Using Deficit Irrigation Strategies and Organic Mulches for Improving Yield and Water Productivity of Mango under Dry Environment Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Climate of the Experimental Site
2.2. Aspects of the Soil’s Physical and Chemical Makeup and Irrigation Water
2.3. Experimental Design
2.4. Irrigation System Description
2.5. Irrigation Requirements for Mango
2.6. Mango Trees
2.7. Water Stress inside the Root Zone
2.8. Soil Moisture Distribution
2.9. Salt Accumulation in the Root Zone
2.10. Soil Organic Matter Content
2.11. Mango Yield
2.12. Water Productivity of Mango (WPmango)
2.13. Mango Fruit Quality
2.14. Energy Consumption
2.15. Statistical Analysis
3. Results and Discussion
3.1. Water Stress in the Root Zone
3.2. Soil Moisture Distribution
3.3. Salt Accumulation
3.4. Soil Organic Matter Content
3.5. Mango Yield
3.6. Water Productivity
Deficit Irrigation Strategies | Soil Organic Mulch | Yield of Fruits, (Ton ha−1) | Water Productivity, (kgmango m−3water) | ||
---|---|---|---|---|---|
2020/2021 | 2021/2022 | 2020/2021 | 2021/2022 | ||
I1 | 9.7 | 9.7 | 1.0 | 1.0 | |
I2 | 9.9 | 10.0 | 1.3 | 1.3 | |
I3 | 7.5 | 8.1 | 1.5 | 1.6 | |
I4 | 10.1 | 10.5 | 2.0 | 2.1 | |
LSD at 5% | 0.7 | 0.7 | 0.1 | 0.1 | |
L0 | 7.4 | 7.6 | 1.1 | 1.2 | |
L1 | 8.8 | 9.1 | 1.4 | 1.4 | |
L2 | 9.8 | 10.3 | 1.5 | 1.6 | |
L3 | 11.3 | 11.3 | 1.8 | 1.8 | |
LSD at 5% | 0.7 | 1.2 | 0.1 | 0.2 | |
I1 | L0 | 7.8 | 8.0 | 0.8 | 0.8 |
L1 | 9.4 | 9.6 | 0.9 | 1.0 | |
L2 | 10.2 | 10.5 | 1.0 | 1.1 | |
L3 | 11.4 | 10.7 | 1.1 | 1.1 | |
I2 | L0 | 8.3 | 8.5 | 1.1 | 1.1 |
L1 | 9.4 | 9.1 | 1.2 | 1.2 | |
L2 | 10.2 | 10.6 | 1.3 | 1.4 | |
L3 | 11.9 | 11.6 | 1.6 | 1.5 | |
I3 | L0 | 5.9 | 6.3 | 1.2 | 1.3 |
L1 | 7.1 | 7.9 | 1.4 | 1.6 | |
L2 | 8.4 | 8.9 | 1.7 | 1.8 | |
L3 | 8.6 | 9.3 | 1.7 | 1.9 | |
I4 | L0 | 7.4 | 7.6 | 1.5 | 1.5 |
L1 | 9.4 | 9.6 | 1.9 | 1.9 | |
L2 | 10.4 | 11.1 | 2.1 | 2.2 | |
L3 | 13.1 | 13.6 | 2.6 | 2.7 | |
LSD at 5% | 1.3 | 2.4 | 0.2 | 0.3 |
3.7. Quality of Mango Fruit
3.8. Energy Savings
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hozayn, M.; El Monem, A.A.A.; Abdelraouf, R.E.; Abdalla, M.M. Do Magnetic Water Affect Water Use Efficiency, Quality and Yield of Sugar Beet (Beta vulgaris L.) Plant under Arid Regions Conditions? J. Agron. 2012, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Abdelraouf, R.E.; El-Sayed, A.; Alaraidh, I.A.; Alsahli, A.; El-Zaidy, M. Field and Modeling Study on Saving Mineral Fertilizers, Increasing Farm Income and Improving Soil Fertility Using Bio-Irrigation with Drainage Water from Fish Farms. Water 2020, 12, 2998. [Google Scholar] [CrossRef]
- El-Metwally, I.M.; Abdelraouf, R.E.; Ahmed, M.A.; Mounzer, O.; Alarcón, J.J.; Abdelhamid, M.T. Response Of Wheat (Triticum aestivum L.) Crop And Broad-Leaved Weeds To Different Water Requirements And Weed Management In Sandy Soils. Agric. Polnohospodárstvo 2015, 61, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Abdelraouf, R.E.; Ragab, R. Effect of Fertigation Frequency and Duration on Yield and Water Productivity of Wheat: Field and Modelling Study Using the Saltmed Model: Fertigation Frequency, Water Productivity, Wheat, SALTMED Model. Irrig. Drain. 2018, 67, 414–428. [Google Scholar] [CrossRef] [Green Version]
