Spatiotemporal Evolution of Land Use Efficiency in Southwest Mountain Area of China: A Case Study of Yunnan Province
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Study Area
3.2. Data Sources
3.3. Index System and Security Level Classification
3.3.1. Indicator System Construction
3.3.2. CC Level Classification
3.4. Methods
3.4.1. Measurement Method of LUE—Entropy-Weighted TOPSIS Method
- Entropy-weighted method
- 2.
- TOPSIS model
3.4.2. Measurement Method of CC—CC Degree Model
- We define the development level of the LUE guideline layer
- 2.
- We calculate the coordination index of the standard layers by Equation (9).
- 3.
- There are 3 criterion layers. We take in Equation (10).
- 4.
- We calculate the coupling degree of the criterion layer by Equation (11).
- 5.
- We calculate the CC of the criterion layer by Equation (12).
3.4.3. Analysis of Spatial Variation—Spatial Variational Model
- Spatial variance function
- 2.
- Kriging interpolation
4. Results
4.1. Analysis of Land Use in Yunnan Province
4.2. Analysis of the Spatial and Temporal Evolution of LUE in Administrative Regions of Yunnan Province
4.2.1. Spatial and Temporal Evolution of Economic Efficiency
4.2.2. Spatial and Temporal Evolution of Social Efficiency
4.2.3. Spatial and Temporal Evolution of Ecological Efficiency
4.3. Analysis of Spatial and Temporal Evolution and Spatial Differentiation of Comprehensive Efficiency
4.3.1. Analysis of the Spatial and Temporal Evolution of Comprehensive Efficiency
4.3.2. Spatial Differentiation Analysis of Comprehensive Efficiency
4.4. Analysis of the Spatial and Temporal Evolution of the CC Relationship of Administrative Regions in Yunnan Province
4.5. Analysis of the Evolution of the Overall LUE and CC Time Series in Yunnan Province
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, C.; Lichtenberg, E. Land and Urban Economic Growth in China. J. Reg. Sci. 2011, 51, 299–317. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Wiedmann, T.O. Humanity’s Unsustainable Environmental Footprint. Science 2014, 344, 1114–1117. [Google Scholar] [CrossRef] [PubMed]
- Li, X.W.; Fang, C.L.; Huang, J.C.; Mao, H.Y. The Urban land Use Transformations and Associated Effects on Eco-environment in Northwest China Arid Region: A Case Study in Hexi Region Gansu Province. Quat. Sci. 2003, 3, 280–290+348–349. [Google Scholar]
- Yuan, J.F.; Bian, Z.F.; Yan, Q.W.; Pan, Y.Q. Spatio-Temporal Distributions of the Land Use Efficiency Coupling Coordination Degree in Mining Cities of Western China. Sustainability 2019, 11, 5288. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Bai, Y.; Wang, G.; Chen, J.; Yu, J.; Liu, W. Land Eco-Efficiency for New-Type Urbanization in the Beijing-Tianjin-Hebei Region. Technol. Forecast. Soc. Chang. 2018, 137, 19–26. [Google Scholar] [CrossRef]
- Pathirana, A.; Denekew, H.B.; Veerbeek, W.; Zevenbergen, C.; Banda, A.T. Impact of Urban Growth-Driven Landuse Change on Microclimate and Extreme Precipitation—A Sensitivity Study. Atmos. Res. 2014, 138, 59–72. [Google Scholar] [CrossRef]
- United Nations Website. UN-Habitat: Urbanization Remains Unstoppable, with 68% of the Global Urban Population by 2050. Available online: https://news.un.org/zh/story/2022/06/1105282 (accessed on 8 May 2023).
