Effect of Dietary Calcium Propionate Inclusion Period on the Growth Performance, Carcass Characteristics, and Meat Quality of Feedlot Ram Lambs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Housing, and Management
2.2. Treatments and Experimental Design
2.3. Growth Performance and Ultrasound Measurements
2.4. Slaughter Procedure
2.5. Organ Mass
2.6. Carcass Characteristics
2.7. Whole Cuts and Tissue Composition
2.8. Meat Characteristics
2.9. Statistical Analyses
3. Results and Discussion
3.1. Growth Performance and Ultrasound Measurements
3.2. Organ Mass, Ultrasound Measurements and Carcass Characteristics
3.3. Whole Cuts
3.4. Meat Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teixeira, A.B.M.; Schuh, B.R.F.; Daley, V.L.; Pinto, P.H.N.; Fernandes, S.R.; de Freitas, J.A. Performance, biochemical and physiological parameters of Dorper× Santa Ines lambs fed with three levels of metabolizable energy. Trop. Anim. Health Prod. 2021, 53, 353. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Q.; Dai, C.; Li, J.; Huang, P.; Li, Y.; Ding, X.; Huang, J.; Hussain, T.; Yang, H. Effects of dietary energy on growth performance, carcass characteristics, serum biochemical index, and meat quality of female Hu lambs. Anim. Nutr. 2020, 6, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Huntington, G.B. Starch utilization by ruminants: From basics to the bunk. J. Anim. Sci. 1997, 75, 852–867. [Google Scholar] [CrossRef]
- Lawrence, J.D.; Mintert, J.R.; Anderson, J.D.; Anderson, D.P. Feed grains and livestock: Impacts on meat supplies and prices. Choices 2008, 23, 11–15. [Google Scholar]
- Suh, D.H.; Moss, C.B. Decompositions of corn price effects: Implications for feed grain demand and livestock supply. Agric. Econ. 2017, 48, 491–500. [Google Scholar] [CrossRef]
- Valente, T.N.P.; Sampaio, C.B.; Lima, E.D.S.; Deminicis, B.B.; Cezario, A.S.; Santos, W.B.R.D. Aspects of acidosis in ruminants with a focus on nutrition: A review. J. Agric. Sci. 2017, 9, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Stock, R.; Britton, R.; Acidosis in feedlot cattle; Parrott, C. Secondary benefits from feeding Rumensin. In Scientific Update on Rumensin/Tylan for the Professional Feed-Lot Consultant; Elanco Animal Health: Indianapolis, IN, USA, 1993; pp. A1–A13. [Google Scholar]
- Galyean, M.L.; Perino, L.J.; Duff, G.C. Interaction of cattle health/immunity and nutrition. J. Anim. Sci. 1999, 77, 1120–1134. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Aispuro, J.; Sanchez-Torres, M.; Mendoza-Martínez, G.; Cordero Mora, J.; Figueroa-Velasco, J.; Ayala-Monter, M.; Crosby-Galvan, M. Addition of calcium propionate to finishing lamb diets. Vet. Mex. 2018, 5, 37–46. [Google Scholar] [CrossRef]
- Cifuentes-Lopez, O.; Lee-Rangel, H.A.; Mendoza, G.D.; Delgado-Sanchez, P.; Guerrero-Gonzalez, L.; Chay-Canul, A.; Pinos-Rodriguez, J.A.; Flores-Ramírez, R.; Roque-Jimenez, J.A.; Relling, A.E. Effects of dietary calcium propionate supplementation on hypothalamic neuropeptide messenger RNA expression and growth performance in finishing rambouillet lambs. Life 2021, 11, 566. [Google Scholar] [CrossRef]
- Carrillo-Muro, O.; Rivera-Villegas, A.; Hernández-Briano, P.; López-Carlos, M.A.; Aguilera-Soto, J.I.; Estrada-Angulo, A.; Medina-Flores, C.A.; Méndez-Llorente, F. Effect of calcium propionate level on the growth performance, carcass characteristics, and meat quality of feedlot ram lambs. Small Rumin. Res. 2022, 207, 106618. [Google Scholar] [CrossRef]
