The Efficiency of China’s Agricultural Circular Economy and Its Influencing Factors under the Rural Revitalization Strategy: A DEA–Malmquist–Tobit Approach
Abstract
:1. Introduction
1.1. China Agricultural Circular Economy
1.2. Rural Revitalization Strategy
2. Literature Review and Objectives of This Paper
2.1. Research Related to Agricultural Policy and Efficiency
2.2. Research Objectives of This Paper
- To measure and assess the efficiency of China’s agricultural circular economy under the rural revitalization strategy, and analyze its development trend.
- To conduct empirical research on the correlation between the efficiency of the agricultural circular economy and related policies of rural revitalization.
3. Materials and Methods
3.1. Data and Sources
- There are significant differences in the formulation and implementation of agricultural policies.
- The statistical calibers of relevant data vary significantly.
- The agricultural economies of these three provinces and cities is relatively small.
3.2. Research Methodology
3.2.1. Research Process
3.2.2. Measuring the Efficiency of China’s Agricultural Circular Economy Using DEA Method
3.2.3. Assessment of Changes in the Efficiency of China’s Agricultural Circular Economy from 2017–2020 Using the DEA–Malmquist Index Model
3.2.4. Study of the Factors Influencing the Efficiency of China’s Agricultural Circular Economy Using Tobit Regression Model
4. Results
4.1. Results of the Study on the Efficiency of Agricultural Circular Economy in 31 Provinces and Cities in China
4.2. Empirical Study of the Factors Influencing the Efficiency of Agricultural Circular Economy
4.3. Study on the Change Trend of Efficiency of Agricultural Circular Economy
5. Discussion
5.1. Agri-Circular Economy Efficiency Is Significantly Affected by China’s Rural Revitalization Strategy
5.2. Technological Advances Promote the Efficiency of China’s Agricultural Circular Economy Year by Year
5.3. Reasonable Policies Support the Efficiency of Agricultural Circular Economy
5.4. There Are Significant Differences between the Efficiency of Agricultural Circular Economy in 31 Provinces and Cities in China
5.5. There Is Room to Improve the Scale Efficiency of Agricultural Circular Economy
6. Conclusions, Recommendations, and Shortcomings
6.1. Conclusions and Recommendations
6.2. Innovation Point
- The research exploring the correlation between the rural revitalization strategy and the efficiency of agricultural circular economy is a novel perspective.
- The approach of extracting independent variables related to policy from the rural revitalization strategy represents an innovative method.
- While most previous studies on the level of agricultural economy have focused on specific regions, investigating economic differences between these regions, the novelty of this paper lies in its national scope. It explores development trends and influential factors at the national level.
6.3. Shortcomings
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- The State Council of the People’s Republic of China. The Eleventh Five-Year Plan for National Economic and Social Development of the People’s Republic of China. 2006. Available online: https://www.gov.cn/gongbao/content/2006/content_268766.htm (accessed on 15 July 2023).
- Wu, H.Q.; Shi, Y.; Xia, Q.; Zhu, W.D. Recycling. Effectiveness of the policy of circular economy in China: A DEA-based analysis for the period of 11th five-year-plan. Resour. Conserv. Recycl. 2014, 83, 163–175. [Google Scholar] [CrossRef]
- Xin, Y.; Zhou, X.J. Development benefit evaluation of agricultural circular economy in China. J. South. Agric. 2013, 44, 1220–1224. [Google Scholar]
- Ul Haq, S.; Boz, I.; Shahbaz, P.; Yıldırım, Ç.J.E.S.; Research, P. Evaluating eco-efficiency and optimal levels of fertilizer use based on the social cost and social benefits in tea production. Environ. Sci. Pollut. Res. 2020, 27, 33008–33019. [Google Scholar] [CrossRef]
- Fan, Y.; Fang, C. Circular economy development in China-current situation, evaluation and policy implications. Environ. Impact Assess. Rev. 2020, 84, 106441. [Google Scholar] [CrossRef]
- Shahbaz, P.; Haq, S.u.; Boz, I. Linking climate change adaptation practices with farm technical efficiency and fertilizer use: A study of wheat–maize mix cropping zone of Punjab province, Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 16925–16938. [Google Scholar] [CrossRef]
- The State Council of the People’s Republic of China. The Central Committee of the Communist Party of China and the State Council Opinions on Implementing the Rural Revitalization Strategy. 2018. Available online: https://www.gov.cn/gongbao/content/2018/content_5266232.htm (accessed on 15 July 2023).
- The National People’s Congress of the People’s Republic of China. The Budget Working Committee of the Standing Committee of the National People’s Congress, the National Committee on Finance and Economy of the National People’s Congress, the National People’s Congress Committee on Agriculture and Rural Affairs on the Fiscal Agricultural and Rural Funds Research Report on the Distribution and Utilization of Financial Agricultural and Rural Funds. 2021. Available online: http://www.npc.gov.cn/npc/c5871/202206/b157d2e15e0a4000ae33874d009d947f.shtml (accessed on 15 July 2023).