- Tian, J.F.; Wang, B.Y.; Wang, S.J. Urban Land Use Efficiency and Its Coupling Relationship in the Three Provinces of Northeast China. Sci. Geogr. Sin. 2019, 39, 305–315. [Google Scholar]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloomfield, G.; Bucht, K.; Martínez-Hernández, J.C.; Ramírez-Soto, A.F.; Sheseña-Hernández, I.; Lucio-Palacio, C.R.; Ruelas Inzunza, E. Capacity Building to Advance the United Nations Sustainable Development Goals: An Overview of Tools and Approaches Related to Sustainable Land Management. J. Sustain. For. 2017, 37, 157–177. [Google Scholar] [CrossRef]
- Ji, X.M.; Wang, K.; Ji, T.; Zhang, Y.H.; Wang, K. Coupling Analysis of Urban Land Use Benefits: A Case Study of Xiamen City. Land 2020, 9, 155. [Google Scholar] [CrossRef]
- Zhao, H.N.; Zhao, Y.H.; Ning, J.; Gong, T.T.; Sun, Z.X. Evaluation of Land Use Benefit of Urban Agglomeration in the Yangtze River Delta Based on TOPSIS Method. Res. Soil Water Conserv. 2021, 28, 355–361. [Google Scholar]
- Liu, Y.; Meng, Q.; Zhang, J.; Zhang, L.; Allam, M.; Hu, X.; Zhan, C. Evaluation of Urban Spatial Structure from the Perspective of Socioeconomic Benefits Based on 3D Urban Landscape Measurements: A Case Study of Beijing, China. Remote Sens. 2022, 14, 5511. [Google Scholar] [CrossRef]
- Yunnan Government Website. Yunnan Province Ecological Civilization Construction Platoon Planning (2021–2025). Available online: https://www.yn.gov.cn/zwgk/zcwj/swwj/202205/t20220521_242388.html (accessed on 22 June 2023).
- Cai, Y.F. Population Growth and Land Expansion of City during the Urbanization: Characteristic Facts and Coordination Mechanism. China Soft Sci. Mag. 2023, 385, 84–93. [Google Scholar]
- Song, C.Z.; Liu, Q.F.; Song, J.P.; Jiang, Z.Y.; Lu, Z.L.; Chen, Y.Y. Land Use Efficiency in the Yellow River Basin in the Background of China’s Economic Transformation: Spatial-Temporal Characteristics and Influencing Factors. Land 2022, 11, 2306. [Google Scholar] [CrossRef]
- Zhou, L.; Huang, Q.H. Efficiency Evaluation on Urban Land Use Based on the Gray Correlation TOPSIS Method and Diagnosis of Its Obstacle Indicators. Res. Soil Water Conserv. 2014, 21, 39–44. [Google Scholar]
- China Central Government Portal. The Regulations of the Conservation and Intensive Use of Land. Available online: http://www.gov.cn/gongbao/content/2014/content_2736111.htm (accessed on 8 May 2023).
- Li, D.C.; Fan, K.K.; Lu, J.Q.; Wu, S.; Xie, X.W. Research on Spatio-Temporal Pattern Evolution and the Coupling Coordination Relationship of Land-Use Benefit from a Low-Carbon Perspective: A Case Study of Fujian Province. Land 2022, 11, 1498. [Google Scholar] [CrossRef]
- Yang, Z.S. Land Resources; Economy & Management Publishing House: Beijing, China, 2021. [Google Scholar]
- Ma, J.F.; Li, W.F.; Wang, Z.; He, L.; Han, L.J. Measuring Multi-Faceted Land Use Efficiency of Large-Scale Urban Agglomerations under Multi-Scale Drivers: Evidence from China. Land 2022, 11, 91. [Google Scholar] [CrossRef]
- Wu, C.Y.; Wei, Y.H.D.; Huang, X.J.; Chen, B. Economic Transition, Spatial Development and Urban Land Use Efficiency in the Yangtze River Delta, China. Habitat Int. 2017, 63, 67–78. [Google Scholar] [CrossRef]
- Zitti, M.; Ferrara, C.; Perini, L.; Carlucci, M.; Salvati, L. Long-Term Urban Growth and Land Use Efficiency in Southern Europe: Implications for Sustainable Land Management. Sustainability 2015, 7, 3359–3385. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.Z.; Wang, X.T. Urban Land Use Change and Its Effect on Social Metabolism: An Empirical Study in Shanghai. Habitat Int. 2015, 49, 251–259. [Google Scholar] [CrossRef]
