Agricultural Practices and Soil and Water Conservation in the Transboundary Region of Kenya and Uganda: Farmers’ Perspectives of Current Soil Erosion
Abstract
:1. Introduction
- What are major crops grown in the Sio Malaba Malakisi River Basin, and how are they spatially distributed in relation to the slope?
- What is the current soil erosion status as reported by farmers on their farms? Does the reported soil erosion vary along the different slope categories, and does it influence the perceived change in soil fertility?
- Which soil and water conservation practices are applied by the farm households, and how do they vary based on topographical positions?
- Who are the key decision-makers for adopting agricultural practices in each farm household, and how do these decision-makers influence the adoption of soil and water conservation practices?
2. Materials and Methods
2.1. Case Study Area
2.1.1. Hydrology and Climate
2.1.2. Land Use, Land Cover, Agriculture, and Soil Erosion
2.1.3. Socio-Economic, Socio-Cultural, and Political Aspects
2.2. Farmer Questionnaire on Agricultural Practices
2.2.1. Background Information on the Questionnaire
2.2.2. Soil Erosion and Fertility as Reported by Farmers
2.2.3. Soil and Water Conservation Practices (SWCPs)
History of SWCPs in Kenya and East Africa
Sampling Soil and Sater Conservation Practices (SWCPs) in the Sio Malaba Malakisi River Basin (SMMRB)
2.3. Data Analysis
3. Results
3.1. General Household Farm Characteristics
3.2. Crops in the Sio Malaba Malakisi River Basin
3.2.1. Major Crops Grown
3.2.2. Crops Grown within the Farming Seasons
3.3. Farmers’ Perception of Soil Erosion and Fertility Conditions
3.4. Applied Soil and Water Conservation Practices
Farmers’ Perception of the SWCPs and Soil Erosion
3.5. Decision-Makers and Their Influence on Applied Agricultural Practices
4. Discussion
4.1. Farm Household Characteristics and Agricultural Practices
4.2. Major Crops Grown in the SMMRB and Their Spatial Distribution in Relation to Topography
4.3. The Status of Soil Erosion
4.3.1. Soil Erosion and Perceived Change in Fertility
4.3.2. Soil Water Conservation Practices/Measures Practised within the Study Area
4.3.3. Soil Water Conservation Practices/Measures in Relation to Perceived Soil Erosion
4.3.4. The Decision-Makers within the SMMRB and Their Influence on Applied Agricultural Practices
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SMMRB | Sio Malaba Malakisi River Basin |
SWCPs | Soil and water conservation practices |
SWCP | Soil and water conservation practice |
gSPs | Generalized support practices |
KNBS | Kenya National Bureau of Statistics |
UBOS | Uganda Bureau of Statistics |
NPP | Net primary productivity |
ITCZ | Intertropical Convergence Zone |
References
- Amann, A.; Herrnegger, M.; Karungi, J.; Komakech, A.J.; Mwanake, H.; Schneider, L.; Schürz, C.; Stecher, G.; Turinawe, A.; Zessner, M.; et al. Can local nutrient-circularity and erosion control increase yields of resource-constraint smallholder farmers? A case study in Kenya and Uganda. J. Clean. Prod. 2021, 318, 128510. [Google Scholar] [CrossRef]
- Nyirahabimana, H.; Turinawe, A.; Lederer, J.; Karungi, J.; Herrnegger, M. What influences farmer’s adoption lag for soil and water conservation practices? Evidence from sio-malaba malakisi river basin of kenya and uganda borders. Agronomy 2021, 11, 1985. [Google Scholar] [CrossRef]
- Vanlauwe, B.; AbdelGadir, A.H.; Adewopo, J.; Adjei-Nsiah, S.; Ampadu-Boakye, T.; Asare, R.; Baijukya, F.; Baars, E.; Bekunda, M.; Coyne, D.; et al. Looking back and moving forward: 50 years of soil and soil fertility management research in sub-Saharan Africa. Int. J. Agric. Sustain. 2017, 15, 613–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogt, J.V.; Safriel, U.; Von Maltitz, G.; Sokona, Y.; Zougmore, R.; Bastin, G.; Hill, J. Monitoring and assessment of land degradation and desertification: Towards new conceptual and integrated approaches. Land Degrad. Dev. 2011, 22, 150–165. [Google Scholar] [CrossRef]