- People’s Daily Online. Subsidies of 175 Billion Yuan of Financial Strength to Help Promote Rural Revitalization across the Board. 2023. Available online: http://finance.people.com.cn/n1/2023/0408/c1004-32659855.html (accessed on 15 July 2023).
- Ministry of Transport of the People’s Republic of China. 2023. Available online: https://www.gov.cn/zhengce/2023-04/23/content_5752770.htm (accessed on 15 July 2023).
- The State Council of the People’s Republic of China. China to Improve Rural Infrastructure Amid Rural Revitalization Drive. 2023. Available online: http://english.www.gov.cn/premier/news/2018/03/05/content_281476067447206.htm (accessed on 15 July 2023).
- The State Council of the People’s Republic of China. Guiding Opinions of the State Council on Accelerating the Transformation and Upgrading of Mechanised Agriculture and Agricultural Machinery Equipment Industry. 2019. Available online: https://www.gov.cn/gongbao/content/2019/content_5355467.htm (accessed on 7 July 2023).
- The State Council of the People’s Republic of China. The State Council’s Decision on Issuing the “14th Five Year Plan” Promotion Notice on Agricultural and Rural Modernization Planning. Available online: https://www.gov.cn/gongbao/content/2022/content_5675948.htm (accessed on 15 July 2023).
- People’s Daily Online. Expand the Scope of Government Purchase Services and Improve the Level of Management Science Standardization. 2023. Available online: https://www.gov.cn/zhengce/202306/content_6885168.htm (accessed on 15 July 2023).
- Malthus, T. An Essay on the Principle of Population. 1798. Available online: https://la.utexas.edu/users/hcleaver/368/368MalthusPopCh10table.pdf (accessed on 15 July 2023).
- Scott, A.J. Industrialization and urbanization: A geographical agenda. Ann. Assoc. Am. Geogr. 1986, 76, 25–37. [Google Scholar] [CrossRef]
- Hubendick, B. Industrialization and Urbanization. In The Global Environment: Science, Technology and Management; Wiley-VCH: Hoboken, NJ, USA, 1997. [Google Scholar]
- Yang, D.T.; Zhu, X. Modernization of agriculture and long-term growth. J. Monet. Econ. 2013, 60, 367–382. [Google Scholar] [CrossRef] [Green Version]
- Hardeman, E.; Jochemsen, H. Are there ideological aspects to the modernization of agriculture? J. Agric. Environ. Ethic 2012, 25, 657–674. [Google Scholar] [CrossRef] [Green Version]
- Knickel, K.; Ashkenazy, A.; Chebach, T.C.; Parrot, N. Agricultural modernization and sustainable agriculture: Contradictions and complementarities. Int. J. Agric. Sustain. 2017, 15, 575–592. [Google Scholar] [CrossRef]
- Jiang, H.M.; Wang, Z.H. Empirical Analysis on the Relationship Among Industrialization, Urbanization and Agricultural Modernization in Jilin Province. Sci. Geogr. Sin. 2012, 32, 591–595. [Google Scholar]
- Yao, S.; Liu, Z. Determinants of Grain Production and Technical Efficiency in China. J. Agric. Econ. 2010, 49, 171–184. [Google Scholar] [CrossRef]
- de Jorge, J.; Suárez, C. Influence of R&D subsidies on efficiency: The case of Spanish manufacturing firms. Cuad. Econ. Dir. Empresa 2011, 14, 185–193. [Google Scholar]
- Yao, L.X.; Leng, N.M. An Analysis on the Incentive Effects of Fiscal Subsidies and Tax Incentives on the Innovation Efficiency of Strategic Emerging Industries. East China Econ. Manag. 2018, 32, 7. [Google Scholar] [CrossRef]
- Gao, Y.; Wen, T.; Wen, Y.; Wang, X. A spatial econometric study on effects of fiscal and financial supports for agriculture in China. Agric. Econ. 2013, 59, 315–332. [Google Scholar]
- Kumbhakar, S.C.; Lien, G. Impact of subsidies on farm productivity and efficiency. In The Economic Impact of Public Support to Agriculture. Studies in Productivity and Efficiency; Springer: New York, NY, USA, 2010; pp. 109–124. [Google Scholar]
- Guan, Z.; Lansink, A.O. The source of productivity growth in Dutch agriculture: A perspective from finance. Am. J. Agric. Econ. 2006, 88, 644–656. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Ma, X.; Shang, Y.; Yang, Z.; Shahzad, U. Green economic growth and its inherent driving factors in Chinese cities: Based on the Metafrontier-global-SBM super-efficiency DEA model. Gondwana Res. 2022, 106, 315–328. [Google Scholar] [CrossRef]
- Streimikis, J.; Saraji, M.K. Green productivity and undesirable outputs in agriculture: A systematic review of DEA approach and policy recommendations. Econ. Res.-Ekon. Istraživanja 2022, 35, 819–853. [Google Scholar] [CrossRef]
- Andersen, P.; Petersen, N.C. A procedure for ranking efficient units in data envelopment analysis. Manag. Sci. 1993, 39, 1261–1264. [Google Scholar] [CrossRef]