- Ma, Y.; Zheng, M.R.; Zheng, X.Q.; Huang, Y.; Xu, F.; Wang, X.L.; Liu, J.T.; Lv, Y.Q.; Liu, W.C. Land Use Efficiency Assessment under Sustainable Development Goals: A Systematic Review. Land 2023, 12, 894. [Google Scholar] [CrossRef]
- Hurwicz, L. The Design of Mechanisms for Resource Allocation. Am. Econ. Rev. 1973, 63, 1–30. [Google Scholar]
- Zhang, W.P.; Shi, P.J.; Tong, H.L. Research on Construction Land Use Benefit and the Coupling Coordination Relationship Based on a Three-Dimensional Frame Model—A Case Study in the Lanzhou-Xining Urban Agglomeration. Land 2022, 11, 460. [Google Scholar] [CrossRef]
- Liu, S.K. Land Economics; China Agricultural Ture Press: Beijing, China, 1996; p. 357. [Google Scholar]
- Polglase, P.J.; Reeson, A.; Hawkins, C.S.; Paul, K.I.; Siggins, A.W.; Turner, J.; Crawford, D.F.; Jovanovic, T.; Hobbs, T.J.; Opie, K.; et al. Potential for Forest Carbon Plantings to Offset Greenhouse Emissions in Australia: Economics and Constraints to Implemen-tation. Clim. Chang. 2013, 121, 161–175. [Google Scholar] [CrossRef]
- Ewing, R. Is Los Angeles-Style Sprawl Desirable? J. Am. Plan. Assoc. 1997, 63, 107–126. [Google Scholar] [CrossRef]
- Dai, J.S. Evaluation of Eco-Environment and Socio-Economic Benefit on the Project of Comprehensive Reclamation in Tarim River Basin. Ph.D. Thesis, Xinjiang Agricultural University, Ürümqi, China, 2015. [Google Scholar]
- Liu, C.; Luo, J.M.; Huo, Y.W.; Cheng, L. Exploring Spatial-Temporal Variation and Coordination of Land Use Benefits and Urbanization at County Level in Shaanxi Province. Res. Soil Water Conserv. 2020, 27, 320–327+335. [Google Scholar]
- Su, Q.M.; Wang, L.Y. Construct the Framework for the Allocation of Resources Invested in Ecological Governance from the Urban–Rural Land Use Coupling. Forests 2022, 13, 1588. [Google Scholar] [CrossRef]
- Siderov, K. Spatial Data Analysis: Theory and Practice. Austral. Ecol. 2005, 30, 240–241. [Google Scholar] [CrossRef]
- Gao, M.X. Coupling Relationship between Land Consolidation and New Countryside Construction and Its Pattern Innovation. Ph.D. Thesis, Shandong Agricultural University, Tai’an, China, 2008. [Google Scholar]
- Xiao, Y.; Zhong, J.L.; Zhang, Q.F.; Xiang, X.; Huang, H. Exploring the Coupling Coordination and Key Factors between Urbanization and Land Use Efficiency in Ecologically Sensitive Areas: A Case Study of the Loess Plateau, China. Sustain. Cities Soc. 2022, 86, 104148. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wang, S.J.; Li, S.J.; Feng, K.S. Coupling Analysis of Urbanization and Energy-Environment Efficiency: Evidence from Guangdong Province. Appl. Energy 2019, 254, 113650. [Google Scholar] [CrossRef]
- Ariken, M.; Zhang, F.; Chan, N.W.; Kung, H.T. Coupling Coordination Analysis and Spatio-Temporal Heterogeneity between Urbanization and Eco-Environment along the Silk Road Economic Belt in China. Ecol. Indic. 2021, 121, 107014. [Google Scholar] [CrossRef]
- Ma, M.Y.; Tang, J.X. Interactive Coercive Relationship and Spatio-Temporal Coupling Coordination Degree between Tourism Urbanization and Eco-Environment: A Case Study in Western China. Ecol. Indic. 2022, 142, 109149. [Google Scholar] [CrossRef]
- Li, Y.N.; Duan, H.M. Progress in the Studies on Land Use/Cover Change. J. Shaanxi Norm. Univ. (Nat. Sci. Ed.) 2008, 36, 68–70. [Google Scholar]
- Niu, L.Z.; Shi, Y. A Review of Progress in Land Use/Cover change Research. J. Southeast Univ. (Philos. Soc. Sci. Ed.) 2014, 16, 25–26+97. [Google Scholar]