- Saleem, A.M.; Singer, A.M. Growth performance and digestion of growing lambs fed diets supplemented with glycerol. Animal 2018, 12, 959–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraro, S.M.; Mendoza, G.D.; Miranda, L.A.; Gutiérrez, C.G. In vitro gas production and ruminal fermentation of glycerol, propylene glycol and molasses. Anim. Feed Sci. Technol. 2009, 154, 112–118. [Google Scholar] [CrossRef]
- Berthelot, V.; Bas, P.; Schmidely, P.; Duvaux-Ponter, C. Effect of dietary propionate on intake patterns and fatty acid composition of adipose tissues in lambs. Small Rumin. Res. 2001, 40, 29–39. [Google Scholar] [CrossRef]
- Mendoza-Martínez, G.D.; Pinos-Rodríguez, J.M.; Lee-Rangel, H.A.; Hernández-García, P.A.; Rojo-Rubio, R.; Relling, A. Effects of dietary calcium propionate on growth performance and carcass characteristics of finishing lambs. Anim. Prod. Sci. 2016, 56, 1194–1198. [Google Scholar] [CrossRef]
- Zhang, F.; Nan, X.; Wang, H.; Guo, Y.; Xiong, B. Research on the applications of calcium propionate in dairy cows: A review. Animals 2020, 10, 1336. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Akbary, S.M.; Maheri-Sis, N.; Aghsaghali, A.M. Effect of different energy levels of diet on feed efficiency, growth rate and carcass characteristics of fattening bahmaei lambs. J. Anim. Vet. Adv. 2008, 7, 1551–1554. [Google Scholar]
- Papi, N.; Mostafa-Tehrani, A.; Amanlou, H.; Memarian, M. Effects of dietary forage-to-concentrate ratios on performance and carcass characteristics of growing fat-tailed lambs. Anim. Feed Sci. Technol. 2011, 163, 93–98. [Google Scholar] [CrossRef]
- De Araújo Camilo, D.; Sales Pereira, E.; Guimarães Pimentel, P.; Lopes Oliveira, R.; Duarte Cândido, M.J.; Goes Ferreira Costa, M.R.; da Silva Aquino, R.M. Intake and feeding behaviour of Morada Nova lambs fed different energy levels. Ital. J. Anim. Sci. 2012, 11, e3. [Google Scholar] [CrossRef] [Green Version]
- Aiello, R.J.; Armentano, L.E.; Bertics, S.J.; Murphy, A.T. Volatile fatty acid uptake and propionate metabolism in ruminant hepatocytes. J. Dairy Sci. 1989, 72, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Cifuentes-López, R.O.; Lee-Rangel, H.A.; García-Lopez, J.C.; Vicente, J.G.; Flores-Primo, A.; Pinos-Rodriguez, J.M. Effect of calcium propionate on live weight, consumption and carcass of lambs fed on alfalfa hay (Medicago sativa). Agrociencia 2018, 52, 81–88. [Google Scholar]
- Lee-Rangel, H.A.; Mendoza, G.D.; Gonzalez, S.S. Effect of calcium propionate and sorghum level on lamb performance. Anim. Feed Sci. Technol. 2012, 177, 237–241. [Google Scholar] [CrossRef]
- NOM-024-ZOO. Especificaciones y Características Zoosanitarias para el Transporte de Animales, sus Productos y Subproductos, Productos Químicos, Farmacéuticos Biológicos y Alimenticios Para uso en Animales o Consumo por Éstos. 1995. Available online: https://www.sinec.gob.mx/SINEC/ (accessed on 15 October 2022).
- NOM-033-SAG/ZOO. Métodos Para dar Muerte a los Animales Domésticos y Silvestres. 2014. Available online: https://www.sinec.gob.mx/SINEC/ (accessed on 15 October 2022).
- NOM-051-ZOO. Trato Humanitario en la Movilización de Animales. 1995. Available online: https://www.sinec.gob.mx/SINEC/ (accessed on 15 October 2022).
- NOM-062-ZOO. Especificaciones Técnicas Para la Producción, Cuidado y uso de Animales de Laboratorio. 1999. Available online: https://www.sinec.gob.mx/SINEC/ (accessed on 15 October 2022).