- Zhao, X.; Mahendru, M.; Ma, X.; Rao, A.; Shang, Y. Impacts of environmental regulations on green economic growth in China: New guidelines regarding renewable energy and energy efficiency. Renew. Energy 2022, 187, 728–742. [Google Scholar] [CrossRef]
- Li, S.; Jahanshahloo, G.R.; Khodabakhshi, M. A super-efficiency model for ranking efficient units in data envelopment analysis. Appl. Math. Comput. 2007, 184, 638–648. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, W.; Ling, W. Tech-eco efficiency evaluation of hydrogen production industry under carbon dioxide emissions regulation in China. Int. J. Hydrogen Energy 2022, 47, 41183–41194. [Google Scholar] [CrossRef]
- Malmquist, S. Index numbers and indifference surfaces. Trab. Estad. 1953, 4, 209–242. [Google Scholar] [CrossRef]
- Caves, D.W.; Christensen, L.R.; Diewert, W.E. The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica 1982, 50, 1393–1414. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lindgren, B.; Roos, P. Productivity changes in Swedish pharamacies 1980–1989: A non-parametric Malmquist approach. J. Prod. Anal. 1992, 3, 85–101. [Google Scholar] [CrossRef]
- Grifell-Tatjé, E.; Lovell, C. A note on the Malmquist productivity index. Econ. Lett. 1995, 47, 169–175. [Google Scholar] [CrossRef]
- Pastor, J.T.; Lovell, C.A.K. A global Malmquist productivity index. Econ. Lett. 2005, 88, 266–271. [Google Scholar] [CrossRef]
- Coelli, T.J.; Rao, D.S.P. Total factor productivity growth in agriculture: A Malmquist index analysis of 93 countries, 1980–2000. Agric. Econ. 2005, 32, 115–134. [Google Scholar] [CrossRef] [Green Version]
- Kortelainen, M. Dynamic environmental performance analysis: A Malmquist index approach. Ecol. Econ. 2008, 64, 701–715. [Google Scholar] [CrossRef]
- Baba, V. Methodological issues in modeling absence: A comparison of least squares and Tobit analyses. J. Appl. Psychol. 1990, 75, 428. [Google Scholar] [CrossRef]
- Tobin, J. Estimation of relationships for limited dependent variables. Econom. J. Econom. Soc. 1958, 26, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Amore, M.D.; Murtinu, S. Tobit models in strategy research: Critical issues and applications. Glob. Strat. J. 2021, 11, 331–355. [Google Scholar] [CrossRef] [Green Version]
- Aldieri, L.; Gatto, A.; Vinci, C.P. Is there any room for renewable energy innovation in developing and transition economies? Data envelopment analysis of energy behaviour and resilience data. Resour. Conserv. Recycl. 2022, 186, 106587. [Google Scholar] [CrossRef]
- Shuai, S.; Fan, Z. Modeling the role of environmental regulations in regional green economy efficiency of China: Empirical evidence from super efficiency DEA-Tobit model. J. Environ. Manag. 2020, 261, 110227. [Google Scholar] [CrossRef]
- Dalei, N.N.; Joshi, J.M. Estimating technical efficiency of petroleum refineries using DEA and tobit model: An India perspective. Comput. Chem. Eng. 2020, 142, 107047. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical identification model. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Jiao, F.Y.; Liu, L.N. Contribution of fiscal expenditure on supporting agriculture to promoting agricultural economic growth—Empirical study based on Northeast panel data. In Proceedings of the 2009 International Conference on Management Science and Engineering, Moscow, Russia, 14–16 September 2009. [Google Scholar]
- Chen, S.; Yang, J.; Kang, X. Effect of Fiscal Expenditure for Supporting Agriculture on Agricultural Economic Efficiency in Central China—A Case Study of Henan Province. Agriculture 2023, 13, 822. [Google Scholar] [CrossRef]
- Zhou, H.M.; Li, M.X. Efficiency evaluation of fiscal expenditure on supporting agriculture in Hunan Province based on DEA model. Res. Agric. Mod. 2016, 37, 284–289. [Google Scholar]
- Li, W.; Ma, Y. Research on the Effects of Fiscal Expenditure for Agriculture on the Agricultural Modernization: Empirical Analysis Based on Dynamic Panel Data Model. J. Xi’an Univ. Financ. Econ. 2014, 3, 5–9. [Google Scholar] [CrossRef]
- Yan, J. Spatiotemporal analysis for investment efficiency of China’s rural water conservancy based on DEA model and Malmquist productivity index model. Sustain. Comput. Inform. Syst. 2019, 21, 56–71. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, H.; Luo, W. Evaluation of operational efficiency of agricultural water conservancy projects in China based on inter-provincial panel data. J. Econ. Water Resour. 2019, 37, 59–66. [Google Scholar]
- Yu, L.; Yang, G. Supply Efficiency and Factors of Farmland Water Conservancy Facilities Based on Sbm-Malmquist-Tobit Model. Resour. Ind. 2022, 24, 77–89. [Google Scholar]
- Meena, T. Corporatization of Agriculture and Its Effect. 2016. Available online: https://www.readcube.com/articles/10.2139/ssrn.2823387 (accessed on 15 July 2023).