- Rotich, B.; Csorba, A. Soil and water conservation in Kenya; Practices, Challenges and Prospects. In Proceedings of the 5th ISCW, Szarvas, Hungary, 22–24 March 2022. [Google Scholar]
- Chuma, G.B.; Mondo, J.M.; Ndeko, A.B.; Bagula, E.M.; Lucungu, P.B.; Bora, F.S.; Karume, K.; Mushagalusa, G.N.; Schmitz, S.; Bielders, C.L. Farmers’ knowledge and Practices of Soil Conservation Techniques in Smallholder Farming Systems of Northern Kabare, East of D.R. Congo. Environ. Chall. 2022, 7, 100516. [Google Scholar] [CrossRef]
- Jiang, B.; Bamutaze, Y.; Pilesjö, P. Climate change and land degradation in Africa: A case study in the Mount Elgon region, Uganda. Geo-Spat. Inf. Sci. 2014, 17, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Okeyo, A.I.; Mucheru-muna, M.; Mugwe, J.; Ngetich, K.F. Effects of selected soil and water conservation technologies on nutrient losses and maize yields in the central highlands of Kenya. Agric. Water Manag. 2014, 137, 52–58. [Google Scholar] [CrossRef]
- Karamage, F.; Zhang, C.; Liu, T.; Maganda, A.; Isabwe, A. Soil erosion risk assessment in Uganda. Forests 2017, 8, 52. [Google Scholar] [CrossRef]
- Bamutaze, Y. Patterns of Water Erosion and Sediment Loading in Manafwa Catchment, Mt. Elgon, Eastern Uganda Thesis. Ph.D. Thesis, Philosophy of Makerere University, Kampala, Uganda, 2010. [Google Scholar]
- Wichern, J.; van Wijk, M.T.; Descheemaeker, K.; Frelat, R.; van Asten, P.J.A.; Giller, K.E. Food availability and livelihood strategies among rural households across Uganda. Food Secur. 2017, 9, 1385–1403. [Google Scholar] [CrossRef] [Green Version]
- Ritzema, R.S.; Frelat, R.; Douxchamps, S.; Silvestri, S.; Rufino, M.C.; Herrero, M.; Giller, K.E.; López-Ridaura, S.; Teufel, N.; Paul, B.K.; et al. Is production intensification likely to make farm households food-adequate? A simple food availability analysis across smallholder farming systems from East and West Africa. Food Secur. 2017, 9, 115–131. [Google Scholar] [CrossRef]
- Pender, J.; Nkonya, E.; Jagger, P.; Sserunkuuma, D.; Ssali, H. Strategies to increase agricultural productivity and reduce land degradation: Evidence from Uganda. Agric. Econ. 2004, 31, 181–195. [Google Scholar] [CrossRef] [Green Version]
- Brink, A.B.; Bodart, C.; Brodsky, L.; Defourney, P.; Ernst, C.; Donney, F.; Lupi, A.; Tuckova, K. Anthropogenic pressure in East Africa-Monitoring 20 years of land cover changes by means of medium resolution satellite data. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 60–69. [Google Scholar] [CrossRef]
- Drechsel, P.; Gyiele, L.; Kunze, D.; Cofie, O. Population density, soil nutrient depletion, and economic growth in sub-Saharan Africa. Ecol. Econ. 2001, 38, 251–258. [Google Scholar] [CrossRef]
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Proxy global assessment of land degradation. Soil Use Manag. 2008, 24, 223–234. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R. Impact of Land Use/Cover Changes on Soil Erosion in Western Kenya. Sustainability 2020, 12, 9740. [Google Scholar] [CrossRef]
- Kaindi, N. Final Report State of Sio-Malaba-Malakisi Transboundary Integrated Water Resources Management & Development Project February 2013; Nile Equatorial Lakes Subsidiary Action Programme (NELSAP): Kigali, Rwanda, 2013. [Google Scholar]
- Alice, T. Impact of soil and water conservation technology adoption on smallholder farms in South-Western Uganda. J. Dev. Agric. Econ. 2019, 11, 217–233. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, A.; Teymouri, A. Farmers’ intended and actual adoption of soil and water conservation practices. Agric. Water Manag. 2022, 259, 107244. [Google Scholar] [CrossRef]
- Alemu, M.D.; Kebede, A.; Moges, A. Farmers’ Perception of Soil Erosion and Adoption of Soil Conservation Technologies at Geshy Sub-Catchment, Gojeb River Catchment, Ethiopia. Agric. Sci. 2019, 10, 46–65. [Google Scholar] [CrossRef] [Green Version]