- Li, X.B. Review of the International Researches on Land Use/Land Cover Change. Acta Ecol. Sin. 1996, 51, 553–558. [Google Scholar]
- Lu, X.H.; Zhang, Y.W.; Lin, C.R.; Wu, F. Analysis and Comprehensive Evaluation of Sustainable Land Use in China: Based on Sustainable Development Goals Framework. J. Clean. Prod. 2021, 310, 127205. [Google Scholar] [CrossRef]
- Qin, D.H.; Zhang, K.M.; Niu, W.Y. Population, Resources, Environment and Sustainable Development in China; Xinhua Publishing House: Beijing, China, 2002; p. 935. [Google Scholar]
- Li, Z.B. Evaluation of Urban Land Sustainable Use. J. Zhejiang Norm. Univ. (Nat. Sci.) 2000, 1, 73–78. [Google Scholar]
- Hu, T.L.; Yang, Z.F. Method for Ecological Benefit Assessment of Rural Land Consolidation. Trans. Chin. Soc. Agric. Eng. 2004, 20, 275–280. [Google Scholar]
- Pan, D.P.; Song, G. Land Eco-Benefits Evaluation of Coal City in Heilongjiang: A Case Study in Hegang City. research of Soil Water Conserv. 2010, 17, 114–117+122. [Google Scholar]
- Guneralp, B.; Reba, M.; Hales, B.U.; Wentz, E.A.; Seto, K.C. Trends in Urban Land Expansion, Density, and Land Transitions from 1970 to 2010: A Global Synthesis. Environ. Res. Lett. 2020, 15, 044015. [Google Scholar] [CrossRef]
- Zhang, L.G.; Huang, L.C.; Xia, J.L.; Duan, K.F. Spatial-Temporal Evolution and It’s Influencing Factors on Urban Land Use Efficiency in China’s Yangtze River Economic Belt. Land 2022, 12, 76. [Google Scholar] [CrossRef]
- Chu, Z.; Xu, C.C.; Luo, Y.X.; Sun, Q. Land Use Simulation and Ecological Benefit Evaluation in the Tarim River Basin Based on Ecological Protection Red Line Management. Acta Ecol. Sin. 2021, 41, 7380–7392. [Google Scholar]
- Tang, Y.K.; Wang, K.; Ji, X.M.; Xu, H.; Xiao, Y.Q. Assessment and Spatial-Temporal Evolution Analysis of Urban Land Use Efficiency under Green Development Orientation: Case of the Yangtze River Delta Urban Agglomerations. Land 2021, 10, 715. [Google Scholar] [CrossRef]
- Wang, P.; Qi, M.N.; Liang, Y.J.; Ling, X.B.; Song, Y. Examining the Relationship between Environmentally Friendly Land Use and Rural Revitalization Using a Coupling Analysis: A Case Study of Hainan Province, China. Sustainability 2019, 11, 6266. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.D.; Mo, D.Y. Coupling Coordination Degree of Urban Land Use Benefit and Urbanization. Resour. Sci. 2014, 36, 8–16. [Google Scholar]
- Liao, J.H.; Peng, X.W.; Wang, Q.; Jian, P.; Wu, Q.T. Study on the Coupling and Coordination Relationship of Urban Land Use Benefit in Urban Agglomeration on the West Coast of Taiwan Strait. World Reg. Stud. 2021, 30, 556–566. [Google Scholar]
- Kaur, H.; Garg, P. Urban Sustainability Assessment Tools: A Review. J. Clean. Prod. 2019, 210, 146–158. [Google Scholar] [CrossRef]
- Duguma, L.A.; Hager, H. Farmers’ Assessment of the Social and Ecological Values of Land Uses in Central Highland Ethiopia. Env. Manag. 2011, 47, 969–982. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, Y.P. Application of Contemporary Statistical Information Analysis Method in Safety Engineering—The Principle of AHP. Ind. Saf. Dust Control 1999, 5, 44–48. [Google Scholar]
- Peng, Y.; Wang, B.H.; Liu, X.Z.; Ma, B. Comprehensive Efficiency of the Cultivated Land Utilization: A Case Study in Shandong Province. Resour. Sci. 2007, 29, 131–136. [Google Scholar]
- Gaaff, A.; Reinhard, S. Incorporating the Value of Ecological Networks into Cost–Benefit Analysis to Improve Spatially Explicit Land-Use Planning. Ecol. Econ. 2012, 73, 66–74. [Google Scholar] [CrossRef]