- Motes, W. Modern Agriculture and Its Benefits–Trends, Implications and Outlook. 2010. Available online: https://www.researchgate.net/publication/268178065_Modern_Agriculture_and_Its_Benefits_-_Trends_Implications_and_Outlook (accessed on 15 July 2023).
- Bojnec, Š.; Fertő, I.; Jámbor, A.; Tóth, J. Determinants of technical efficiency in agriculture in new EU member states from Central and Eastern Europe. Acta Oeconomica 2014, 64, 197–217. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, F.; Xu, J. Production Efficiency of Scaled-up Agricultural Operations in China: An Empirical Analysis. In Proceedings of the 2018 Annual Meeting, Washington, DC, USA, 5–7 August 2018. [Google Scholar]
- Xu, D.; Sun, H. Leading Companies in Industrialization of Agriculture in Guizhou:Effect on Increasing Farmers’ Income. 2010. Available online: http://www.cqvip.com/qk/96372x/201003/33646595.html (accessed on 15 July 2023).
- Kögel, T.; Prskawetz, A. Agricultural productivity growth and escape from the Malthusian trap. J. Econ. Growth 2001, 6, 337–357. [Google Scholar] [CrossRef]
- Bilsborrow, R.E. Population pressures and agricultural development in developing countries: A conceptual framework and recent evidence. World Dev. 1987, 15, 183–203. [Google Scholar] [CrossRef]
Indicator Categories | Indicators |
---|---|
Input indicators | Rural Population |
Consumption of Chemical Fertilizers | |
Consumption of Pesticides | |
Consumption of Diesel Fuel | |
Sown area of crops | |
output indicators | Gross Output Value of Agriculture, Forestry, Animal Husbandry and Fishery and Related Indices |
Per Capita Disposable Income of Rural Households by Region |
vrste | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|
Number of “1” | 18 | 19 | 19 | 21 |
Mean values | 0.917676056 | 0.927100049 | 0.934294486 | 0.942051641 |
Beijing | 1 | 1 | 1 | 1 |
Tianjin | 1 | 1 | 1 | 1 |
Hebei | 0.717395847 | 0.800793331 | 0.790225422 | 0.786663162 |
Shanxi | 0.625652622 | 0.623417207 | 0.620294113 | 0.634481269 |
Inner Mongolia | 0.981032738 | 0.993619342 | 0.991089659 | 1 |
Liaoning | 0.979851655 | 1 | 1 | 1 |
Jilin | 0.679533142 | 0.674452166 | 0.671892708 | 0.738799541 |
Heilongjiang | 1 | 1 | 1 | 1 |
Shanghai | 1 | 1 | 1 | 1 |
Jiangsu | 1 | 1 | 1 | 1 |
Zhejiang | 1 | 1 | 1 | 1 |
Anhui | 0.709850702 | 0.704738368 | 0.717505651 | 0.712786742 |
Fujian | 1 | 1 | 1 | 1 |
Jiangxi | 0.823196531 | 0.816229789 | 0.839371298 | 0.826546699 |
Shandong | 1 | 1 | 1 | 1 |
Henan | 0.800646469 | 0.801151749 | 0.837054209 | 1 |
Hubei | 1 | 1 | 1 | 1 |
Hunan | 0.913105503 | 0.906257436 | 0.980111828 | 0.999582155 |
Guangdong | 1 | 1 | 1 | 1 |
Guangxi | 0.901249912 | 0.933033675 | 0.937775498 | 0.891603519 |
Hainan | 1 | 1 | 1 | 1 |
Chongqing | 0.896524944 | 0.889127827 | 0.913959851 | 0.943742014 |
Sichuan | 1 | 1 | 1 | 1 |
Guizhou | 1 | 1 | 1 | 1 |
Yunnan | 0.685418699 | 0.874419103 | 0.943392358 | 0.958876921 |
Tibet | 1 | 1 | 1 | 1 |
Shaanxi | 1 | 1 | 1 | 1 |
Gansu | 0.734498958 | 0.722861528 | 0.720456486 | 0.71051886 |
