An Integrated Multi-Model Fusion System for Automatically Diagnosing the Severity of Wheat Fusarium Head Blight
Abstract
:1. Introduction
- Using the multi-scale feature of Deeplab for wheat spike extraction.
- Fine-grained segmentation of disease spots using multi-resolution feature of Hrnet.
- The evaluation method was optimized by the HSV color features as weighting factor.
- Mobile terminal equipped with the all-in-one system to achieve real-time diagnosis.
2. Literature Review
- In a recent study, HSV color threshold extraction was also used to assist the YOLO network in achieving improved accuracy and precision in wheat FHB detection [22].
3. Materials and Methods
3.1. Data Collection
3.2. Data Annotation and Examination
3.3. Data Enhancement and Pre-Processing
3.4. Network Framework
3.4.1. Deeplabv3+
3.4.2. Hrnet
3.4.3. U-net
3.4.4. Pspnet
3.5. Backbone
3.6. Evaluation Metrics
3.7. Experimental Equipment and Devices
3.7.1. Hardware Equipment
3.7.2. Optimizer Selection and Learning Rate Adjustment
4. Results
4.1. Model Training
4.2. Wheat Spike Segmentation
4.3. Disease Spot Segmentation
4.4. Classification of Wheat FHB Severity Grades
4.5. Wheat FHB Grades Integrated Detection System
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goyal, L.; Sharma, C.M.; Singh, A.; Singh, P.K. Leaf and spike wheat disease detection & classification using an improved deep convolutional architecture. Inform. Med. Unlocked 2021, 25, 100642. [Google Scholar]
- Wang, Y.-H.; Su, W.-H. Convolutional neural networks in computer vision for grain crop phenotyping: A review. Agronomy 2022, 12, 2659. [Google Scholar] [CrossRef]
- Saccon, F.A.; Parcey, D.; Paliwal, J.; Sherif, S.S. Assessment of Fusarium and deoxynivalenol using optical methods. Food Bioprocess Technol. 2017, 10, 34–50. [Google Scholar] [CrossRef]
- Miao, J.; Zhang, G.-P.; Zhang, S.-J.; Ma, J.-Q.; Wu, Y.-Q. The orange wheat blossom midge promotes fusarium head blight disease, posing a risk to wheat production in northern China. Acta Ecol. Sin. 2023, 43, 112–116. [Google Scholar] [CrossRef]
- Femenias, A.; Gatius, F.; Ramos, A.J.; Sanchis, V.; Marín, S. Use of hyperspectral imaging as a tool for Fusarium and deoxynivalenol risk management in cereals: A review. Food Control 2020, 108, 106819. [Google Scholar] [CrossRef]
- Sood, S.; Singh, H. An implementation and analysis of deep learning models for the detection of wheat rust disease. In Proceedings of the 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Thoothukudi, India, 3–5 December 2020; pp. 341–347. [Google Scholar]
- Liu, B.-Y.; Fan, K.-J.; Su, W.-H.; Peng, Y. Two-stage convolutional neural networks for diagnosing the severity of alternaria leaf blotch disease of the apple tree. Remote Sens. 2022, 14, 2519. [Google Scholar] [CrossRef]
- Su, W.-H.; Yang, C.; Dong, Y.; Johnson, R.; Page, R.; Szinyei, T.; Hirsch, C.D.; Steffenson, B.J. Hyperspectral imaging and improved feature variable selection for automated determination of deoxynivalenol in various genetic lines of barley kernels for resistance screening. Food Chem. 2021, 343, 128507. [Google Scholar] [CrossRef]