- Zhang, P.; Qin, M.Z.; Yan, J.H.; Li, J.; Yang, L.; Sun, C. Study on Impact Factors and Characteristic of Cultivated Land Resources Utilization Benefit in Henan Province. China Popul. Resour. Environ. 2013, 23, 162–169. [Google Scholar]
- Zhang, X.Y.; Wang, Y.; Bao, J.; Wei, T.D.; Xu, S.W. A Research on the Evaluation of China’s Food Security under the Perspective of Sustainable Development—Based on an Entropy Weight TOPSIS Model. Agriculture 2022, 12, 1926. [Google Scholar] [CrossRef]
- Zhu, W.J.; Sun, H. Study on Spatio-Temporal Evolution and Driving Forces of Urban Land Use Benefits in Jiangsu Province. China Land Sci. 2019, 33, 103–112. [Google Scholar]
- Ma, X.L.; Wang, Y.T.; Hou, Q.F.; Lu, G.S.; Zhuo, X.A.; Wang, B.; He, Y.B. Spatial Benefit Evaluation of Land Use in Gansu Province from 2010 to 2018 Based on TOPSIS Model. Ecol. Sci. 2022, 41, 146–156. [Google Scholar]
- Liu, J.Y.; Zhang, Z.X.; Xu, X.L.; Kuang, W.H.; Zhou, W.C.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; Yu, D.S.; Wu, S.X.; et al. Spatial Patterns and Driving Forces of Land Use Change in China in the Early 21st Century. Acta Geogr. Sin. 2009, 64, 1411–1420. [Google Scholar] [CrossRef]
- Balasubramanian, A. Digital Elevation Model (DEM) in GIS; University of Mysore: Mysore, India, 2017. [Google Scholar]
- Liao, C.B. Quantitative Judgement and Classification System for Coordinated Development of Environment and Economy -A Case Study of The City Group in the Pearl River Dolts. Trop. Geogr. 1999, 2, 76–82. [Google Scholar]
- Xia, S.W.; Yang, J.B.; Yang, Z.B. Introduction to Systems Engineering; Tsinghua University Press: Beijing, China, 1995. [Google Scholar]
- Ching, L.H.; Kwangsun, Y. Multiple Attribute Decision Making; Springer: Berlin, Germany, 1981. [Google Scholar]
- Hu, Y.H. The Improved Method for TOPSIS in Comprehensive Evaluation. J. Math. Pract. Theory 2002, 32, 572–575. [Google Scholar]
- Xiao, Y.; Tang, X.; Li, Y.; Huang, H.; An, B.W. Social Vulnerability Assessment of Landslide Disaster Based on Improved TOPSIS Method: Case Study of Eleven Small Towns in China. Ecol. Indic. 2022, 143, 109316. [Google Scholar] [CrossRef]
- Gao, Y.L.; Zhang, Z.Y.; Wang, Z.G. Food Security Evaluation Based on Entropy Weight TOPSIS Method: Cutting from Major Grain Producing Area. J. Agro-For. Econ. Manag. 2019, 18, 135–142. [Google Scholar]
- Lei, X.P.; Robin, Q.; Liu, Y. Evaluation of Regional Land Use Performance Based on Entropy TOPSIS Model and Diagnosis of Its Obstacle Factors. Trans. Chin. Soc. Agric. Eng. 2016, 32, 243–253. [Google Scholar]
- Wang, Z.F.; Chen, Q.Q. Spatio-Temporal Pattern Evolution and Trend Prediction of Tourism Ecological Security in the Yangtze River Economic Belt Since 1998. Acta Ecol. Sin. 2021, 41, 320–332. [Google Scholar]
- Che, L.; Bai, Y.P.; Zhou, L.; Wang, F.; Ji, X.P.; Qiao, F.W. Spatial Pattern and Spillover Effects of Green Development Efficiency in China. Sci. Geogr. Sin. 2018, 38, 1788–1798. [Google Scholar]
- Zhang, Z.A.; Huang, Z.F.; Cao, F.D.; Wang, K.; Chen, X.Y. The Space-Time Transition Characteristics and Its Driving Mechanism of County-Scale Inbound Tourism in Zhejiang Province. Geogr. Res. 2016, 35, 1177–1192. [Google Scholar]
- Zheng, L.; Zhang, Z.B.; Ma, Y.X.; Dong, J.H. Evaluation of Land Use Benefit and Analysis of the Coupling Coordination Degree in Gansu Province. J. Lanzhou Univ. (Nat. Sci.) 2022, 58, 11–19. [Google Scholar]
- Yunnan Government Website. Taking the Road of New Urbanization with Yunnan Characteristics. Available online: www.yn.gov.cn/ywdt/ynyw/202012/t20201223_214618.html (accessed on 8 May 2023).