- Eid, A.R.; Negm, A. Improving Agricultural Crop Yield and Water Productivity via Sustainable and Engineering Techniques. In Conventional Water Resources and Agriculture in Egypt; Negm, A.M., Ed.; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2018; Volume 74, pp. 561–591. ISBN 978-3-319-95064-8. [Google Scholar]
- Anjum, M.A.; Hussain, S.; Arshad, P.; Hassan, A. Irrigation Water of Different Sources Affects Fruit Quality Attributes and Heavy Metals Contents of Un-Grafted and Commercial Mango Cultivars. J. Environ. Manag. 2021, 281, 111895. [Google Scholar] [CrossRef] [PubMed]
- Saddique, Q.; Liu, D.L.; Wang, B.; Feng, P.; He, J.; Ajaz, A.; Ji, J.; Xu, J.; Zhang, C.; Cai, H. Modelling Future Climate Change Impacts on Winter Wheat Yield and Water Use: A Case Study in Guanzhong Plain, Northwestern China. Eur. J. Agron. 2020, 119, 126113. [Google Scholar] [CrossRef]
- Iqbal, R.; Raza, M.A.S.; Toleikiene, M.; Ayaz, M.; Hashemi, F.; Habib-ur-Rahman, M.; Zaheer, M.S.; Ahmad, S.; Riaz, U.; Ali, M.; et al. Partial Root-Zone Drying (PRD), Its Effects and Agricultural Significance: A Review. Bull. Natl. Res. Cent. 2020, 44, 159. [Google Scholar] [CrossRef]
- Adu, M.O.; Yawson, D.O.; Armah, F.A.; Asare, P.A.; Frimpong, K.A. Meta-Analysis of Crop Yields of Full, Deficit, and Partial Root-Zone Drying Irrigation. Agric. Water Manag. 2018, 197, 79–90. [Google Scholar] [CrossRef]
- Raza, M.A.S.; Ahmad, S.; Saleem, M.F.; Khan, I.H.; Iqbal, R.; Zaheer, M.S.; Haider, I.; Ali, M. Physiological and Biochemical Assisted Screening of Wheat Varieties under Partial Rhizosphere Drying. Plant Physiol. Biochem. 2017, 116, 150–166. [Google Scholar] [CrossRef]
- Shahnazari, A.; Liu, F.; Andersen, M.N.; Jacobsen, S.-E.; Jensen, C.R. Effects of Partial Root-Zone Drying on Yield, Tuber Size and Water Use Efficiency in Potato under Field Conditions. Field Crops Res. 2007, 100, 117–124. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; García-Tejero, I.F.; Rodríguez, B.C.; Tarifa, D.F.; Ruiz, B.G.; Sacristán, P.C. Deficit Irrigation Strategies for Subtropical Mango Farming. A Review. Agron. Sustain. Dev. 2021, 41, 13. [Google Scholar] [CrossRef]
- Iqbal, R.; Raza, M.A.S.; Valipour, M.; Saleem, M.F.; Zaheer, M.S.; Ahmad, S.; Toleikiene, M.; Haider, I.; Aslam, M.U.; Nazar, M.A. Potential Agricultural and Environmental Benefits of Mulches—A Review. Bull. Natl. Res. Cent. 2020, 44, 75. [Google Scholar] [CrossRef]
- Shahabian, M.; Samar, S.M.; Talaie, A.; Emdad, M.R. Response of Orange Trees to Deficit Irrigation Strategies in the North of Iran. Arch. Agron. Soil Sci. 2012, 58, 267–276. [Google Scholar] [CrossRef]
- Kang, S.; Hu, X.; Jerie, P.; Zhang, J. The Effects of Partial Rootzone Drying on Root, Trunk Sap Flow and Water Balance in an Irrigated Pear (Pyrus communis L.) Orchard. J. Hydrol. 2003, 280, 192–206. [Google Scholar] [CrossRef]