- Moges, D.M.; Taye, A.A. Determinants of farmers’ perception to invest in soil and water conservation technologies in the North-Western Highlands of Ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 56–61. [Google Scholar] [CrossRef]
- Wolka, K.; Sterk, G.; Biazin, B.; Negash, M. Benefits, limitations and sustainability of soil and water conservation structures in Omo-Gibe basin, Southwest Ethiopia. Land Use Policy 2018, 73, 1–10. [Google Scholar] [CrossRef]
- Betela, B.; Wolka, K. Evaluating soil erosion and factors determining farmers ’ adoption and management of physical soil and water conservation measures in Bachire watershed, southwest Ethiopia. Environ. Chall. 2021, 5, 100348. [Google Scholar] [CrossRef]
- Schürz, C.; Mehdi, B.; Kiesel, J.; Schulz, K.; Herrnegger, M. A systematic assessment of uncertainties in large-scale soil loss estimation from different representations of USLE input factors-a case study for Kenya and Uganda. Hydrol. Earth Syst. Sci. 2020, 24, 4463–4489. [Google Scholar] [CrossRef]
- Bamutaze, Y.; Thiemann, S.; Förch, G.G. Integrated Watershed Management for Urban Water Security. In Proceedings of the Integrated Watershed Management for Urban Water Security Integrated Watershed Management-a Tool for Urban Water Security Workshop Results from Mbale, Mbale, Uganda, 10–16 March 2014. [Google Scholar]
- Mondorf, D. The Water-Energy-Food Security Nexus in the Kenyan-Ugandan border region Impact of surface water quality deterioration through agricultural practices on drinking water. 2020. Available online: https://mediatum.ub.tum.de/doc/1612080/1612080.pdf (accessed on 10 July 2023).
- Barasa, B.; Majaliwa, J.G.M.; Lwasa, S.; Obando, J.; Bamutaze, Y. Magnitude and transition potential of land-use/cover changes in the trans-boundary river sio catchment using remote sensing and GIS. Ann. GIS 2011, 17, 73–80. [Google Scholar] [CrossRef]
- Bamutaze, Y.; Makooma, M.; Jackson, M.; Majaliwa, G.; Vanacker, V.; Bagoora, F.; Magunda, M.; Obando, J.; Ejiet, J. Catena in filtration characteristics of volcanic sloping soils on Mt. Elgon, Eastern Uganda. Catena 2010, 80, 122–130. [Google Scholar] [CrossRef]
- Chasia, S.; Herrnegger, M.; Juma, B.; Kimuyu, J.; Sitoki, L.; Olang, L. Analysis of land-cover changes in the Transboundary Sio-Malaba-Malakisi River Basin of East Africa: Towards identifying potential land-use transition regimes. Afr. Geogr. Rev. 2021, 42, 170–186. [Google Scholar] [CrossRef]
- Bamutaze, Y.; Mukwaya, P.; Oyama, S.; Nadhomi, D.; Nsemire, P. Intersecting RUSLE modelled and farmers perceived soil erosion risk in the conservation domain on mountain Elgon in Uganda. Appl. Geogr. 2021, 126, 102366. [Google Scholar] [CrossRef]
- Buyinza, M.; Kaboggoza, J.R.S.; Nabanoga, G.; Nagula, A.; Nabalegwa, M. Site specific soil conservation strategies Around Mt. Elgon National Park, Eastern Uganda. Res. J. Appl. Sci. 2007, 2, 978–983. [Google Scholar]
- Xu, L.; Zhang, D.; Proshad, R.; Chen, Y.l.; Huang, T.f.; Ugurlu, A. Effects of soil conservation practices on soil erosion and the size selectivity of eroded sediment on cultivated slopes. J. Mt. Sci. 2021, 18, 1222–1234. [Google Scholar] [CrossRef]
- El Mekkaoui, A.; Moussadek, R.; Mrabet, R.; Douaik, A.; El Haddadi, R.; Bouhlal, O.; Elomari, M.; Ganoudi, M.; Zouahri, A.; Chakiri, S. Effects of Tillage Systems on the Physical Properties of Soils in a Semi-Arid Region of Morocco. Agriculture 2023, 13, 683. [Google Scholar] [CrossRef]
- Wolka, K.; Mulder, J.; Biazin, B. Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: A review. Agric. Water Manag. 2018, 207, 67–79. [Google Scholar] [CrossRef]
- Ebisemiju, F. Gully morphometric controls in a laterite terrain, Guyana. Soil Tillage Res. 1988, 12, 49–51. [Google Scholar] [CrossRef]
- ESA ESA Land Cover Climate Change Initiative (ESA LC CCI) Data: ESACCI-LC-L4-LCCS-Map-300m-P1Y-1992_2015- v2.0.7.tif via Centre for Environmental Data Analysis. 2017. Available online: http://maps.elie.ucl.ac.be/CCI (accessed on 7 July 2023).