- National Research Council (NRC). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007; p. 384. [Google Scholar]
- AOAC (Official Methods of Analysis). Official Methods of Analysis of AOAC International, 20th ed.; AOAC: Rockville, MD, USA, 2016. [Google Scholar]
- NAMP. The Meat Buyers Guide; North American Meat Processor Association: Weimar, TX, USA, 1997. [Google Scholar]
- Tsai, T.C.; Ockerman, H.W. Water binding measurement of meat. J. Food Sci. 1981, 46, 697–701. [Google Scholar] [CrossRef]
- AMSA. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat, 2nd ed.; American Meat Science Association: Champaign, IL, USA, 2016. [Google Scholar]
- Liu, Q.; Wang, C.; Guo, G.; Yang, W.Z.; Dong, K.H.; Huang, Y.X.; Yang, X.M.; He, D.C. Effects of calcium propionate on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. J. Agric. Sci. 2009, 147, 201–209. [Google Scholar] [CrossRef]
- Osorio-Teran, A.I.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Martínez-Gomez, D.; Hernández-García, P.A.; Martínez-García, J.A. Effect of calcium propionate and monensin on in vitro digestibility and gas production. Rev. Bras. Zootec. 2017, 46, 348–353. [Google Scholar] [CrossRef] [Green Version]
- Murillo-Ortiz, M.; Pámanes-Carrasco, G.; Castillo, Y.; Ortiz-Robledo, F.; Herrera-Torres, E. Evaluation of monensin, yeast and glucogenic precursor on growth performance, ruminal fermentation and digestive kinetics of feedlot steers. Indian J. Anim. Res. 2019, B-1003, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Villalba, J.J.; Provenza, F.D. Preference for flavored wheat straw by lambs conditioned with intraruminal administrations of sodium propionate. J. Anim. Sci. 1996, 74, 2362–2368. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, X.; Chen, W.; Zhang, Y.; Jiang, Y.; Meng, Q.; Zhou, Z. Growth performance and development of internal organ, and gastrointestinal tract of calf supplementation with calcium propionate at various stages of growth period. PLoS ONE 2017, 12, e0179940. [Google Scholar] [CrossRef] [Green Version]
- Nocek, J.E.; Herbein, J.H.; Polan, C.E. Influence of ration physical form, ruminal degradable nitrogen and age on rumen epithelial propionate and acetate transport and some enzymatic activities. Nutr. J. 1980, 110, 2355–2364. [Google Scholar] [CrossRef]
- Moloney, A.P. Growth and carcass composition in sheep offered isoenergetic rations which resulted in different concentrations of ruminal metabolites. Livest. Prod. Sci. 1998, 56, 157–164. [Google Scholar] [CrossRef]
- Allen, M.S. Drives and limits to feed intake in ruminants. Anim. Prod. Sci. 2014, 54, 1513–1524. [Google Scholar] [CrossRef]
- Allen, M.S.; Bradford, B.J.; Oba, M. Board-invited review: The hepatic oxidation theory of the control of feed intake and its application to ruminants. J. Anim. Sci. 2009, 87, 3317–3334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oba, M.; Allen, M.S. Dose-response effects of intrauminal infusion of propionate on feeding behavior of lactating cows in early or midlactation. J. Dairy Sci. 2003, 86, 2922–2931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradford, B.J.; Gour, A.D.; Nash, A.S.; Allen, M.S. Propionate challenge tests have limited value for investigating bovine metabolism. J. Nutr. 2006, 136, 1915–1920. [Google Scholar] [CrossRef] [Green Version]