- Zegbe, J.A.; Behboudian, M.H.; Clothier, B.E.; Lang, A. Postharvest Performance of ‘Pacific RoseTM’ Apple Grown Under Partial Rootzone Drying. HortScience 2008, 43, 952–954. [Google Scholar] [CrossRef] [Green Version]
- Ghrab, M.; Gargouri, K.; Bentaher, H.; Chartzoulakis, K.; Ayadi, M.; Ben Mimoun, M.; Masmoudi, M.M.; Ben Mechlia, N.; Psarras, G. Water Relations and Yield of Olive Tree (Cv. Chemlali) in Response to Partial Root-Zone Drying (PRD) Irrigation Technique and Salinity under Arid Climate. Agric. Water Manag. 2013, 123, 1–11. [Google Scholar] [CrossRef]
- Pérez-Pérez, J.G.; Dodd, I.C.; Botía, P. Partial Rootzone Drying Increases Water-Use Efficiency of Lemon Fino 49 Trees Independently of Root-to-Shoot ABA Signalling. Funct. Plant Biol. 2012, 39, 366. [Google Scholar] [CrossRef]
- Hutton, R.J.; Loveys, B.R. A Partial Root Zone Drying Irrigation Strategy for Citrus—Effects on Water Use Efficiency and Fruit Characteristics. Agric. Water Manag. 2011, 98, 1485–1496. [Google Scholar] [CrossRef]
- Parvizi, H.; Sepaskhah, A.R.; Ahmadi, S.H. Effect of Drip Irrigation and Fertilizer Regimes on Fruit Yields and Water Productivity of a Pomegranate (Punica granatum (L.) Cv. Rabab) Orchard. Agric. Water Manag. 2014, 146, 45–56. [Google Scholar] [CrossRef]
- Galindo, A.; Rodríguez, P.; Mellisho, C.D.; Torrecillas, E.; Moriana, A.; Cruz, Z.N.; Conejero, W.; Moreno, F.; Torrecillas, A. Assessment of Discretely Measured Indicators and Maximum Daily Trunk Shrinkage for Detecting Water Stress in Pomegranate Trees. Agric. For. Meteorol. 2013, 180, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Mena, P.; Galindo, A.; Collado-González, J.; Ondoño, S.; García-Viguera, C.; Ferreres, F.; Torrecillas, A.; Gil-Izquierdo, A. Sustained Deficit Irrigation Affects the Colour and Phytochemical Characteristics of Pomegranate Juice: Sustained Deficit Irrigation Affects Phenolics and Colour of Pomegranate Juice. J. Sci. Food Agric. 2013, 93, 1922–1927. [Google Scholar] [CrossRef] [PubMed]
- Spreer, W.; Nagle, M.; Neidhart, S.; Carle, R.; Ongprasert, S.; Müller, J. Effect of Regulated Deficit Irrigation and Partial Rootzone Drying on the Quality of Mango Fruits (Mangifera indica L., Cv. ‘Chok Anan’). Agric. Water Manag. 2007, 88, 173–180. [Google Scholar] [CrossRef]
- Shahzaman, M.; Zhu, W.; Bilal, M.; Habtemicheal, B.A.; Mustafa, F.; Arshad, M.; Ullah, I.; Ishfaq, S.; Iqbal, R. Remote Sensing Indices for Spatial Monitoring of Agricultural Drought in South Asian Countries. Remote Sens. 2021, 13, 2059. [Google Scholar] [CrossRef]
- Ahmad, I.; Bibi, F.; Ullah, H.; Munir, T. Mango Fruit Yield and Critical Quality Parameters Respond to Foliar and Soil Applications of Zinc and Boron. Plants 2018, 7, 97. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.K.; Dayal, D.; Bandyopadhyay, K.K.; Mohanty, M. Evaluation of Straw and Polythene Mulch for Enhancing Productivity of Irrigated Summer Groundnut. Field Crops Res. 2006, 99, 76–86. [Google Scholar] [CrossRef]
