 ± 0.02 y | |
Arachidic acid C20:0 | MGC | 0.19 ± 0.02 xA | 0.17 ± 0.02 yB | 0.13 ± 0.02 yC | 0.16 ± 0.03 y |
MCS | 0.19 ± 0.02 xA | 0.20 ± 0.02 xA | 0.18 ± 0.02 xAB | 0.19 ± 0.02 x | |
Rumeric acid-CLA | MGC | 1.40 ± 0.08 xA | 1.32 ± 0.07 xB | 1.28 ± 0.05 xB | 1.33 ± 0.08 x |
MCS | 0.91 ± 0.08 yA | 0.92 ± 0.08 yA | 0.90 ± 0.08 yA | 0.91 ± 0.08 y | |
Monounsaturated fatty acid-MUFA | MGC | 5.71 ± 0.22 xA | 5.39 ± 0.22 xB | 5.78 ± 0.19 xA | 5.62 ± 0.27 x |
MCS | 2.41 ± 0.08 yA | 2.44 ± 0.08 yA | 2.38 ± 0.08 yA | 2.41 ± 0.08 y | |
Polyunsaturated fatty acid-PUFA | MGC | 5.04 ± 0.23 yA | 4.69 ± 0.18 xB | 4.26 ± 0.22 xC | 4.66 ± 0.38 x |
MCS | 2.66 ± 0.09 xA | 2.69 ± 0.09 yA | 2.63 ± 0.09 yA | 2.66 ± 0.09 y | |
Saturated fatty acid-SFA | MGC | 62.45 ± 1.26 yB | 65.06 ± 0.67 yA | 59.61 ± 0.62 yC | 62.37 ± 2.42 y |
MCS | 71.34 ± 0.61 xA | 71.45 ± 0.61 xA | 71.23 ± 0.61 xA | 71.34 ± 0.60 x | |
Unsaturated fatty acids-UFA | MGC | 10.75 ± 0.33 xA | 10.07 ± 0.32 xB | 10.04 ± 0.32 xB | 10.29 ± 0.46 x |
MCS | 5.07 ± 0.07 yA | 5.13 ± 0.07 yA | 5.01 ± 0.07 yA | 5.07 ± 0.08 y | |
DFA | MGC | 20.31 ± 0.49 xB | 21.15 ± 0.83 xA | 18.84 ± 0.51 xC | 20.10 ± 1.15 x |
MCS | 13.99 ± 0.48 yA | 14.06 ± 0.48 yA | 13.92 ± 0.48 yA | 13.99 ± 0.46 y | |
OFA | MGC | 41.42 ± 1.18 yB | 42.24 ± 0.78 yA | 40.53 ± 0.58 yC | 41.40 ± 1.11 y |
MCS | 50.95 ± 0.27 xA | 50.98 ± 0.27 xA | 50.92 ± 0.27 xA | 50.95 ± 0.26 x | |
DFA/OFA | MGC | 0.49 ± 0.02 xA | 0.50 ± 0.03 xA | 0.46 ± 0.01 xB | 0.49 ± 0.02 x |
MCS | 0.27 ± 0.01 yA | 0.28 ± 0.01 yA | 0.27 ± 0.01 yA | 0.27 ± 0.01 y |
Physical–Chemical Trait | System of Exploitation | The Experimental Period | Overall | ||
---|---|---|---|---|---|
May | July | September | |||
Cohesiveness | YGC | 0.21 ± 0.03 xC | 0.26 ± 0.03 xB | 0.28 ± 0.03 xAB | 0.25 ± 0.04 x |
YCS | 0.19 ± 0.04 xC | 0.24 ± 0.04 xB | 0.24 ± 0.04 xAB | 0.23 ± 0.05 x | |
Springiness | YGC | 0.49 ± 0.05 yC | 0.54 ± 0.05 yB | 0.56 ± 0.05 yAB | 0.53 ± 0.06 y |
YCS | 0.57 ± 0.04 xB | 0.62 ± 0.04 xA | 0.62 ± 0.04 xA | 0.60 ± 0.05 x | |
Hardness (N) | YGC | 1.62 ± 0.05 xC | 1.67 ± 0.05 xB | 1.69 ± 0.05 xAB | 1.66 ± 0.05 x |
