The Impact of Climate Change on the Urban–Rural Income Gap in China
Abstract
:1. Introduction
2. Theoretical Framework and Hypotheses
2.1. Direct Impact
2.2. Indirect Impact
3. Methods
3.1. Data
3.2. Models
3.2.1. Benchmark Model
3.2.2. Mediating-Effects Model
3.3. Variables
4. Results
4.1. Results of the Benchmark Analysis
4.2. Robustness Test
4.3. Mechanism Test
4.4. Heterogeneity Test
5. Extreme Climate and the Urban–Rural Income Gap
5.1. Method
5.2. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- IPCC (Intergovernmental Panel on Climate Change). AR6 Climate Change 2021: The Physical Science Basis. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 22 August 2023).
- Carleton, T.A.; Hsiang, S.M. Social and economic impacts of climate. Science 2016, 353, 6304. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.; Hsiang, S.M.; Miguel, E. Climate and conflict. Annu. Rev. Econ. 2015, 7, 577–617. [Google Scholar] [CrossRef]
- Zhou, Z.; Yu, Z.; Wu, H. Climate Shocks, Household Resource Allocation, and Vulnerability to Poverty. Agriculture 2022, 12, 971. [Google Scholar] [CrossRef]
- Rezaei Sadr, N.; Bahrdo, T.; Taghizadeh, R. Impacts of Paris agreement, fossil fuel consumption, and net energy imports on CO2 emissions: A panel data approach for three West European countries. Clean Technol. Environ. Policy 2022, 24, 1521–1534. [Google Scholar] [CrossRef]
- CMA (China Meteorological Administration) Climate Change Centre. Blue Book on Climate Change in China; Science Press: Beijing, China, 2022. [Google Scholar]
- Zeng, G.A.; Hu, J.J. International Comparison of Income Gap between Urban and Rural Areas. J. Shandong Soc. Sci. 2008, 10, 47–53. [Google Scholar]
- Cai, F.; Yang, T. Political Economy of the Income Gap between Urban and Rural Areas. Soc. Sci. China 2000, 4, 11–22+204. [Google Scholar]
- Lu, M.; Chen, Z. Urbanization, Urban-Biased Economic Policies and Urban–rural Inequality. Econ. Res. J. 2004, 6, 50–58. [Google Scholar]
- Chen, B.; Lin, Y.F.; Lin, W.P. Development Strategy, Urbanization and the Rural-urban Income Disparity in China. Soc. Sci. China 2014, 35, 5–20. [Google Scholar]
- Sicular, T.; Ximing, Y.; Gustafsson, B.; Shi, L. The urban–rural income gap and inequality in China. Rev. Income Wealth 2007, 53, 93–126. [Google Scholar] [CrossRef]
- Su, C.W.; Liu, T.Y.; Chang, H.L.; Jiang, X.Z. Is urbanization narrowing the urban–rural income gap? A cross-regional study of China. Habitat Int. 2015, 48, 79–86. [Google Scholar] [CrossRef]
- Yu, N.; Wang, Y. Can digital inclusive finance narrow the Chinese urban–rural income gap? The perspective of the regional urban–rural income structure. Sustainability 2021, 13, 6427. [Google Scholar] [CrossRef]
- Shi, G.F.; Shen, T.T. An Analysis on the Demographic Structure, Household Asset Allocation and Spatial Heterogeneity: Based on the Household Finance Survey in China. Soc. Sci. Front 2021, 7, 84–91. [Google Scholar]
- Mendelsohn, R.; Nordhaus, W.D.; Shaw, D. The impact of global warming on agriculture: A Ricardian analysis. Am. Econ. Rev. 1994, 753–771. [Google Scholar]
- Dell, M.; Jones, B.F.; Olken, B.A. Temperature and income: Reconciling new cross-sectional and panel estimates. Am. Econ. Rev. 2009, 99, 198–204. [Google Scholar] [CrossRef]
- Ojo, T.O.; Baiyegunhi, L.J.S. Climate change perception and its impact on net farm income of smallholder rice farmers in South-West, Nigeria. J. Clean. Prod. 2021, 310, 127373. [Google Scholar] [CrossRef]
- Abdel, G.A. Causes and consequences of inequality in Egypt. Muslim World 2021, 111, 5–26. [Google Scholar] [CrossRef]
- Liang, Q.M.; Wei, Y.M. Distributional impacts of taxing carbon in China: Results from the CEEPA model. Appl. Energy 2012, 92, 545–551. [Google Scholar] [CrossRef]
- Renner, S. Poverty and distributional effects of a carbon tax in Mexico. Energy Policy 2018, 112, 98–110. [Google Scholar] [CrossRef]
- Saelim, S. Carbon tax incidence on household demand: Effects on welfare, income inequality and poverty incidence in Thailand. J. Clean. Prod. 2019, 234, 521–533. [Google Scholar] [CrossRef]
- Zhang, H.; Hewings, G.J.D.; Zheng, X. The effects of carbon taxation in China: An analysis based on energy input-output model in hybrid units. Energy Policy 2019, 128, 223–234. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement; NBER: Cambridge, MA, USA, 1991. [Google Scholar]