- Ullah, A.; Sun, H.; Yang, X.; Zhang, X. Drought Coping Strategies in Cotton: Increased Crop per Drop. Plant Biotechnol. J. 2017, 15, 271–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic Mulching in Agriculture. Trading Short-Term Agronomic Benefits for Long-Term Soil Degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef] [PubMed]
- Levin, A.G.; Peres, M.; Noy, M.; Love, C.; Gal, Y.; Naor, A. The Response of Field-Grown Mango (Cv. Keitt) Trees to Regulated Deficit Irrigation at Three Phenological Stages. Irrig. Sci. 2018, 36, 25–35. [Google Scholar] [CrossRef]
- Horwitz, W.; Association of Official Analytical Chemists (Eds.) Official Methods of Analysis of the Association of Official Analytical Chemists, 13th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1980; ISBN 978-0-935584-14-1. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 7th ed.; The Iowa State University Press: Ames, IA, USA, 1990. [Google Scholar]
- Shen, D.; Zhang, G.; Xie, R.; Ming, B.; Hou, P.; Xue, J.; Li, S.; Wang, K. Improvement in Photosynthetic Rate and Grain Yield in Super-High-Yield Maize (Zea mays L.) by Optimizing Irrigation Interval under Mulch Drip Irrigation. Agronomy 2020, 10, 1778. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, W.; Muneer, M.A.; Ji, Z.; Tong, L.; Zhang, X.; Li, X.; Wang, W.; Zhang, F.; Wu, L. Integrated Use of Lime with Mg Fertilizer Significantly Improves the Pomelo Yield, Quality, Economic Returns and Soil Physicochemical Properties under Acidic Soil of Southern China. Sci. Hortic. 2021, 290, 110502. [Google Scholar] [CrossRef]
- AbdAllah, A. Impacts of Kaolin and Pinoline Foliar Application on Growth, Yield and Water Use Efficiency of Tomato (Solanum lycopersicum L.) Grown under Water Deficit: A Comparative Study. J. Saudi Soc. Agric. Sci. 2019, 18, 256–268. [Google Scholar] [CrossRef]
- Ahmed, Y.M.; Shalaby, E.A.; Shanan, N.T. The Use of Organic and Inorganic Cultures in Improving Vegetative Growth, Yield Characters and Antioxidant Activity of Roselle Plants (Hibiscus sabdariffa L.). Afr. J. Biotechnol. 2011, 10, 1988–1996. [Google Scholar]
Soil Properties | Soil Depths (cm) | ||
---|---|---|---|
0–40 | 40–80 | 80–120 | |
Soil texture | Sandy | Sandy | Sandy |
Course sand (%) | 48.00 | 55.22 | 44.72 |
Fine sand (%) | 49.43 | 41.60 | 51.54 |
Silt + clay (%) | 2.57 | 3.18 | 3.74 |
Bulk density (g cm−3) | 1.68 | 1.69 | 1.71 |
Organic matter (%) | 0.45 | 0.32 | 0.23 |
EC (dS m−1) | 0.67 | 0.55 | 0.51 |
pH (1:2.5) | 8.6 | 8.3 | 8.4 |
Total CaCO3 (%) | 7.25 | 2.43 | 4.66 |
Deficit Irrigation Strategies | Soil Organic Mulch | T.S.S., (%) | Total Acidity, (%) | Vitamin C, (mg/100 mL Juice) | |||
---|---|---|---|---|---|---|---|
2020/2021 | 2021/2022 | 2020/2021 | 2021/2022 | 2020/2021 | 2021/2022 | ||
I1 | 10.0 | 10.8 | 0.84 | 0.86 | 34.7 | 37.0 | |
I2 | 10.4 | 11.0 | 0.86 | 0.89 | 36.2 | 38.6 | |
I3 | 8.2 | 8.73 | 0.85 | 0.88 | 33.5 | 36.4 | |