YCS | 1.62 ± 0.05 xB | 1.67 ± 0.05 xA | 1.67 ± 0.05 xA | 1.65 ± 0.05 x | |
Gumminess (N) | YGC | 0.35 ± 0.04 xC | 0.40 ± 0.04 xB | 0.42 ± 0.04 xAB | 0.39 ± 0.05 x |
YCS | 0.35 ± 0.04 xB | 0.40 ± 0.04 xA | 0.40 ± 0.04 xA | 0.38 ± 0.05 x | |
Firmness | YGC | 5.16 ± 0.04 xA | 5.21 ± 0.04 xA | 5.23 ± 0.04 xA | 5.20 ± 0.05 x |
YCS | 4.67 ± 0.44 yA | 4.72 ± 0.44 yA | 4.72 ± 0.44 yA | 4.71 ± 0.43 y | |
Resilience | YGC | 0.23 ± 0.04 yC | 0.28 ± 0.04 Bx | 0.30 ± 0.04 xAB | 0.27 ± 0.05 y |
YCS | 0.29 ± 0.03 xB | 0.29 ± 0.04 xB | 0.34 ± 0.03 xA | 0.30 ± 0.04 x | |
Adhesiveness (mJ) | YGC | −0.23 ± 0.04 xA | −0.18 ± 0.04 xB | −0.16 ± 0.04 xB | −0.19 ± 0.05 y |
YCS | −0.19 ± 0.04 yA | −0.14 ± 0.04 yB | −0.14 ± 0.04 xB | −0.16 ± 0.05 x | |
Adhesiveness force (N) | YGC | −0.33 ± 0.04 yA | −0.28 ± 0.04 yB | −0.26 ± 0.04 xB | −0.29 ± 0.05 y |
YCS | −0.27 ± 0.05 xA | −0.22 ± 0.05 xB | −0.22 ± 0.05 xB | −0.24 ± 0.05 x | |
Breaking force (N) | YGC | 1.48 ± 0.04 xC | 1.53 ± 0.04 xB | 1.55 ± 0.04 xAB | 1.52 ± 0.05 x |
YCS | 1.45 ± 0.04 xB | 1.50 ± 0.04 xA | 1.50 ± 0.04 yA | 1.48 ± 0.05 y |
Physical–Chemical Trait | System of Exploitation | The Experimental Period | Overall | ||
---|---|---|---|---|---|
May | July | September | |||
pH | YGC | 4.42 ± 0.05 xA | 4.45 ± 0.05 xA | 4.40 ± 0.05 xAB | 4.43 ± 0.05 x |
YCS | 4.41 ± 0.02 xB | 4.45 ± 0.02 xA | 4.43 ± 0.02 xBA | 4.43 ± 0.03 x | |
Acidity (%) | YGC | 0.92 ± 0.02 xB | 0.93 ± 0.02 xA | 0.90 ± 0.02 yC | 0.91 ± 0.02 x |
YCS | 0.89 ± 0.02 yC | 0.93 ± 0.02 xA | 0.91 ± 0.02 xB | 0.91 ± 0.03 x | |
Syneresis (%) | YGC | 3.23 ± 0.01 yB | 3.28 ± 0.01 xA | 3.21 ± 0.01 yB | 3.24 ± 0.03 y |
YCS | 3.26 ± 0.04 xB | 3.30 ± 0.04 xA | 3.28 ± 0.04 xBA | 3.28 ± 0.04 x | |
Total solids (TS) (%) | YGC | 14.74 ± 0.21 xA | 14.79 ± 0.21 xA | 14.83 ± 0.21 xA | 14.79 ± 0.20 x |
YCS | 14.48 ± 0.09 yA | 14.52 ± 0.09 yA | 14.50 ± 0.09 yA | 14.50 ± 0.09 y | |
Fat (%) | YGC | 3.60 ± 0.07 xB | 3.65 ± 0.07 xB | 3.69 ± 0.07 xAB | 3.64 ± 0.08 x |
YCS | 3.58 ± 0.04 xA | 3.62 ± 0.04 xA | 3.60 ± 0.04 yA | 3.60 ± 0.05 y | |