- Didan, K. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006, NASA EOSDIS Land Processes DAAC. NASA Eosdis Land Process. Daac 2015, 10, 415. [Google Scholar] [CrossRef]
- KNBS. County Statistical Abstract 2015. Bungoma County; Technical Report; Kenya National Bureau of Statistics: Nairobi, Kenya, 2015. [Google Scholar]
- KNBS. County Statistical Abstract 2015. Busia County; Technical Report; Kenya National Bureau of Statistics: Nairobi, Kenya, 2015; Volume II. [Google Scholar]
- Uganda Bureau of Statistics (UBOS). 2017 Statistical Abstract; Uganda Bureau of Statistics: Kampala, Uganda, 2017; pp. 1–341. [Google Scholar]
- Tatem, A.J.; Noor, A.M.; von Hagen, C.; Di Gregorio, A.; Hay, S.I. High resolution population maps for low income nations: Combining land cover and census in East Africa. PLoS ONE 2007, 2, e0001298. [Google Scholar] [CrossRef] [PubMed]
- Nadhomi, D.L.; Tenywa, J.S.; Majaliwa, J.G.M. Adaptation of RUSLE to Model Erosion Risk in a Watershed with Terrain Heterogeneity. Int. J. Adv. Earth Sci. Eng. 2013, 2, 93–107. [Google Scholar]
- Diwediga, B.; Le, Q.B.; Agodzo, S.K.; Tamene, L.D.; Wala, K. Modelling soil erosion response to sustainable landscape management scenarios in the Mo River Basin (Togo, West Africa). Sci. Total Environ. 2018, 625, 1309–1320. [Google Scholar] [CrossRef]
- Mugalavai, E.M.; Kipkorir, E.C.; Raes, D.; Rao, M.S. Analysis of rainfall onset, cessation and length of growing season for western Kenya. Agric. For. Meteorol. 2008, 148, 1123–1135. [Google Scholar] [CrossRef]
- Omonge, P.; Feigl, M.; Olang, L.; Schulz, K.; Herrnegger, M. Evaluation of satellite precipitation products for water allocation studies in the Sio-Malaba-Malakisi river basin of East Africa. J. Hydrol. Reg. Stud. 2022, 39, 100983. [Google Scholar] [CrossRef]
- Herrnegger, M.; Stecher, G.; Schwatke, C.; Olang, L. Hydroclimatic analysis of rising water levels in the Great rift Valley Lakes of Kenya. J. Hydrol. Reg. Stud. 2021, 36, 100857. [Google Scholar] [CrossRef]
- Yesuph, A.Y.; Dagnew, A.B. Soil erosion mapping and severity analysis based on RUSLE model and local perception in the Beshillo Catchment of the Blue Nile Basin, Ethiopia. Environ. Syst. Res. 2019, 8, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Haregeweyn, N.; Tsunekawa, A.; Poesen, J.; Tsubo, M.; Meshesha, D.T.; Fenta, A.A.; Nyssen, J.; Adgo, E. Comprehensive assessment of soil erosion risk for better land use planning in river basins: Case study of the Upper Blue Nile River. Sci. Total Environ. 2017, 574, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Zachar, D. Soil Erosion; Elsevier: Amsterdam, The Netherlands, 1982. [Google Scholar] [CrossRef]
- Gachene, C.; Nyawade, S.; Karanja, N. Soil and Water Conservation: An Overview. In Zero Hunger. Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K.; Klik, A.; Rousseva, S.; Per, M.; Michaelides, S.; Hrabalíková, M.; Olsen, P.; et al. Rainfall erosivity in Europe. Sci. Total Environ. 2015, 511, 801–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terranova, O.; Antronico, L.; Coscarelli, R.; Iaquinta, P. Geomorphology Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: An application model for Calabria (southern Italy). Geomorphology 2009, 112, 228–245. [Google Scholar] [CrossRef]