- Peiris, K.; Pumphrey, M.; Dong, Y.; Maghirang, E.; Berzonsky, W.; Dowell, F. Near-infrared spectroscopic method for identification of fusarium head blight damage and prediction of deoxynivalenol in single wheat kernels. Cereal Chem. 2010, 87, 511–517. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Jie, L.; Wang, S.; Qi, H.J.; Li, S.W. Classifying wheat hyperspectral pixels of healthy heads and Fusarium head blight disease using a deep neural network in the wild field. Remote Sens. 2018, 10, 395. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Yan, J.; Xue, T.; Wang, S.; Qiu, X.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Zhang, X. A deep learning method for oriented and small wheat spike detection (OSWSDet) in UAV images. Comput. Electron. Agric. 2022, 198, 107087. [Google Scholar] [CrossRef]
- Kumar, D.; Kukreja, V. Deep learning in wheat diseases classification: A systematic review. Multimed. Tools Appl. 2022, 81, 10143–10187. [Google Scholar] [CrossRef]
- Genaev, M.A.; Skolotneva, E.S.; Gultyaeva, E.I.; Orlova, E.A.; Bechtold, N.P.; Afonnikov, D.A. Image-based wheat fungi diseases identification by deep learning. Plants 2021, 10, 1500. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Yang, X.; Liang, D.; Hu, G.; Yang, X. Lightweight convolutional neural network model for field wheat ear disease identification. Comput. Electron. Agric. 2021, 189, 106367. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, D.; Gu, C.; Jin, N.; Zhao, H.; Chen, G.; Liang, H.; Liang, D. Using neural network to identify the severity of wheat Fusarium head blight in the field environment. Remote Sens. 2019, 11, 2375. [Google Scholar] [CrossRef] [Green Version]
- Su, W.-H.; Zhang, J.; Yang, C.; Page, R.; Szinyei, T.; Hirsch, C.D.; Steffenson, B.J. Automatic evaluation of wheat resistance to fusarium head blight using dual mask-RCNN deep learning frameworks in computer vision. Remote Sens. 2020, 13, 26. [Google Scholar] [CrossRef]
- Qiu, R.; Yang, C.; Moghimi, A.; Zhang, M.; Steffenson, B.J.; Hirsch, C.D. Detection of fusarium head blight in wheat using a deep neural network and color imaging. Remote Sens. 2019, 11, 2658. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.M.; Chopin, J.P.; Laga, H.; Miklavcic, S.J. Detection and analysis of wheat spikes using convolutional neural networks. Plant Methods 2018, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wang, H.; Li, M.; Su, W.-H. Automatic Tandem Dual BlendMask Networks for Severity Assessment of Wheat Fusarium Head Blight. Agriculture 2022, 12, 1493. [Google Scholar] [CrossRef]
- Hong, Q.; Jiang, L.; Zhang, Z.; Ji, S.; Gu, C.; Mao, W.; Li, W.; Liu, T.; Li, B.; Tan, C. A Lightweight Model for Wheat Ear Fusarium Head Blight Detection Based on RGB Images. Remote Sens. 2022, 14, 3481. [Google Scholar] [CrossRef]
- Sarayloo, Z.; Asemani, D. Designing a classifier for automatic detection of fungal diseases in wheat plant: By pattern recognition techniques. In Proceedings of the 2015 23rd Iranian Conference on Electrical Engineering, Tehran, Iran, 10–14 May 2015; pp. 1193–1197. [Google Scholar]