Protein (%) | YGC | 3.36 ± 0.05 xA | 3.40 ± 0.05 xA | 3.38 ± 0.05 xA | 3.38 ± 0.06 x |
YCS | 3.38 ± 0.06 xA | 3.38 ± 0.06 xA | 3.38 ± 0.06 xA | 3.36 ± 0.06 x | |
Ash (%) | YGC | 0.80 ± 0.04 xB | 0.85 ± 0.04 xA | 0.83 ± 0.04 xA | 0.82 ± 0.04 y |
YCS | 0.82 ± 0.03 xB | 0.86 ± 0.03 xA | 0.84 ± 0.03 xBA | 0.84 ± 0.03 x |
Physical–Chemical Trait | Type of Nutrition | The Experimental Period | Overall | ||
---|---|---|---|---|---|
May | July | September | |||
Butyric acid-C4:0 | YGC | 2.90 ± 0.22 xA | 2.95 ± 0.22 xA | 2.99 ± 0.22 xA | 2.95 ± 0.22 x |
YCS | 2.57 ± 0.28 yA | 2.61 ± 0.28 yA | 2.59 ± 0.28 yA | 2.59 ± 0.27 y | |
Caprionic acid-C6:0 | YGC | 2.09 ± 0.26 xA | 2.14 ± 0.26 xA | 2.18 ± 0.26 xA | 2.14 ± 0.25 x |
YCS | 2.05 ± 0.09 xA | 2.09 ± 0.09 xA | 2.07 ± 0.09 xA | 2.07 ± 0.09 x | |
Caprylic acid-C8:0 | YGC | 1.32 ± 0.20 xA | 1.37 ± 0.20 xA | 1.41 ± 0.20 xA | 1.36 ± 0.20 x |
YCS | 1.34 ± 0.08 xA | 1.38 ± 0.08 xA | 1.36 ± 0.08 xA | 1.36 ± 0.07 x | |
Capric acid-C10:0 | YGC | 3.12 ± 0.22 yA | 3.17 ± 0.22 yA | 3.21 ± 0.22 yA | 3.16 ± 0.22 y |
YCS | 3.86 ± 0.11 xA | 3.90 ± 0.11 xA | 3.88 ± 0.11 xA | 3.88 ± 0.11 x | |
Lauric acid-C12:0 | YGC | 3.45 ± 0.21 yA | 3.50 ± 0.21 yA | 3.54 ± 0.21 yA | 3.50 ± 0.20 y |
YCS | 3.86 ± 0.11 xA | 3.90 ± 0.11 xA | 3.88 ± 0.11 xA | 3.88 ± 0.11 x | |
Myristic acid-C14:0 | YGC | 11.50 ± 0.21 yA | 11.55 ± 0.21 yA | 11.59 ± 0.21 yA | 11.55 ± 0.20 y |
YCS | 12.59 ± 0.10 xA | 12.63 ± 0.10 xA | 12.61 ± 0.10 xA | 12.61 ± 0.10 x | |
Myristoleic acid-C14:1 | YGC | 0.92 ± 0.21 xA | 0.97 ± 0.21 xA | 1.01 ± 0.21 xA | 0.97 ± 0.20 x |
YCS | 0.93 ± 0.08 xA | 0.97 ± 0.08 xA | 0.95 ± 0.08 xA | 0.95 ± 0.08 x | |
Pentadecylic acid-C15:0 | YGC | 1.22 ± 0.21 yA | 1.27 ± 0.21 yA | 1.31 ± 0.21 yA | 1.27 ± 0.20 y |
YCS | 1.43 ± 0.07 xA | 1.47 ± 0.07 xA | 1.45 ± 0.07 xA | 1.45 ± 0.07 x | |
Palmitic acid-C16:0 | YGC | 27.85 ± 0.75 yA | 27.90 ± 0.75 yA | 27.94 ± 0.75 yA | 27.89 ± 0.72 y |
YCS | 35.96 ± 0.44 xA | 36.00 ± 0.44 xA | 35.98 ± 0.44 xA | 35.98 ± 0.42 x | |
Palmitoleic acid-C16:1 | YGC | 0.71 ± 0.21 yA | 0.76 ± 0.21 yA | 0.80 ± 0.21 yA | 0.76 ± 0.20 y |