- Farningham, D.A.H.; Whyte, C.C. The role of propionate and acetate in the control of food intake in sheep. Br. J. Nutr. 1993, 70, 37–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradford, B.J.; Allen, M.S. Depression in feed intake by a highly fermentable diet is related to plasma insulin concentration and insulin response to glucose infusion. J. Dairy Sci. 2007, 90, 3838–3845. [Google Scholar] [CrossRef] [PubMed]
- Piola Junior, W.; de Castro, F.A.B.; Bumbieris Junior, V.H.; da Silva, L.D.F.; Muniz, C.A.D.S.D.; Ribeiro, E.D.A. Effects of dietary energy level on the performance and carcass characteristics of lambs. Semin. Ciências Agrárias. 2020, 41, 2307–2316. [Google Scholar] [CrossRef]
- Deng, K.D.; Diao, Q.Y.; Jiang, C.G.; Tu, Y.; Zhang, N.F.; Liu, J.; Ma, T.; Zhao, Y.G.; Xu, G.S. Energy requirements for maintenance and growth of Dorper crossbred ram lambs. Livest. Sci. 2012, 150, 102–110. [Google Scholar] [CrossRef]
- Gomes, M.A.B.; Moraes, G.V.D.; Mataveli, M.; Macedo, F.D.A.F.D.; Carneiro, T.C.; Rossi, R.M. Performance and carcass characteristics of lambs fed on diets supplemented with glycerin from biodiesel production. Rev. Bras. Zootec. 2011, 40, 2211–2219. [Google Scholar] [CrossRef] [Green Version]
- Shadnoush, G.; Ghorbani, G.; Edris, M. Effect of different energy levels in feed and slaughter weights on carcass and chemical composition of Lori-Bakhtiari ram lambs. Small Rumin. Res. 2004, 51, 243–249. [Google Scholar] [CrossRef]
- Carpenter, Z.L. What is consumer-preferred lamb. J. Anim. Sci. 1996, 25, 1232–1235. [Google Scholar] [CrossRef] [Green Version]
- Ray, E.E.; Mandigo, R.W. Genetic and environmental factors affecting carcass traits of lambs. J. Anim. Sci. 1966, 25, 449–453. [Google Scholar] [CrossRef]
- Bradford, G.; Spurlock, G. Effects of castrating lambs on growth and body composition. Anim. Prod. 1964, 6, 291–299. [Google Scholar] [CrossRef]
- Owens, F.N.; Dubeski, P.; Hanson, C.F. Factors that alter the growth and development of ruminants. J. Anim. Sci. 1993, 71, 3138–3150. [Google Scholar] [CrossRef] [PubMed]
- Hamoen, J.R.; Vollebregt, H.M.; Van der Sman, R.G.M. Prediction of the time evolution of pH in meat. Food. Chem. 2013, 141, 2363–2372. [Google Scholar] [CrossRef]
- Tarumán, J.A.; Smulders, J.P.; Gallo, C.B. Risk factors for bruises and high muscle pH in lamb carcasses of Tierra Del Fuego. Chilean Patagonia. Open Access Library J. 2018, 5, e4291. [Google Scholar] [CrossRef]
- Watanabe, A.; Daly, C.C.; Devine, C.E. The effects of the ultimate pH of meat on tenderness changes during ageing. Meat Sci. 1996, 42, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Devine, C.E.; Graafhuis, A.E.; Muir, P.D.; Chrystall, B.B. The effect of growth rate and ultimate pH on meat quality of lambs. Meat Sci. 1993, 35, 63–77. [Google Scholar] [CrossRef]