- Zhang, D.-Y.; Luo, H.-S.; Cheng, T.; Li, W.-F.; Zhou, X.-G.; Gu, C.-Y.; Diao, Z. Enhancing wheat Fusarium head blight detection using rotation Yolo wheat detection network and simple spatial attention network. Comput. Electron. Agric. 2023, 211, 107968. [Google Scholar] [CrossRef]
- Zhang, D.-Y.; Chen, G.; Yin, X.; Hu, R.-J.; Gu, C.-Y.; Pan, Z.-G.; Zhou, X.-G.; Chen, Y. Integrating spectral and image data to detect Fusarium head blight of wheat. Comput. Electron. Agric. 2020, 175, 105588. [Google Scholar] [CrossRef]
- Gao, C.; Gong, Z.; Ji, X.; Dang, M.; He, Q.; Sun, H.; Guo, W. Estimation of Fusarium Head Blight Severity Based on Transfer Learning. Agronomy 2022, 12, 1876. [Google Scholar] [CrossRef]
- Navale, P.R.; Basapur, S.B. Deep Learning based Automated Wheat Disease Diagnosis System. In Proceedings of the 2023 International Conference for Advancement in Technology (ICONAT), Goa, India, 21–22 January 2023; pp. 1–5. [Google Scholar]
- Mao, R.; Wang, Z.; Li, F.; Zhou, J.; Chen, Y.; Hu, X. GSEYOLOX-s: An Improved Lightweight Network for Identifying the Severity of Wheat Fusarium Head Blight. Agronomy 2023, 13, 242. [Google Scholar] [CrossRef]
- Steffenson, B. Fusarium head blight of barley: Impact, epidemics, management, and strategies for identifying and utilizing genetic resistance. In Fusarium Head Blight Wheat Barley; ASP Press: St. Paul, MN, USA, 2003; pp. 241–295. [Google Scholar]
- Yurtkulu, S.C.; Şahin, Y.H.; Unal, G. Semantic segmentation with extended DeepLabv3 architecture. In Proceedings of the 2019 27th Signal Processing and Communications Applications Conference (SIU), Sivas, Turkey, 24–26 April 2019; pp. 1–4. [Google Scholar]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Wu, H.; Liang, C.; Liu, M.; Wen, Z. Optimized HRNet for image semantic segmentation. Expert Syst. Appl. 2021, 174, 114532. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, Y.; Song, M.; Ding, Y.; Lin, F.; Liang, D.; Zhang, D. Use of unmanned aerial vehicle imagery and deep learning unet to extract rice lodging. Sensors 2019, 19, 3859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, K.; Liao, Q.; Zhang, F.; Che, X.; Zhang, C. A segmentation network for smart weed management in wheat fields. Comput. Electron. Agric. 2022, 202, 107303. [Google Scholar] [CrossRef]
- Arinichev, I.; Polyanskikh, S. Arinicheva IV. Semantic segmentation of rusts and spots of wheat. Comput. Opt. 2023, 47, 118–125. [Google Scholar]
- Pan, Q.; Gao, M.; Wu, P.; Yan, J.; Li, S. A deep-learning-based approach for wheat yellow rust disease recognition from unmanned aerial vehicle images. Sensors 2021, 21, 6540. [Google Scholar] [CrossRef]
- Deng, J.; Zhou, H.; Lv, X.; Yang, L.; Shang, J.; Sun, Q.; Zheng, X.; Zhou, C.; Zhao, B.; Wu, J. Applying convolutional neural networks for detecting wheat stripe rust transmission centers under complex field conditions using RGB-based high spatial resolution images from UAVs. Comput. Electron. Agric. 2022, 200, 107211. [Google Scholar] [CrossRef]