- Yunnan Government Website. Implementation Plan on High-Quality Promotion of Urbanization with County Cities as Important Carriers. Available online: https://www.yn.gov.cn/zwgk/zcwj/swwj/202208/t20220806_245490.html (accessed on 8 May 2023).
- Bai, Y.P.; Deng, X.Z.; Jiang, S.J.; Zhang, Q.; Wang, Z. Exploring the Relationship Between Urbanization and Urban Eco-Efficiency: Evidence from Prefecture-Level Cities in China. J. Clean. Prod. 2018, 195, 1487–1496. [Google Scholar] [CrossRef]
- Lu, Z.P. Evaluation Study on the Sustainable Development Capacity of Tobacco Industry in Yunnan Province. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2019. [Google Scholar]
- Bryan, B.A.; Crossman, N.D.; Nolan, M.; Li, J.; Navarro, J.; Connor, J.D. Land Use Efficiency: Anticipating Future Demand for Land-Sector Greenhouse Gas Emissions Abatement and Managing Trade-Offs with Agriculture, Water, and Biodiversity. Glob Chang. Biol. 2015, 21, 4098–4114. [Google Scholar] [CrossRef]
Target Layer | Guideline Layer | Indicator Layer | Weights | Indicator Properties |
---|---|---|---|---|
Comprehensive LUE | Economic efficiency | GDP per capita | 0.0580 | + |
Economic density | 0.1307 | + | ||
Value added of industrial GDP | 0.1333 | + | ||
Local public finance budget revenue | 0.1490 | + | ||
Social efficiency | Population density | 0.0631 | − | |
Retail sales of social consumer goods | 0.1640 | + | ||
Water consumption | 0.0438 | − | ||
Grain sown area | 0.0687 | + | ||
Ecological efficiency | Green coverage area | 0.1079 | + | |
Green space per capita | 0.0148 | + | ||
The green coverage area of the built-up area | 0.0125 | + | ||
Total afforestation area | 0.0541 | + |
Coupling Degree | Coupling Coordination Level | Coupling Degree | Coupling Coordination Level |
---|---|---|---|
0.00–0.09 | Extreme disorder | 0.50–0.59 | Barely coordinated |
0.10–0.19 | Severe disorders | 0.60–0.69 | Primary coordination |
0.20–0.29 | Moderate disorder | 0.70–0.79 | Intermediate coordination |
0.30–0.39 | Mild disorders | 0.80–0.89 | Good coordination |
0.40–0.49 | On the verge of disorder | 0.90–1.00 | Quality coordination |
Land Type | 2010 | 2015 | 2020 | Rate of Change/% | |||
---|---|---|---|---|---|---|---|
Area Area/km2 | % | Area Area/km2 | % | Area Area/km2 | % | 2010–2020 | |
Cultivated land | 68,599.06 | 17.91% | 68,328.88 | 17.84% | 67,526.44 | 17.63% | −1.58% |
Woodland | 220,220.13 | 57.50% | 219,944.13 | 57.44% | 219,490.13 | 57.31% | −0.33% |
Grassland | 86,623.25 | 22.62% | 86,493.38 | 22.59% | 85,838.75 | 22.41% | −0.91% |
Waters | 2872.44 | 0.75% | 3171.44 | 0.83% | 3816.50 | 1.00% | 24.74% |
Constructed land | 3100.06 | 0.81% | 3432.31 | 0.90% | 4743.44 | 1.24% | 34.65% |
Unused land | 1568.50 | 0.41% | 1566.88 | 0.41% | 1554.81 | 0.41% | −0.88% |
City | 2010 | 2015 | 2020 | Average | ||||
---|---|---|---|---|---|---|---|---|
D | Coupling Coordination Level | D | Coupling Coordination Level | D | Coupling Coordination Level | D | Coupling Coordination Level | |