- Stewart, S.M.; McGilchrist, P.; Gardner, G.E.; Pethick, D.W. Association between loin ultimate pH and plasma indicators of pre-slaughter stressors in Australian lamb. Meat Muscle Biol. 2018, 2, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Gardner, G.E.; McGilchrist, P.; Pethick, D.W. Ruminant glycogen metabolism. Anim. Prod. Sci. 2014, 54, 1575–1583. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Yang, W.Z.; Guo, G.; Yang, X.M.; He, D.C.; Dong, K.H.; Huang, Y.X. Effects of calcium propionate supplementation on lactation performance, energy balance and blood metabolites in early lactation dairy cows. J. Anim. Physiol. Anim. Nutr. 2010, 94, 605–614. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Meng, Q.X.; Lu, L.; Cui, Z.L.; Ren, L.P. The effect of calcium propionate supplementation on performance, meat quality, and mRNA expression of finishing steers fed a high-concentrate diet. J. Anim. Feed Sci. 2015, 24, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, D.L.; Hegarty, R.S.; Walker, P.J.; Pethick, D.W. Relationship between animal age, intramuscular fat, cooking loss, pH, shear force and eating quality of aged meat from sheep. Aust. J. Exp. Agric. 2006, 46, 879–884. [Google Scholar] [CrossRef]
- Bernués, A.; Ripoll, G.; Panea, B. Consumer segmentation based on convenience orientation and attitudes towards quality attributes of lamb meat. Food. Qual. Prefer. 2012, 26, 211–220. [Google Scholar] [CrossRef]
- Font-i-Furnols, M.; Guerrero, L. Consumer preference, behavior and perception about meat and meat products: An overview. Meat Sci. 2014, 98, 361–371. [Google Scholar] [CrossRef]
- Neethling, N.E.; Suman, S.P.; Sigge, G.O.; Hoffman, L.C.; Hunt, M.C. Exogenous and endogenous factors influencing color of fresh meat from ungulates. Meat Muscle Biol. 2017, 1, 253–275. [Google Scholar] [CrossRef] [Green Version]
- Prache, S.; Schreurs, N.; Guillier, L. Review: Factors affecting sheep carcass and meat quality attributes. Animal 2022, 16, 100330. [Google Scholar] [CrossRef]
- Piao, M.; Jung, D.; Kang, H.J.; Park, S.J.; Lee, J.O.; Kim, M.; Kim, H.J.; Kim, D.H.; Seo, J.K.; Jo, C.; et al. Effects of dietary glycerol inclusion on growth performance, carcass and meat quality characteristics, glycogen content, and meat volatile compounds in Korean cattle steers. Anim. Biosci. 2021, 34, 603–612. [Google Scholar] [CrossRef] [PubMed]
Ingredients | g kg−1 DM |
---|---|
Alfalfa hay | 100.0 |
Oats hay | 102.0 |
Dry-rolled corn | 460.0 |
Dried distillers grains | 129.0 |
Soybean meal 44% CP | 127.0 |
Molasses cane | 43.0 |
Calcium carbonate | 11.0 |
Sodium bentonite | 10.0 |
Sesquicarbonate | 17.0 |
Microminerals a | 0.5 |
Vitamins b | 0.5 |
Chemical composition, g kg−1 DM | |
Dry matter | 842.8 |
Crude protein | 163.0 |
Ether extract | 24.0 |
Neutral detergent fiber | 217.0 |
Calcium c | 8.3 |
Phosphorus c | 2.7 |
Ca:P ratio | 3.1 |
Calculated net energy, Mcal/kg | |
Maintenance | 2.0 |
Gain | 1.3 |
Item b | Days in CaPr a | SEM c | Effects (p-Value) | CaPr vs. Control | ||||
---|---|---|---|---|---|---|---|---|
0 | 14 | 28 | 42 | Linear | Quadratic | |||
IBW, kg | 39.5 | 39.1 | 39.4 | 38.6 | 0.44 | 0.27 | 0.71 | 0.39 |
FBW, kg | 49.2 | 50.4 | 51.5 | 49.5 | 0.55 | 0.35 | 0.01 | 0.05 |