- Wu, Z.; Shen, C.; Van Den Hengel, A. Wider or deeper: Revisiting the resnet model for visual recognition. Pattern Recognit. 2019, 90, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-Y.; Su, C.-Y. An enhanced hybrid MobileNet. In Proceedings of the 2018 9th International Conference on Awareness Science and Technology (iCAST), Fukuoka, Japan, 19–21 September 2018; pp. 308–312. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1580–1589. [Google Scholar]
- Zhang, Z. Improved adam optimizer for deep neural networks. In Proceedings of the 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018; pp. 1–2. [Google Scholar]
- Lu, Z.; Wang, J.; Song, J. Multi-resolution CSI feedback with deep learning in massive MIMO system. In Proceedings of the ICC 2020–2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Zhang, Z.; Sabuncu, M. Generalized cross entropy loss for training deep neural networks with noisy labels. Adv. Neural Inf. Process. Syst. 2018, 31, 8792–8802. [Google Scholar]
- Aboukhaddour, R.; Fetch, T.; McCallum, B.D.; Harding, M.W.; Beres, B.L.; Graf, R.J. Wheat diseases on the prairies: A Canadian story. Plant Pathol. 2020, 69, 418–432. [Google Scholar] [CrossRef]
- Bai, G.; Shaner, G. Management and resistance in wheat and barley to Fusarium head blight. Annu. Rev. Phytopathol. 2004, 42, 135–161. [Google Scholar] [CrossRef] [PubMed]
- Yung, N.D.T.; Wong, W.; Juwono, F.H.; Sim, Z.A. Safety Helmet Detection Using Deep Learning: Implementation and Comparative Study Using YOLOv5, YOLOv6, and YOLOv7. In Proceedings of the 2022 International Conference on Green Energy, Computing and Sustainable Technology (GECOST), Virtual, 26–28 October 2022; pp. 164–170. [Google Scholar]
- Liu, M.; Su, W.-H.; Wang, X.-Q. Quantitative Evaluation of Maize Emergence Using UAV Imagery and Deep Learning. Remote Sens. 2023, 15, 1979. [Google Scholar] [CrossRef]
- Zhang, N.; Pan, Y.; Feng, H.; Zhao, X.; Yang, X.; Ding, C.; Yang, G. Development of Fusarium head blight classification index using hyperspectral microscopy images of winter wheat spikelets. Biosyst. Eng. 2019, 186, 83–99. [Google Scholar] [CrossRef]
- Huang, L.; Li, T.; Ding, C.; Zhao, J.; Zhang, D.; Yang, G. Diagnosis of the severity of Fusarium head blight of wheat ears on the basis of image and spectral feature fusion. Sensors 2020, 20, 2887. [Google Scholar] [CrossRef]
- Gui, J.; Sun, Z.; Wen, Y.; Tao, D.; Ye, J. A review on generative adversarial networks: Algorithms, theory, and applications. IEEE Trans. Knowl. Data Eng. 2021, 4, 3313–3332. [Google Scholar] [CrossRef]
Network Model Framework | Backbone Feature Network | Serial Number |
---|---|---|
Deeplabv3+ | Mobilev2 | 1 |
Mobilev3 | 2 | |
Resnet50 | 3 | |
Resnet101 | 4 | |
Resnet152 | 5 | |
Ghostnet | 6 | |
Xceptionnet | 7 | |
Pspnet | Resnet50 | 8 |
Mobilev2 | 9 | |
U-net | Resnet50 | 10 |
Resnet101 | 11 | |
Hrnet | W18 | 12 |
W32 | 13 | |
W48 | 14 |
Modeling Parameters | Value |
---|---|
Pretrained | True |
Batch_size | 20/30 |
Max_epoch | 000 |
Init_lr | 0.001 |
Min_lr | 0.0001 |
Optimizer | Adam |
Weight_decay | 0 |
Warmup_lr_ratio | 0.1 |
No_auy_iter_ratio | 0.3 |
Lr_decay_type | Cos |