Qinghai | 1 | 1 | 1 | 1 |
Ningxia | 1 | 1 | 1 | 1 |
Xinjiang | 1 | 1 | 1 | 1 |
Scale | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|
Number of “1” | 14 | 15 | 14 | 14 |
Mean values | 0.960846732 | 0.965154953 | 0.961535153 | 0.959233546 |
Beijing | 1 | 1 | 1 | 1 |
Tianjin | 1 | 1 | 1 | 1 |
Hebei | 0.99031636 | 0.956360219 | 0.952135066 | 0.973404655 |
Shanxi | 0.917604772 | 0.919805225 | 0.920142271 | 0.926550722 |
Inner Mongolia | 0.974153006 | 0.983459883 | 0.983719805 | 1 |
Liaoning | 0.999195714 | 1 | 0.993975762 | 0.97716915 |
Jilin | 0.971682712 | 0.99707285 | 0.998150439 | 0.995625405 |
Heilongjiang | 1 | 1 | 1 | 1 |
Shanghai | 1 | 1 | 1 | 1 |
Jiangsu | 1 | 1 | 1 | 0.98745086 |
Zhejiang | 1 | 1 | 1 | 1 |
Anhui | 0.998621612 | 0.997803217 | 0.981784367 | 0.978347235 |
Fujian | 1 | 1 | 1 | 1 |
Jiangxi | 0.995480757 | 0.995906898 | 0.988500945 | 0.998238031 |
Shandong | 0.885800967 | 0.896802698 | 0.85146753 | 0.834198369 |
Henan | 0.909562634 | 0.913604138 | 0.884266745 | 0.776282684 |
Hubei | 1 | 1 | 1 | 1 |
Hunan | 0.989602481 | 0.99569094 | 0.984981999 | 0.992456398 |
Guangdong | 1 | 1 | 1 | 1 |
Guangxi | 0.985197402 | 0.999295353 | 0.978909885 | 0.980587728 |
Hainan | 1 | 1 | 1 | 1 |
Chongqing | 0.944172535 | 0.980221365 | 0.994293388 | 0.999763172 |
Sichuan | 1 | 1 | 1 | 1 |
Guizhou | 1 | 1 | 1 | 1 |
Yunnan | 0.98250859 | 0.999916476 | 0.997496304 | 0.999888668 |
Tibet | 0.734372097 | 0.745466154 | 0.739718529 | 0.729462273 |
Shaanxi | 1 | 1 | 1 | 1 |
Gansu | 0.829970586 | 0.845979091 | 0.866269487 | 0.89128308 |
Qinghai | 0.801390551 | 0.822906814 | 0.839865076 | 0.830865163 |
Ningxia | 0.876615927 | 0.869512234 | 0.851912157 | 0.864666337 |
Xinjiang | 1 | 1 | 1 | 1 |
Return of Scale | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|
Number of “CRS” | 14 | 16 | 14 | 14 |
Number of “IRS” | 9 | 8 | 8 | 7 |
Number of “DRS” | 8 | 7 | 9 | 10 |
crste | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|
Number of “1” | 14 | 15 | 14 | 14 |
Mean values | 0.882431746 | 0.89561 | 0.89927 | 0.90367 |
Beijing | 1 | 1 | 1 | 1 |
Tianjin | 1 | 1 | 1 | 1 |
Hebei | 0.710448844 | 0.765847 | 0.752401 | 0.765742 |
Shanxi | 0.574101832 | 0.573422 | 0.570759 | 0.587879 |
Inner Mongolia | 0.955675991 | 0.977185 | 0.974955 | 1 |
Liaoning | 0.979063574 | 1 | 0.993976 | 0.977169 |
Jilin | 0.660290607 | 0.672478 | 0.67065 | 0.735568 |
Heilongjiang | 1 | 1 | 1 | 1 |
Shanghai | 1 | 1 | 1 | 1 |
Jiangsu | 1 | 1 | 1 | 0.987451 |
Zhejiang | 1 | 1 | 1 | 1 |
Anhui | 0.708872252 | 0.70319 | 0.704436 | 0.697353 |
Fujian | 1 | 1 | 1 | 1 |
Jiangxi | 0.819476306 | 0.812889 | 0.829719 | 0.82509 |
Shandong | 0.885800967 | 0.896803 | 0.851468 | 0.834198 |
Henan | 0.728238112 | 0.731936 | 0.740179 | 0.776283 |
Hubei | 1 | 1 | 1 | 1 |
Hunan | 0.903611472 | 0.902352 | 0.965393 | 0.992042 |
Guangdong | 1 | 1 | 1 | 1 |
Guangxi | 0.887909072 | 0.932376 | 0.917998 | 0.874295 |
Hainan | 1 | 1 | 1 | 1 |
Chongqing | 0.846474228 | 0.871542 | 0.908744 | 0.943519 |
Sichuan | 1 | 1 | 1 | 1 |
Guizhou | 1 | 1 | 1 | 1 |