YCS | 1.13 ± 0.08 xA | 1.17 ± 0.08 xA | 1.15 ± 0.08 xA | 1.15 ± 0.08 x | |
Margaric acid-C17:0 | YGC | 0.50 ± 0.20 xA | 0.55 ± 0.20 xA | 0.59 ± 0.20 xA | 0.54 ± 0.20 y |
YCS | 0.61 ± 0.07 xA | 0.65 ± 0.07 xA | 0.63 ± 0.07 xA | 0.63 ± 0.07 x | |
Stearic acid-C18:0 | YGC | 11.73 ± 0.31 xA | 11.78 ± 0.31 xA | 11.82 ± 0.31 xA | 11.77 ± 0.30 x |
YCS | 8.91 ± 0.68 yA | 8.95 ± 0.68 yA | 8.93 ± 0.68 yA | 8.93 ± 0.66 y | |
Vaccenic acid-C18:1 trans-11 | YGC | 2.90 ± 0.28 xA | 2.95 ± 0.28 xA | 2.99 ± 0.28 xA | 2.95 ± 0.27 x |
YCS | 1.07 ± 0.08 yA | 1.11 ± 0.08 yA | 1.09 ± 0.08 yA | 1.09 ± 0.08 y | |
C18:2 | YGC | 1.73 ± 0.22 xA | 1.78 ± 0.22 xA | 1.82 ± 0.22 xA | 1.78 ± 0.22 x |
YCS | 1.60 ± 0.08 xA | 1.64 ± 0.08 xA | 1.62 ± 0.08 yA | 1.62 ± 0.08 y | |
C18:3 | YGC | 1.00 ± 0.21 xA | 1.05 ± 0.21 xA | 1.09 ± 0.21 xA | 1.04 ± 0.21 x |
YCS | 0.57 ± 0.09 yA | 0.61 ± 0.09 yA | 0.59 ± 0.09 yA | 0.59 ± 0.09 y | |
Arachidic acid C20:0 | YGC | 0.43 ± 0.20 xA | 0.48 ± 0.20 xA | 0.52 ± 0.20 xA | 0.48 ± 0.20 x |
YCS | 0.44 ± 0.06 xA | 0.48 ± 0.06 xA | 0.46 ± 0.06 xA | 0.46 ± 0.06 x | |
Rumeric acid-CLA | YGC | 1.51 ± 0.22 xA | 1.56 ± 0.22 xA | 1.60 ± 0.22 xA | 1.56 ± 0.22 x |
YCS | 1.27 ± 0.08 yA | 1.31 ± 0.08 yA | 1.29 ± 0.08 yA | 1.29 ± 0.08 y | |
Monounsaturated fatty acid-MUFA | YGC | 4.53 ± 0.62 xA | 4.68 ± 0.62 xA | 4.80 ± 0.62 xA | 4.67 ± 0.61 x |
YCS | 3.14 ± 0.17 yA | 3.26 ± 0.17 yA | 3.20 ± 0.17 yA | 3.20 ± 0.17 y | |
Polyunsaturated fatty acid-PUFA | YGC | 4.24 ± 0.61 xA | 4.39 ± 0.61 xA | 4.51 ± 0.61 xA | 4.38 ± 0.60 x |
YCS | 3.44 ± 0.23 yA | 3.56 ± 0.23 yA | 3.50 ± 0.23 yA | 3.50 ± 0.23 y | |
Saturated fatty acid-SFA | YGC | 66.10 ± 2.30 yA | 66.65 ± 2.30 yA | 67.09 ± 2.30 yA | 66.61 ± 2.26 y |
YCS | 73.64 ± 1.15 xA | 74.08 ± 1.15 xA | 73.86 ± 1.15 xA | 73.86 ± 1.13 x | |
Unsaturated fatty acids-UFA | YGC | 8.78 ± 1.21 xA | 9.08 ± 1.21 xA | 9.32 ± 1.21 xA | 9.06 ± 1.19 x |
YCS | 6.58 ± 0.38 yA | 6.82 ± 0.38 yA | 6.70 ± 0.38 yA | 6.70 ± 0.38 y | |
DFA | YGC | 20.50 ± 1.43 xA | 20.85 ± 1.43 xA | 21.13 ± 1.43 xA | 20.83 ± 1.40 x |