Number of classes | 2 |
Serial Number | Model Type | Wheat Spike Segmentation | Disease Spot Segmentation | ||||
---|---|---|---|---|---|---|---|
MIoU | mPA | Accuracy | MIoU | mPA | Accuracy | ||
1 | Mobilev2-Deeplabv3+ | 76.63 | 83.74 | 94.76 | 79.97 | 87.90 | 98.16 |
2 | Mobilev3-Deeplabv3+ | 76.99 | 85.60 | 94.63 | 83.61 | 90.88 | 98.54 |
3 | Resnet50-Deepnabv3+ | 72.31 | 85.98 | 92.50 | 76.44 | 84.01 | 97.81 |
4 | Resnet101-Deepnabv3+ | 73.61 | 83.60 | 93.53 | 73.61 | 83.60 | 93.53 |
5 | Resnet152 | 72.84 | 82.82 | 93.33 | 75.84 | 85.21 | 97.64 |
6 | Ghostnet-Deepnabv3+ | 73.41 | 82.47 | 93.65 | 79.89 | 91.30 | 97.99 |
7 | Xceptionnet-Deeplabv3+ | 77.52 | 85.09 | 94.90 | 79.10 | 83.18 | 98.27 |
8 | Resnet50-Pspnet | 77.03 | 85.16 | 94.71 | 82.54 | 88.50 | 98.48 |
9 | Mobilev2-Pspnet | 74.07 | 83.71 | 93.72 | 83.41 | 89.70 | 98.54 |
10 | Resnet50-Unet | 73.75 | 80.56 | 94.14 | 77.59 | 86.37 | 97.83 |
11 | Resnet101-Unet | 73.61 | 83.60 | 93.53 | 74.24 | 84.68 | 97.33 |
12 | W18-Hrnet | 64.18 | 74.60 | 90.58 | 83.68 | 91.35 | 98.51 |
13 | W32-Hrnet | 73.86 | 82.40 | 93.85 | 84.60 | 91.02 | 98.64 |
14 | W48-Hrnet | 79.11 | 86.79 | 95.26 | 85.06 | 91.74 | 98.67 |
Segmented Objects | Network Model | Network Layers | Parameters | File Size/M | Average Running Time/s |
---|---|---|---|---|---|
Wheat spikes | Mobilev3-Deeplabv3+ | 268 | 5,635,029 | 21.7 | 1.344 |
Xception-deeplabv3+ | 447 | 54,713,557 | 209.7 | 2.382 | |
Resnet50-Pspnet | 201 | 46,706,626 | 178.5 | 2.541 | |
W48-Hrnet | 999 | 65,860,821 | 252.2 | 2.957 | |
Disease spots | Mobilev3-Deeplabv3+ | 268 | 5,635,029 | 21.7 | 0.0843 |
Resnet50-Pspnet | 201 | 46,706,626 | 178.5 | 0.0852 | |
W32-Hrnet | 999 | 29,547,477 | 113.6 | 0.1114 | |
W48-Hrnet | 999 | 65,860,821 | 252.2 | 0.1248 |
Date | Type | Number of Wheat Spikes | Severity (%) | ||
---|---|---|---|---|---|
Mean ± Standard Deviation | Maximum | Minimum | |||
Training set | Actual value | 3490 | 10.8 ± 8.6 | 58.2 | 3.7 |
Predicted value | 3490 | 10.9 ± 8.7 | 80.3 | 0.0089 | |
Test set | Actual value | 386 | 9.7 ± 8.7 | 57.4 | 57.8 |
Predicted value | 386 | 9.9 ± 8.7 | 0.72 | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-H.; Li, J.-J.; Su, W.-H. An Integrated Multi-Model Fusion System for Automatically Diagnosing the Severity of Wheat Fusarium Head Blight. Agriculture 2023, 13, 1381. https://doi.org/10.3390/agriculture13071381
Wang Y-H, Li J-J, Su W-H. An Integrated Multi-Model Fusion System for Automatically Diagnosing the Severity of Wheat Fusarium Head Blight. Agriculture. 2023; 13(7):1381. https://doi.org/10.3390/agriculture13071381
Chicago/Turabian StyleWang, Ya-Hong, Jun-Jiang Li, and Wen-Hao Su. 2023. "An Integrated Multi-Model Fusion System for Automatically Diagnosing the Severity of Wheat Fusarium Head Blight" Agriculture 13, no. 7: 1381. https://doi.org/10.3390/agriculture13071381
APA StyleWang, Y. -H., Li, J. -J., & Su, W. -H. (2023). An Integrated Multi-Model Fusion System for Automatically Diagnosing the Severity of Wheat Fusarium Head Blight. Agriculture, 13(7), 1381. https://doi.org/10.3390/agriculture13071381