Yunnan | 0.67342976 | 0.874346 | 0.94103 | 0.95877 |
Tibet | 0.734372097 | 0.745466 | 0.739719 | 0.729462 |
Shaanxi | 1 | 1 | 1 | 1 |
Gansu | 0.609612531 | 0.611526 | 0.624109 | 0.633273 |
Qinghai | 0.801390551 | 0.822907 | 0.839865 | 0.830865 |
Ningxia | 0.876615927 | 0.869512 | 0.851912 | 0.864666 |
Xinjiang | 1 | 1 | 1 | 1 |
Model | −2 Times the Log-Likelihood Value | Cardinality | df | p | AIC | BIC |
---|---|---|---|---|---|---|
Intercept distance | −152.395 | |||||
Final model | −194.017 | 41.622 | 6 | 0 | −180.017 | −160.275 |
Regression Coefficient | |
---|---|
Intercept distance | 1.179 ** (16.174) |
Degree of financial support for agriculture | 0.993 * (2.109) |
Degree of energy support | −0.043 (−0.427) |
Degree of water support | −0.157 * (−2.162) |
Degree of informatization | 0.111 (0.952) |
Degree of agribusiness | −1.044 ** (−2.860) |
Percentage of rural population | −0.665 ** (−4.608) |
log(Sigma) | −2.201 ** (−34.666) |
Sample size | 124 |
McFadden R2 | −0.273 |
Dependent variable: crste |
Period | DMU | Effch | Techch | Pech | Sech | Tfpch |
---|---|---|---|---|---|---|
2017–2018 | Beijing | 1 | 1.081556 | 1 | 1 | 1.081556 |
2017–2018 | Tianjin | 1 | 1.075355 | 1 | 1 | 1.075355 |
2017–2018 | Hebei | 1.081744 | 1.074394 | 1.117542 | 0.967967 | 1.162219 |
2017–2018 | Shanxi | 0.992801 | 1.051735 | 0.997933 | 0.994857 | 1.044163 |
2017–2018 | Inner Mongolia | 1.018594 | 1.08879 | 1.012749 | 1.005772 | 1.109036 |
2017–2018 | Liaoning | 1.023702 | 1.04966 | 1.020373 | 1.003262 | 1.074539 |
2017–2018 | Jilin | 1.016423 | 1.062699 | 0.996948 | 1.019534 | 1.080151 |
2017–2018 | Heilongjiang | 1 | 1.059278 | 1 | 1 | 1.059278 |
2017–2018 | Shanghai | 1 | 1.089818 | 1 | 1 | 1.089818 |
2017–2018 | Jiangsu | 1 | 1.031345 | 1 | 1 | 1.031345 |
2017–2018 | Zhejiang | 1 | 1.065401 | 1 | 1 | 1.065401 |
2017–2018 | Anhui | 0.997167 | 1.029834 | 0.993751 | 1.003438 | 1.026917 |
2017–2018 | Fujian | 1 | 1.073229 | 1 | 1 | 1.073229 |
2017–2018 | Jiangxi | 0.995182 | 1.063731 | 0.99266 | 1.002541 | 1.058606 |
2017–2018 | Shandong | 1.013658 | 1.04469 | 1 | 1.013658 | 1.058959 |
2017–2018 | Henan | 1.012738 | 1.037978 | 1.001169 | 1.011555 | 1.051199 |
2017–2018 | Hubei | 1 | 1.028943 | 1 | 1 | 1.028943 |
2017–2018 | Hunan | 1.00012 | 1.039655 | 0.99289 | 1.007282 | 1.039779 |
2017–2018 | Guangdong | 1 | 1.017633 | 1 | 1 | 1.017633 |
2017–2018 | Guangxi | 1.052359 | 1.008734 | 1.035134 | 1.01664 | 1.06155 |
2017–2018 | Hainan | 1 | 1.033159 | 1 | 1 | 1.033159 |
2017–2018 | Chongqing | 1.023135 | 1.056493 | 0.993506 | 1.029823 | 1.080935 |
2017–2018 | Sichuan | 1 | 1.039342 | 1 | 1 | 1.039342 |
2017–2018 | Guizhou | 1 | 1.102977 | 1 | 1 | 1.102977 |
2017–2018 | Yunnan | 1.292435 | 1.053826 | 1.273906 | 1.014545 | 1.362002 |
2017–2018 | Tibet | 0.992139 | 1.048887 | 1 | 0.992139 | 1.040642 |
2017–2018 | Shaanxi | 1 | 1.063093 | 1 | 1 | 1.063093 |
2017–2018 | Gansu | 0.999462 | 1.073364 | 0.987078 | 1.012546 | 1.072787 |
2017–2018 | Qinghai | 1.002575 | 1.052801 | 1 | 1.002575 | 1.055512 |