- Nabikolo, D.; Bashaasha, B.; Mangheni, M.N.; Majaliwa, J.G.M. Determinants of Climate Change Adaptation Among Male and Female Headed Farm Households in Eastern Uganda. Afr. Crop Sci. J. 2012, 20, 203–212. [Google Scholar]
- Veihe, A. Sustainable farming practices: Ghanaian farmers’ perception of erosion and their use of conservation measures. Environ. Manag. 2000, 25, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Kpadonou, R.A.B.; Owiyo, T.; Barbier, B.; Denton, F.; Rutabingwa, F.; Kiema, A. Advancing climate-smart-agriculture in developing drylands: Joint analysis of the adoption of multiple on-farm soil and water conservation technologies in West African Sahel. Land Use Policy 2017, 61, 196–207. [Google Scholar] [CrossRef]
- Turinawe, A.; Drake, L.; Mugisha, J. Adoption intensity of soil and water conservation technologies: A case of South Western Uganda. Environ. Dev. Sustain. 2015, 17, 711–730. [Google Scholar] [CrossRef]
- Kathula, D.N. Factors Impacting Agricultural Production and the Role of Agricultural Extension Services in Kenya. J. Agric. 2023, 7, 22–44. [Google Scholar] [CrossRef]
- Tesfaye, A.; Negatu, W.; Brouwer, R.; van der Zaag, P. Understanding soil conservation decision of farmers in the gedeb watershed, Ethiopia. Land Degrad. Dev. 2014, 25, 71–79. [Google Scholar] [CrossRef] [Green Version]
- de Graaff, J.; Amsalu, A.; Bodnár, F.; Kessler, A.; Posthumus, H.; Tenge, A. Factors influencing adoption and continued use of long-term soil and water conservation measures in five developing countries. Appl. Geogr. 2008, 28, 271–280. [Google Scholar] [CrossRef]
- Ligonja, P.J.; Shrestha, R.P. Soil Erosion Assessment in Kondoa Eroded Area in Tanzania using Universal Soil Loss Equation, Geographic Information Systems and Socioeconomic Approach. Land Degrad. Dev. 2013, 26, 367–379. [Google Scholar] [CrossRef]
- Atandi, J.G.; Adamtey, N.; Kiriga, A.W.; Karanja, E.N.; Musyoka, M.W.; Matheri, F.M.; Tanga, C.M.; Coyne, D.L.; Fiaboe, K.K.M.; Bautze, D.; et al. Organic maize and bean farming enhances free-living nematode dynamics in sub-Saharan Africa. Agric. Ecosyst. Environ. 2022, 327, 107846. [Google Scholar] [CrossRef]
- Anyango, J.J.; Bautze, D.; Fiaboe, K.K.M.; Lagat, Z.O.; Muriuki, A.W.; Stöckli, S.; Riedel, J.; Onyambu, G.K.; Musyoka, M.W.; Karanja, E.N.; et al. The impact of conventional and organic farming on soil biodiversity conservation: A case study on termites in the long-term farming systems comparison trials in Kenya. BMC Ecol. 2020, 20, 13. [Google Scholar] [CrossRef] [Green Version]
- Bhullar, G.S.; Bautze, D.; Adamty, N.; Cicek, H.; Goldmann, E.; Riar, A.; Rüegg, J.; Schneider, M.; Huber, B. What Is the Contribution of Organic Agriculture to Sustainable Development? A Synthesis of Twelve Years (2007-2019) of the “Long-Term Farming Systems Comparisons in the Tropics (SysCom)”; A Comprehensive Report; Research Institute of Organic Agriculture (FiBL), Department of International Cooperation: Frick, Switzerland, 2020. [Google Scholar]
- Osanya, J.; Adam, R.I.; Otieno, D.J.; Nyikal, R.; Jaleta, M. An analysis of the respective contributions of husband and wife in farming households in Kenya to decisions regarding the use of income: A multinomial logit approach. Women’s Stud. Int. Forum 2020, 83, 102419. [Google Scholar] [CrossRef]