YCS | 15.49 ± 0.96 yA | 15.77 ± 0.96 yA | 15.63 ± 0.96 yA | 15.63 ± 0.93 y | |
OFA | YGC | 42.80 ± 0.88 yA | 42.95 ± 0.88 yA | 43.07 ± 0.88 yA | 42.94 ± 0.85 y |
YCS | 52.41 ± 0.45 xA | 52.53 ± 0.45 xA | 52.47 ± 0.45 xA | 52.47 ± 0.43 x | |
DFA/OFA | YGC | 0.48 ± 0.03 xA | 0.49 ± 0.03 xA | 0.49 ± 0.03 xA | 0.48 ± 0.03 x |
YCS | 0.30 ± 0.02 yA | 0.30 ± 0.02 yA | 0.30 ± 0.02 yA | 0.30 ± 0.02 y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rațu, R.N.; Cârlescu, P.M.; Usturoi, M.G.; Lipșa, F.D.; Veleșcu, I.D.; Arsenoaia, V.N.; Florea, A.M.; Ciobanu, M.M.; Radu-Rusu, R.-M.; Postolache, A.N.; et al. Effects of Dairy Cows Management Systems on the Physicochemical and Nutritional Quality of Milk and Yogurt, in a North-Eastern Romanian Farm. Agriculture 2023, 13, 1295. https://doi.org/10.3390/agriculture13071295
Rațu RN, Cârlescu PM, Usturoi MG, Lipșa FD, Veleșcu ID, Arsenoaia VN, Florea AM, Ciobanu MM, Radu-Rusu R-M, Postolache AN, et al. Effects of Dairy Cows Management Systems on the Physicochemical and Nutritional Quality of Milk and Yogurt, in a North-Eastern Romanian Farm. Agriculture. 2023; 13(7):1295. https://doi.org/10.3390/agriculture13071295
Chicago/Turabian StyleRațu, Roxana Nicoleta, Petru Marian Cârlescu, Marius Giorgi Usturoi, Florin Daniel Lipșa, Ionuț Dumitru Veleșcu, Vlad Nicolae Arsenoaia, Andreea Mihaela Florea, Marius Mihai Ciobanu, Răzvan-Mihail Radu-Rusu, Alina Narcisa Postolache, and et al. 2023. "Effects of Dairy Cows Management Systems on the Physicochemical and Nutritional Quality of Milk and Yogurt, in a North-Eastern Romanian Farm" Agriculture 13, no. 7: 1295. https://doi.org/10.3390/agriculture13071295
APA StyleRațu, R. N., Cârlescu, P. M., Usturoi, M. G., Lipșa, F. D., Veleșcu, I. D., Arsenoaia, V. N., Florea, A. M., Ciobanu, M. M., Radu-Rusu, R. -M., Postolache, A. N., & Simeanu, D. (2023). Effects of Dairy Cows Management Systems on the Physicochemical and Nutritional Quality of Milk and Yogurt, in a North-Eastern Romanian Farm. Agriculture, 13(7), 1295. https://doi.org/10.3390/agriculture13071295