2017–2018 | Ningxia | 0.978936 | 1.087319 | 1 | 0.978936 | 1.064416 |
2017–2018 | Xinjiang | 1 | 1.122112 | 1 | 1 | 1.122112 |
2018–2019 | Beijing | 1 | 1.082752 | 1 | 1 | 1.082752 |
2018–2019 | Tianjin | 1 | 1.055464 | 1 | 1 | 1.055464 |
2018–2019 | Hebei | 0.989706 | 1.103949 | 0.988895 | 1.00082 | 1.092585 |
2018–2019 | Shanxi | 0.998536 | 1.098215 | 1.008736 | 0.989889 | 1.096608 |
2018–2019 | Inner Mongolia | 0.996003 | 1.097631 | 0.997685 | 0.998314 | 1.093244 |
2018–2019 | Liaoning | 0.999686 | 1.09312 | 1 | 0.999686 | 1.092777 |
2018–2019 | Jilin | 1.004196 | 1.108883 | 1.003234 | 1.000959 | 1.113536 |
2018–2019 | Heilongjiang | 1 | 1.109718 | 1 | 1 | 1.109718 |
2018–2019 | Shanghai | 1 | 1.092227 | 1 | 1 | 1.092227 |
2018–2019 | Jiangsu | 1 | 1.069138 | 1 | 1 | 1.069138 |
2018–2019 | Zhejiang | 1 | 1.102197 | 1 | 1 | 1.102197 |
2018–2019 | Anhui | 1.012681 | 1.097253 | 1.022323 | 0.990568 | 1.111167 |
2018–2019 | Fujian | 1 | 1.100032 | 1 | 1 | 1.100032 |
2018–2019 | Jiangxi | 1.025257 | 1.094478 | 1.030817 | 0.994606 | 1.122122 |
2018–2019 | Shandong | 0.967644 | 1.096541 | 1 | 0.967644 | 1.061061 |
2018–2019 | Henan | 1.027851 | 1.090147 | 1.045754 | 0.982881 | 1.120509 |
2018–2019 | Hubei | 1 | 1.090092 | 1 | 1 | 1.090092 |
2018–2019 | Hunan | 1.078462 | 1.0899 | 1.080877 | 0.997765 | 1.175415 |
2018–2019 | Guangdong | 1 | 1.12946 | 1 | 1 | 1.12946 |
2018–2019 | Guangxi | 0.990902 | 1.110025 | 1.00564 | 0.985345 | 1.099926 |
2018–2019 | Hainan | 1 | 1.103107 | 1 | 1 | 1.103107 |
2018–2019 | Chongqing | 1.039285 | 1.083151 | 1.029009 | 1.009986 | 1.125702 |
2018–2019 | Sichuan | 1 | 1.090826 | 1 | 1 | 1.090826 |
2018–2019 | Guizhou | 1 | 1.104277 | 1 | 1 | 1.104277 |
2018–2019 | Yunnan | 1.078133 | 1.07993 | 1.07888 | 0.999308 | 1.164309 |
2018–2019 | Tibet | 0.972491 | 1.070905 | 1 | 0.972491 | 1.041445 |
2018–2019 | Shaanxi | 1 | 1.084852 | 1 | 1 | 1.084852 |
2018–2019 | Gansu | 1.015698 | 1.092255 | 1.002747 | 1.012915 | 1.1094 |
2018–2019 | Qinghai | 0.993838 | 1.075644 | 1 | 0.993838 | 1.069016 |
2018–2019 | Ningxia | 0.9649 | 1.067222 | 1 | 0.9649 | 1.029763 |
2018–2019 | Xinjiang | 1 | 1.064995 | 1 | 1 | 1.064995 |
2019–2020 | Beijing | 1 | 1.03478 | 1 | 1 | 1.03478 |
2019–2020 | Tianjin | 1 | 1.052888 | 1 | 1 | 1.052888 |
2019–2020 | Hebei | 1.023046 | 1.106028 | 0.996327 | 1.026818 | 1.131518 |
2019–2020 | Shanxi | 1.028521 | 1.103685 | 1.02954 | 0.99901 | 1.135163 |
2019–2020 | Inner Mongolia | 1.024548 | 1.114029 | 1.008589 | 1.015822 | 1.141375 |
2019–2020 | Liaoning | 0.990719 | 1.078225 | 1 | 0.990719 | 1.068218 |
2019–2020 | Jilin | 1.098236 | 1.077455 | 1.097502 | 1.000669 | 1.183301 |
2019–2020 | Heilongjiang | 1 | 1.105457 | 1 | 1 | 1.105457 |
2019–2020 | Shanghai | 1 | 1.044847 | 1 | 1 | 1.044847 |
2019–2020 | Jiangsu | 1 | 1.077465 | 1 | 1 | 1.077465 |
2019–2020 | Zhejiang | 1 | 1.065462 | 1 | 1 | 1.065462 |
2019–2020 | Anhui | 1.001982 | 1.102422 | 0.995283 | 1.006731 | 1.104607 |
2019–2020 | Fujian | 1 | 1.061432 | 1 | 1 | 1.061432 |