- Sell, M.; Minot, N. What factors explain women’s empowerment? Decision-making among small-scale farmers in Uganda. Womens. Stud. Int. Forum 2018, 71, 46–55. [Google Scholar] [CrossRef]
Characteristics | Modalities | Respondents (n = 200) | Percentage (%) |
---|---|---|---|
Sex | Male | 93 | 46.5 |
Female | 107 | 53.5 | |
Decision-maker | Husband | 126 | 27.6 |
Wife | 12 | 6 | |
Son/daughter | 3 | 1.5 | |
Parent | 3 | 1.5 | |
Joint | 55 | 63.3 | |
Type of household | Subsistence | 25 | 12.5 |
Cash crop farming | 3 | 1.5 | |
Subsistence + cash crop farming | 127 | 63.5 | |
Subsistence + livestock farming | 3 | 1.5 | |
Subsistence + cash crop farming + livestock farming | 42 | 21 | |
Membership associations | Yes | 124 | 62 |
No | 76 | 38 | |
Number of parcels of lands | 1 | 120 | 60 |
2 | 57 | 28.5 | |
3 | 23 | 11.5 | |
Average farm size | <0.5 ha | 104 | 52 |
0.5–1.0 ha | 64 | 32 | |
>0.5 ha | 32 | 16 | |
Cropping system | Monocropping | 75 | 37.5 |
Intercropping | 125 | 62.5 | |
Ownership of the land | Owned | 194 | 97 |
Rented | 6 | 3 | |
Gender ownership | Husband | 135 | 67.5 |
Wife | 21 | 10.5 | |
Other male member | 4 | 2 | |
Joint | 40 | 20 | |
Primary land use | Cultivated (annual crops) | 177 | 88.5 |
Cultivated (perennial crops) | 15 | 7.5 | |
Fallow | 3 | 1.5 | |
Homestead | 3 | 1.5 | |
Pastureland | 2 | 1 | |
Percentage of plot protected by SWCPs | <40% | 112 | 56 |
40–99% | 59 | 29.5 | |
100% | 29 | 14.5 | |
Change in SWCPs | Increased | 13 | 6.5 |
Decreased | 83 | 41.5 | |
No change | 104 | 52 | |
Reason for change in SWCPs | Increased land scarcity | 84 | 42 |
Labor-intensive | 43 | 21.5 | |
SC attracts rodents | 1 | 0.5 | |
Increased soil erosion | 5 | 2.5 | |
Reduced soil fertility | 5 | 2.5 | |
Increased soil fertility | 1 | 0.5 | |
Increased farm size | 10 | 5 | |
Reduced soil erosion | 1 | 0.5 | |
Reduced rainfall intensity | 2 | 1 | |
Combination of reasons | 48 | 24 | |
Change in soil fertility (within the last 5 years) | Increased | 5 | 2 |
Decreased | 186 | 92 | |
No change | 9 | 3 | |
Reason for change in soil fertility | Increased use of mineral fertilizer on the plot | 40 | 20 |
Increased use of organic manure on the plot | 2 | 1 | |
Increased use of a combination of mineral fertilizer and organic manure on the plot | 5 | 2.5 | |
Leaving the plot fallowed (uncultivated) for some seasons | 1 | 0.5 | |
Use practices of erosion control measures | 3 | 1.5 | |
Lack capacity (money) to use fertilizers (inorganic or organic) | 2 | 1 | |
Continuous cultivation without fallowing | 40 | 20 | |
Destroyed soil conservation structures | 3 | 1.5 | |
Reduced yield | 44 | 22 | |
Combination of reasons | 60 | 30 | |
Livestock | Yes | 59 | 29.5 |
No | 141 | 70.5 |
Crop Type | Crop Nr | Nr of Plots | Crop | Mean Area (ha) | Mean Yield (kg/ha) |
---|---|---|---|---|---|
Cereals | 1 | 393 | Maize | 0.18 | 504 |
2 | 13 | Sorghum | 0.21 | 93 | |
3 | 20 | Millet | 0.15 | 143 | |
4 | 1 | Rice | 0.1 | 30 | |
Tubers and roots | 7 | 33 | Cassava | 0.18 | 924 |
8 | 17 | Sweet potatoes | 0.15 | 398 | |
9 | 6 | Irish potatoes | 0.13 | 5283 | |
10 | 1 | Yams | 0.2 | 100 | |