Kunming | 0.3077 | 4 | 0.4226 | 5 | 0.4851 | 5 | 0.4051 | 5 |
Qujing | 0.2131 | 3 | 0.2287 | 3 | 0.2736 | 3 | 0.2385 | 3 |
Yuxi | 0.1408 | 2 | 0.1740 | 2 | 0.2087 | 3 | 0.1745 | 2 |
Lijiang | 0.0763 | 1 | 0.0949 | 1 | 0.1073 | 2 | 0.0928 | 1 |
Pu’er | 0.0921 | 1 | 0.1113 | 2 | 0.1398 | 2 | 0.1144 | 2 |
Baoshan | 0.0945 | 1 | 0.1201 | 2 | 0.1586 | 2 | 0.1244 | 2 |
Zhaotong | 0.1403 | 2 | 0.1614 | 2 | 0.2085 | 3 | 0.1701 | 2 |
Lincang | 0.0861 | 1 | 0.1258 | 2 | 0.1308 | 2 | 0.1142 | 2 |
Chuxiong | 0.1217 | 2 | 0.1414 | 2 | 0.1712 | 2 | 0.1448 | 2 |
Honghe | 0.1779 | 2 | 0.2025 | 3 | 0.2368 | 3 | 0.2057 | 3 |
Wenshan | 0.0986 | 2 | 0.1330 | 2 | 0.1705 | 2 | 0.1340 | 2 |
Xishuangbanna | 0.0657 | 1 | 0.0875 | 1 | 0.1170 | 2 | 0.0901 | 1 |
Dali | 0.1467 | 2 | 0.1443 | 2 | 0.1745 | 2 | 0.1552 | 2 |
Nujiang | 0.0348 | 1 | 0.0561 | 1 | 0.0628 | 1 | 0.0513 | 1 |
Deqing | 0.0306 | 1 | 0.0515 | 1 | 0.0699 | 1 | 0.0507 | 1 |
Dehong | 0.0750 | 1 | 0.0968 | 2 | 0.1244 | 2 | 0.0987 | 2 |
Year | Economic Efficiency Index | Social Efficiency Index | Ecological Efficiency Index | Coupling Degree | Comprehensive Efficiency Index | Coupling Coordination | Coupling Coordination Level |
---|---|---|---|---|---|---|---|
2010 | 0.0811 | 0.1697 | 0.1951 | 0.0960 | 0.1470 | 0.1189 | Severe disorders |
2011 | 0.1075 | 0.1809 | 0.1989 | 0.1079 | 0.1620 | 0.1318 | Severe disorders |
2012 | 0.1291 | 0.1869 | 0.1960 | 0.1161 | 0.1710 | 0.1396 | Severe disorders |
2013 | 0.1478 | 0.1904 | 0.1915 | 0.1205 | 0.1788 | 0.1444 | Severe disorders |
2014 | 0.1491 | 0.1952 | 0.1807 | 0.1207 | 0.1791 | 0.1438 | Severe disorders |
2015 | 0.1561 | 0.1996 | 0.1826 | 0.1231 | 0.1835 | 0.1470 | Severe disorders |
2016 | 0.1651 | 0.2057 | 0.2249 | 0.1294 | 0.1978 | 0.1587 | Severe disorders |
2017 | 0.1804 | 0.2155 | 0.2200 | 0.1326 | 0.2064 | 0.1632 | Severe disorders |
2018 | 0.1905 | 0.2126 | 0.1982 | 0.1343 | 0.2047 | 0.1647 | Severe disorders |
2019 | 0.2253 | 0.2428 | 0.2032 | 0.1416 | 0.2301 | 0.1758 | Severe disorders |
2020 | 0.2387 | 0.2392 | 0.2011 | 0.1425 | 0.2353 | 0.1775 | Severe disorders |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Liu, F. Spatiotemporal Evolution of Land Use Efficiency in Southwest Mountain Area of China: A Case Study of Yunnan Province. Agriculture 2023, 13, 1343. https://doi.org/10.3390/agriculture13071343
Wang S, Liu F. Spatiotemporal Evolution of Land Use Efficiency in Southwest Mountain Area of China: A Case Study of Yunnan Province. Agriculture. 2023; 13(7):1343. https://doi.org/10.3390/agriculture13071343
Chicago/Turabian StyleWang, Shu, and Fenglian Liu. 2023. "Spatiotemporal Evolution of Land Use Efficiency in Southwest Mountain Area of China: A Case Study of Yunnan Province" Agriculture 13, no. 7: 1343. https://doi.org/10.3390/agriculture13071343
APA StyleWang, S., & Liu, F. (2023). Spatiotemporal Evolution of Land Use Efficiency in Southwest Mountain Area of China: A Case Study of Yunnan Province. Agriculture, 13(7), 1343. https://doi.org/10.3390/agriculture13071343