ADG, g/d | 226.87 | 269.8 | 287.7 | 259.5 | 13.28 | 0.06 | 0.01 | 0.01 |
DMI, g/d | 1419.1 | 1437.5 | 1435.0 | 1354.5 | 25.37 | 0.10 | 0.05 | 0.73 |
ADG:DMI ratio | 0.16 | 0.19 | 0.20 | 0.19 | 0.01 | 0.09 | 0.05 | 0.01 |
Item b | Days in CaPr a | SEM c | Effects (p-Value) | CaPr vs. Control | ||||
---|---|---|---|---|---|---|---|---|
0 | 14 | 28 | 42 | Linear | Quadratic | |||
Empty BW, kg | 40.9 | 42.7 | 42.9 | 42.7 | 0.71 | 0.1 | 0.04 | 0.05 |
Skin | 158 | 142 | 159 | 170 | 8.61 | 0.2 | 0.16 | 0.89 |
Limbs | 26.5 | 25.3 | 27.6 | 24.4 | 1.42 | 0.56 | 0.54 | 0.7 |
Head | 41.9 | 42.9 | 39.1 | 42.4 | 0.98 | 0.62 | 0.31 | 0.75 |
Heart | 5.4 | 5.6 | 4.8 | 5.7 | 0.38 | 0.9 | 0.5 | 0.96 |
Lungs | 23.3 | 22.2 | 22.1 | 23.7 | 1.73 | 0.9 | 0.5 | 0.77 |
Liver | 22.5 | 21.6 | 21 | 19.4 | 2.43 | 0.39 | 0.91 | 0.56 |
Spleen | 2.8 | 2.6 | 2.3 | 2.7 | 0.38 | 0.65 | 0.52 | 0.54 |
Kidney | 3.1 | 3 | 2.8 | 3.1 | 0.15 | 0.68 | 0.2 | 0.37 |
Testicles | 20.3 | 17.8 | 15.8 | 18 | 1.32 | 0.16 | 0.13 | 0.08 |
Visceral fat | 36.5 | 49.5 | 37.5 | 32.6 | 5.5 | 0.36 | 0.16 | 0.62 |
Perirenal fat | 13.8 | 17.5 | 14.5 | 12.6 | 3.1 | 0.64 | 0.41 | 0.78 |
Stomach d | 31.6 | 27.8 | 29.9 | 31.9 | 1.7 | 0.68 | 0.13 | 0.42 |
Large intestine | 11.2 | 9.7 | 10.2 | 10.4 | 1.1 | 0.7 | 0.47 | 0.42 |
Small intestine | 19.1 | 17.6 | 19.6 | 20.3 | 1.1 | 0.26 | 0.38 | 0.92 |
Item b | Days in CaPr a | SEM c | Effects (p-Value) | CaPr vs. Control | ||||
---|---|---|---|---|---|---|---|---|
0 | 14 | 28 | 42 | Linear | Quadratic | |||
Ultrasound measurements | ||||||||
Fat thickness, mm | 3.0 | 3.5 | 3.6 | 3.9 | 0.23 | 0.01 | 0.78 | 0.02 |
LMA, cm2 | 12.5 | 12.6 | 13.2 | 12.0 | 0.47 | 0.68 | 0.2 | 0.88 |
Carcass characteristics | ||||||||
HCW, kg | 23.3 | 25.4 | 24.9 | 24.4 | 0.4 | 0.2 | 0.01 | 0.01 |
CCW, kg | 22.5 | 24.6 | 24.1 | 23.6 | 0.5 | 0.18 | 0.02 | 0.01 |
Dressing, % | 55.2 | 57.6 | 56.2 | 55.4 | 0.5 | 0.77 | 0.01 | 0.05 |
Cooling loss, % | 3.40 | 2.71 | 3.04 | 2.95 | 0.237 | 0.44 | 0.22 | 0.08 |
Carcass length, cm | 70.09 | 67.32 | 70.79 | 67.52 | 1.60 | 0.74 | 0.88 | 0.42 |
Leg circumference, cm | 45.90 | 45.24 | 43.97 | 43.89 | 1.55 | 0.29 | 0.86 | 0.40 |
Chest circumference, cm | 76.8 | 79.3 | 76.3 | 78.3 | 1.23 | 0.88 | 0.53 | 0.61 |
Shoulder composition | ||||||||
Muscle, % | 66.47 | 66.51 | 65.22 | 64.71 | 1.10 | 0.18 | 0.81 | 0.44 |
Fat, % | 14.17 | 15.18 | 16.05 | 16.33 | 1.25 | 0.19 | 0.77 | 0.25 |
Bone, % | 19.36 | 18.32 | 18.73 | 18.95 | 0.504 | 0.81 | 0.23 | 0.25 |
Item b | Days in CaPr a | SEM c | Effects (p-Value) | CaPr vs. Control | ||||
---|---|---|---|---|---|---|---|---|
0 | 14 | 28 | 42 | Linear | Quadratic | |||
Whole cuts, g/kg of EBW | ||||||||
Forequarter | 5.7 | 6.3 | 6.4 | 6.1 | 0.18 | 0.14 | 0.04 | 0.03 |
Hindquarter | 5.3 | 5.6 | 5.6 | 5.4 | 0.19 | 0.71 | 0.17 | 0.28 |
Shoulder | 2 | 2 | 2.1 | 2 | 0.06 | 0.78 | 0.25 | 0.48 |
Shoulder IMPS206 | 1.1 | 1 | 1 | 1.1 | 0.11 | 0.94 | 0.51 | 0.65 |
Leg IMPS233 | 2.9 | 3.2 | 3.2 | 3.2 | 0.09 | 0.02 | 0.37 | 0.02 |
Loin IMPS231 | 1.5 | 1.4 | 1.5 | 1.3 | 0.07 | 0.12 | 0.43 | 0.31 |
Rack IMPS204 | 0.7 | 0.8 | 0.8 | 0.8 | 0.02 | 0.02 | 0.02 | 0.001 |