Legumes | 12 | 304 | Beans | 0.19 | 88 |
13 | 27 | Groundnuts | 0.17 | 129 | |
14 | 5 | Soya beans | 0.14 | 31 | |
16 | 3 | Green grams | 0.2 | 38 | |
Vegetables | 18 | 2 | Cabbage | 0.2 | 1100 |
19 | 15 | Kale | 0.13 | 4250 | |
20 | 1 | Amaranth | 0.1 | 200 | |
21 | 6 | Other green leafy vegetables | 0.15 | 333 | |
22 | 7 | Onions | 0.19 | 3543 | |
26 | 1 | Mushrooms | 0.1 | 30 | |
Fruits | 28 | 1 | Sweet bananas | 0.2 | 1000 |
29 | 16 | Banana | 0.41 | 822 | |
30 | 13 | Tomatoes | 0.19 | 508 | |
38 | 4 | Watermelon | 0.2 | 6125 | |
Spices | 43 | 1 | Chilies | 0.1 | 59 |
Tress/export crops | 46 | 18 | Coffee | 0.41 | 1672 |
49 | 18 | Timber | 0.32 | 46,833 | |
51 | 1 | Fuelwood trees | 0.05 | 2000 | |
52 | 2 | Fodder | 0.45 | 3000 | |
53 | 10 | Sugarcane | 0.4 | 8820 | |
54 | 6 | Tobacco | 0.4 | 4167 | |
56 | 3 | Sesame | 0.13 | 341 |
Generalized Support Practice (gSP) | Soil and Water Conservation Practices (SWCPs) from the Questionnaire | Support Practice (Shin, 1999) | Remark |
---|---|---|---|
Linear | Trenches/diversion channels | Strip cropping | Applied in a linear form and covers parts of the farms |
Grass strips | |||
Fanya Chini (cut-off drain) | |||
Fanya Juu | |||
Hedges | |||
Alley cropping | |||
Stones/soil bands | |||
Extensive | Mulching | Contouring | Applied to cover the entire farm area |
Fallow | |||
Contour ploughing | |||
Minimum tillage | |||
Cover crops | |||
Intercropping/ Crop rotation | |||
Intensive | Terraces | Terraces | Practised on the steeper slopes of Mt. Elgon |
No practice | No SWCP technologies present |
Management Practices | Perceived Presence of Soil Erosion | |||
---|---|---|---|---|
Not Present | Present | |||
Male | Female | Male | Female | |
SWCP measures not practised | 7 (4%) | 11 (6%) | 15 (7%) | 23 (11%) |
SWCP measures practised | 30 (15%) | 30 (15%) | 41 (20%) | 43 (22%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mwanake, H.; Mehdi-Schulz, B.; Schulz, K.; Kitaka, N.; Olang, L.O.; Lederer, J.; Herrnegger, M. Agricultural Practices and Soil and Water Conservation in the Transboundary Region of Kenya and Uganda: Farmers’ Perspectives of Current Soil Erosion. Agriculture 2023, 13, 1434. https://doi.org/10.3390/agriculture13071434
Mwanake H, Mehdi-Schulz B, Schulz K, Kitaka N, Olang LO, Lederer J, Herrnegger M. Agricultural Practices and Soil and Water Conservation in the Transboundary Region of Kenya and Uganda: Farmers’ Perspectives of Current Soil Erosion. Agriculture. 2023; 13(7):1434. https://doi.org/10.3390/agriculture13071434
Chicago/Turabian StyleMwanake, Hope, Bano Mehdi-Schulz, Karsten Schulz, Nzula Kitaka, Luke O. Olang, Jakob Lederer, and Mathew Herrnegger. 2023. "Agricultural Practices and Soil and Water Conservation in the Transboundary Region of Kenya and Uganda: Farmers’ Perspectives of Current Soil Erosion" Agriculture 13, no. 7: 1434. https://doi.org/10.3390/agriculture13071434
APA StyleMwanake, H., Mehdi-Schulz, B., Schulz, K., Kitaka, N., Olang, L. O., Lederer, J., & Herrnegger, M. (2023). Agricultural Practices and Soil and Water Conservation in the Transboundary Region of Kenya and Uganda: Farmers’ Perspectives of Current Soil Erosion. Agriculture, 13(7), 1434. https://doi.org/10.3390/agriculture13071434