2019–2020 | Jiangxi | 0.994623 | 1.115323 | 0.986843 | 1.007884 | 1.109325 |
2019–2020 | Shandong | 0.99169 | 1.097124 | 1 | 0.99169 | 1.088007 |
2019–2020 | Henan | 1.057024 | 1.115072 | 1.191705 | 0.886985 | 1.178658 |
2019–2020 | Hubei | 1 | 1.11242 | 1 | 1 | 1.11242 |
2019–2020 | Hunan | 1.027548 | 1.127912 | 1.019346 | 1.008046 | 1.158983 |
2019–2020 | Guangdong | 1 | 1.087595 | 1 | 1 | 1.087595 |
2019–2020 | Guangxi | 0.957942 | 1.112637 | 0.952254 | 1.005974 | 1.065842 |
2019–2020 | Hainan | 1 | 1.066561 | 1 | 1 | 1.066561 |
2019–2020 | Chongqing | 1.038458 | 1.102373 | 1.031424 | 1.00682 | 1.144768 |
2019–2020 | Sichuan | 1 | 1.15826 | 1 | 1 | 1.15826 |
2019–2020 | Guizhou | 1 | 1.124415 | 1 | 1 | 1.124415 |
2019–2020 | Yunnan | 1.014632 | 1.133587 | 1.016396 | 0.998265 | 1.150174 |
2019–2020 | Tibet | 0.975249 | 1.076658 | 1 | 0.975249 | 1.05001 |
2019–2020 | Shaanxi | 1 | 1.127938 | 1 | 1 | 1.127938 |
2019–2020 | Gansu | 1.006549 | 1.098318 | 0.990637 | 1.016062 | 1.105511 |
2019–2020 | Qinghai | 0.971136 | 1.088518 | 1 | 0.971136 | 1.057099 |
2019–2020 | Ningxia | 1.004343 | 1.089843 | 1 | 1.004343 | 1.094576 |
2019–2020 | Xinjiang | 1 | 1.119021 | 1 | 1 | 1.119021 |
2017–2018 | 2018–2019 | 2019–2020 | |
---|---|---|---|
Number of effch < 1 | 6 | 9 | 6 |
Number of techch < 1 | 0 | 0 | 0 |
Number of pech < 1 | 7 | 2 | 5 |
Number of sech < 1 | 4 | 13 | 7 |
Number of Tfpch > 1 | 31 | 31 | 31 |
2017 | 2018 | 2019 | 2020 | |
---|---|---|---|---|
Number of crste’s value of 1 | 14 | 15 | 14 | 14 |
Mean value of crste | 0.882432 | 0.895606 | 0.899268 | 0.903665 |
Number of vrste’s value of 1 | 18 | 19 | 19 | 21 |
Mean value of vrste | 0.917676 | 0.9271 | 0.934294 | 0.942052 |
Number of scale’s value of 1 | 14 | 15 | 14 | 14 |
Mean value of scale | 0.960847 | 0.965155 | 0.961535 | 0.959234 |
Number of CRS | 14 | 16 | 14 | 14 |
Number of IRS | 9 | 8 | 8 | 7 |
Number of DRS | 8 | 7 | 9 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Zhang, R.; Zou, Y. The Efficiency of China’s Agricultural Circular Economy and Its Influencing Factors under the Rural Revitalization Strategy: A DEA–Malmquist–Tobit Approach. Agriculture 2023, 13, 1454. https://doi.org/10.3390/agriculture13071454
Guo C, Zhang R, Zou Y. The Efficiency of China’s Agricultural Circular Economy and Its Influencing Factors under the Rural Revitalization Strategy: A DEA–Malmquist–Tobit Approach. Agriculture. 2023; 13(7):1454. https://doi.org/10.3390/agriculture13071454
Chicago/Turabian StyleGuo, Chenghan, Rong Zhang, and Yuntao Zou. 2023. "The Efficiency of China’s Agricultural Circular Economy and Its Influencing Factors under the Rural Revitalization Strategy: A DEA–Malmquist–Tobit Approach" Agriculture 13, no. 7: 1454. https://doi.org/10.3390/agriculture13071454
APA StyleGuo, C., Zhang, R., & Zou, Y. (2023). The Efficiency of China’s Agricultural Circular Economy and Its Influencing Factors under the Rural Revitalization Strategy: A DEA–Malmquist–Tobit Approach. Agriculture, 13(7), 1454. https://doi.org/10.3390/agriculture13071454