Short rib | 0.7 | 0.7 | 0.7 | 0.6 | 0.05 | 0.7 | 0.21 | 0.6 |
Flank IMPS232 | 0.8 | 0.9 | 0.9 | 0.9 | 0.04 | 0.21 | 0.3 | 0.09 |
Breast | 0.8 | 0.9 | 1 | 0.9 | 0.06 | 0.23 | 0.22 | 0.12 |
Neck | 0.7 | 0.9 | 1 | 0.8 | 0.07 | 0.26 | 0.01 | 0.03 |
Whole cuts, as percentage of cold carcass weight (CCW) | ||||||||
Forequarter | 51.2 | 51.2 | 53.4 | 51.8 | 0.66 | 0.44 | 0.57 | 0.51 |
Hindquarter | 46.6 | 45.4 | 46.4 | 45.2 | 0.75 | 0.68 | 0.98 | 0.65 |
Shoulder | 17.4 | 16.4 | 17.2 | 16.6 | 0.25 | 0.54 | 0.7 | 0.3 |
Shoulder IMPS206 | 9.8 | 8.4 | 8.4 | 9.2 | 0.4 | 0.67 | 0.2 | 0.28 |
Leg IMPS233 | 25.6 | 25.6 | 26.2 | 27.4 | 0.4 | 0.1 | 0.5 | 0.4 |
Loin IMPS231 | 13.4 | 11.6 | 12.4 | 11 | 0.28 | 0.03 | 0.83 | 0.04 |
Rack IMPS204 | 6.2 | 6.6 | 6.4 | 6.6 | 0.05 | 0.09 | 0.6 | 0.07 |
Short rib | 5.8 | 6 | 5.8 | 5.4 | 0.18 | 0.39 | 0.46 | 0.81 |
Flank IMPS232 | 7 | 7.4 | 7.2 | 7.6 | 0.19 | 0.43 | 0.9 | 0.44 |
Breast | 7.2 | 7.4 | 8 | 7.8 | 0.25 | 0.39 | 0.63 | 0.41 |
Neck | 5.8 | 7.2 | 8.2 | 6.4 | 0.32 | 0.4 | 0.04 | 0.1 |
Item b | Days in CaPr a | SEM c | Effects (p-Value) | CaPr vs. Control | ||||
---|---|---|---|---|---|---|---|---|
0 | 14 | 28 | 42 | Linear | Quadratic | |||
Meat characteristics | ||||||||
pH24h | 5.2 | 5.6 | 5.7 | 5.7 | 0.15 | 0.02 | 0.24 | 0.01 |
Purge loss24h, % | 5 | 3.9 | 6 | 5 | 0.73 | 0.66 | 0.7 | 0.67 |
Cook loss, % | 26.4 | 22.3 | 22.6 | 24.4 | 2.6 | 0.62 | 0.28 | 0.29 |
WHC, % | 23.3 | 23 | 24.9 | 21.1 | 2.3 | 0.65 | 0.47 | 0.9 |
WBSF, kg/cm2 | 5 | 4.4 | 4.9 | 4.7 | 0.19 | 0.74 | 0.38 | 0.2 |
Color | ||||||||
L* | 44.1 | 43.7 | 46.3 | 43.5 | 1.75 | 0.91 | 0.5 | 0.83 |
a* | 17.8 | 17.2 | 17 | 16.9 | 0.89 | 0.48 | 0.84 | 0.49 |
b* | 6.1 | 6.5 | 6.2 | 5.1 | 0.61 | 0.23 | 0.26 | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrillo-Muro, O.; Rivera-Villegas, A.; Hernandez-Briano, P.; Lopez-Carlos, M.A.; Castro-Perez, B.I. Effect of Dietary Calcium Propionate Inclusion Period on the Growth Performance, Carcass Characteristics, and Meat Quality of Feedlot Ram Lambs. Agriculture 2023, 13, 1577. https://doi.org/10.3390/agriculture13081577
Carrillo-Muro O, Rivera-Villegas A, Hernandez-Briano P, Lopez-Carlos MA, Castro-Perez BI. Effect of Dietary Calcium Propionate Inclusion Period on the Growth Performance, Carcass Characteristics, and Meat Quality of Feedlot Ram Lambs. Agriculture. 2023; 13(8):1577. https://doi.org/10.3390/agriculture13081577
Chicago/Turabian StyleCarrillo-Muro, Octavio, Alejandro Rivera-Villegas, Pedro Hernandez-Briano, Marco Antonio Lopez-Carlos, and Beatriz Isabel Castro-Perez. 2023. "Effect of Dietary Calcium Propionate Inclusion Period on the Growth Performance, Carcass Characteristics, and Meat Quality of Feedlot Ram Lambs" Agriculture 13, no. 8: 1577. https://doi.org/10.3390/agriculture13081577
APA StyleCarrillo-Muro, O., Rivera-Villegas, A., Hernandez-Briano, P., Lopez-Carlos, M. A., & Castro-Perez, B. I. (2023). Effect of Dietary Calcium Propionate Inclusion Period on the Growth Performance, Carcass Characteristics, and Meat Quality of Feedlot Ram Lambs. Agriculture, 13(8), 1577. https://doi.org/10.3390/agriculture13081577