I4 | 10.7 | 11.3 | 0.84 | 0.91 | 35.3 | 38.0 | |
L0 | 8.5 | 9.3 | 0.74 | 0.79 | 28.6 | 31.3 | |
L1 | 9.2 | 9.7 | 0.81 | 0.84 | 31.3 | 33.9 | |
L2 | 9.9 | 10.6 | 0.88 | 0.90 | 36.8 | 39.0 | |
L3 | 11.7 | 12.3 | 0.97 | 1.02 | 43.0 | 46.0 | |
I1 | L0 | 8.4 | 10.2 | 0.70 | 0.76 | 26.6 | 29.0 |
L1 | 9.6 | 10.1 | 0.77 | 0.83 | 28.8 | 31.4 | |
L2 | 9.9 | 10.8 | 0.85 | 0.85 | 38.0 | 40.1 | |
L3 | 11.9 | 12.1 | 1.02 | 1.03 | 45.2 | 47.5 | |
I2 | L0 | 9.2 | 9.6 | 0.81 | 0.84 | 31.7 | 33.8 |
L1 | 9.7 | 10.4 | 0.83 | 0.85 | 34.2 | 36.4 | |
L2 | 10.8 | 11.3 | 0.85 | 0.88 | 36.5 | 38.9 | |
L3 | 11.8 | 12.7 | 0.97 | 1.01 | 42.7 | 45.4 | |
I3 | L0 | 6.9 | 7.4 | 0.77 | 0.79 | 29.4 | 32.4 |
L1 | 7.6 | 8.0 | 0.81 | 0.83 | 32.4 | 35.2 | |
L2 | 8.8 | 9.3 | 0.90 | 0.93 | 34.1 | 36.2 | |
L3 | 9.7 | 10.4 | 0.93 | 0.99 | 38.1 | 41.7 | |
I4 | L0 | 9.6 | 10.1 | 0.68 | 0.78 | 26.9 | 29.8 |
L1 | 9.9 | 10.4 | 0.83 | 0.88 | 29.8 | 32.4 | |
L2 | 9.9 | 11.1 | 0.90 | 0.93 | 39.0 | 40.8 | |
L3 | 13.1 | 14.1 | 0.98 | 1.06 | 45.7 | 49.3 |
BP: Brake Power (kW) | Operating Hours of Irrigation, (h) | Energy Consumption (kW. h) | %, Saving Energy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Q, m3/s | TDH, (m) | YW, kN/m3 | Ei, % | EP, % | 2020/21 | 2021/22 | 2020/21 | 2021/22 | 2020/21 | 2021/22 | |
I1 | 224 | 222 | 27,468 | 27,223 | 0 | 0 | |||||
I2 | 168 | 167 | 20,601 | 20,478 | 25 | 24.8 | |||||
I3 | 45 | 200 | 9.81 | 90 | 80 | 112 | 111 | 13,734 | 13,611 | 50 | 50 |
I4 | 112 | 111 | 13,734 | 13,611 | 50 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhashimi, A.; AL-Huqail, A.A.; Hashem, M.H.; Bakr, B.M.M.; Fekry, W.M.E.; Abdel-Aziz, H.F.; Hamdy, A.E.; Abdelraouf, R.E.; Fathy, M. Using Deficit Irrigation Strategies and Organic Mulches for Improving Yield and Water Productivity of Mango under Dry Environment Conditions. Agriculture 2023, 13, 1415. https://doi.org/10.3390/agriculture13071415
Alhashimi A, AL-Huqail AA, Hashem MH, Bakr BMM, Fekry WME, Abdel-Aziz HF, Hamdy AE, Abdelraouf RE, Fathy M. Using Deficit Irrigation Strategies and Organic Mulches for Improving Yield and Water Productivity of Mango under Dry Environment Conditions. Agriculture. 2023; 13(7):1415. https://doi.org/10.3390/agriculture13071415
Chicago/Turabian StyleAlhashimi, Abdulrahman, Arwa Abdulkreem AL-Huqail, Mustafa H. Hashem, Basem M. M. Bakr, Waleed M. E. Fekry, Hosny F. Abdel-Aziz, Ashraf E. Hamdy, Ramadan Eid Abdelraouf, and Maher Fathy. 2023. "Using Deficit Irrigation Strategies and Organic Mulches for Improving Yield and Water Productivity of Mango under Dry Environment Conditions" Agriculture 13, no. 7: 1415. https://doi.org/10.3390/agriculture13071415
APA StyleAlhashimi, A., AL-Huqail, A. A., Hashem, M. H., Bakr, B. M. M., Fekry, W. M. E., Abdel-Aziz, H. F., Hamdy, A. E., Abdelraouf, R. E., & Fathy, M. (2023). Using Deficit Irrigation Strategies and Organic Mulches for Improving Yield and Water Productivity of Mango under Dry Environment Conditions. Agriculture, 13(7), 1415. https://doi.org/10.3390/agriculture13071415