- Greiner, A. Anthropogenic climate change in a descriptive growth model. Environ. Dev. Econ. 2004, 9, 645–662. [Google Scholar] [CrossRef]
- Fnkhauser, S.; Tol, R.S.J. On climate change and economic growth. Resour. Energy Econ. 2005, 27, 1–17. [Google Scholar] [CrossRef]
- Dell, M.; Jones, B.F.; Olken, B.A. Temperature Shocks and Economic Growth: Evidence from the Last Half Century. Am. Econ. J. Macroecon. 2012, 4, 66–95. [Google Scholar] [CrossRef]
- Burke, M.; Hsiang, S.M.; Miguel, E. Global non-linear effect of temperature on economic production. Nature 2015, 527, 235–239. [Google Scholar] [CrossRef]
- Bandara, J.S.; Cai, Y. The impact of climate change on food crop productivity, food prices and food security in South Asia. Econ. Anal. Policy 2014, 44, 451–465. [Google Scholar] [CrossRef]
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Barnard, P.; Moomaw, W.R. World Scientists’ Warning of a Climate Emergency. BioScience 2019, 70, 8–12. [Google Scholar] [CrossRef]
- Fróna, D.; Szenderák, J.; Harangi-Rákos, M. Economic effects of climate change on global agricultural production. Nat. Conserv. 2021, 44, 117–139. [Google Scholar] [CrossRef]
- Hsiang, S.M. Temperatures and cyclones strongly associated with economic production in the Caribbean and Central America. Proc. Natl. Acad. Sci. USA 2010, 107, 15367–15372. [Google Scholar] [CrossRef]
- Chen, X.; Yang, L. Temperature and industrial output: Firm-level evidence from China. J. Environ. Econ. Manag. 2017, 95, 257–274. [Google Scholar] [CrossRef]
- Yang, L.; Shi, J.Y.; Chen, X.G. The Effect of Temperature Changes on China’s Industrial Production and Mechanism Analysis. China Econ. Q. 2020, 20, 299–320. [Google Scholar]
- Tacoli, C. Crisis or adaptation? Migration and climate change in a context of high mobility. Environ. Urban. 2009, 21, 513–525. [Google Scholar] [CrossRef]
- Gray, C.L.; Mueller, V. Natural disasters and population mobility in Bangladesh. Proc. Natl. Acad. Sci. USA 2012, 109, 6000–6005. [Google Scholar] [CrossRef] [PubMed]
- Udmale, P.; Ichikawa, Y.; Manandhar, S.; Ishidaira, H.; Kiem, A.S. Farmers perception of drought impacts, local adaptation and administrative mitigation measures in Maharashtra State, India. Int. J. Disaster Risk Reduct. 2014, 10, 250–269. [Google Scholar] [CrossRef]
- Shayegh, S.; Manoussi, V.; Dasgupta, S. Climate change and development in South Africa: The impact of rising temperatures on economic productivity and labour availability. Clim. Dev. 2021, 13, 725–735. [Google Scholar] [CrossRef]
- Barrios, S.; Bertinelli, L.; Strobl, E. Climatic change and rural–urban migration: The case of sub-Saharan Africa. J. Urban Econ. 2006, 60, 357–371. [Google Scholar] [CrossRef]
- Henderson, J.V.; Storeygard, A.; Deichmann, U. Has climate change driven urbanization in Africa? J. Dev. Econ. 2017, 124, 60–82. [Google Scholar] [CrossRef]
- Wan, G.H. Urbanization and Inequality: An Analytical Approach and the Case of China. Econ. Res. J. 2013, 48, 73–86. [Google Scholar]
- Wan, G.H.; Jiang, W.R.; Zhao, M.X. The Common Prosperity Effect of Urbanization. Chin. Rural Econ. 2022, 448, 2–22. [Google Scholar]
- Kjellstrom, T.; Kovats, R.S.; Lloyd, S.J.; Holt, T.; Tol, R.S.J. The Direct Impact of Climate Change on Regional Labor Productivity. Arch. Environ. Occup. Health 2009, 64, 217–227. [Google Scholar] [CrossRef]
- Huang, K.; Zhao, H.; Huang, J.; Wang, J.; Findlay, C. The impact of climate change on the labor allocation: Empirical evidence from China. J. Environ. Econ. Manag. 2020, 104, 102376. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef]
- Deryugina, T.; Hsiang, S.M. Does the Environment Still Matter? Daily Temperature and Income in the United States; NBER: Cambridge, MA, USA, 2014. [Google Scholar]
- Yuan, Y.; Wang, M.; Zhu, Y.; Huang, X.; Xiong, X. Urbanization’s effects on the urban–rural income gap in China: A meta-regression analysis. Land Use Policy 2020, 99, 104995. [Google Scholar] [CrossRef]
- Zhong, S.; Wang, M.; Zhu, Y.; Chen, Z.; Huang, X. Urban expansion and the urban–rural income gap: Empirical evidence from China. Cities 2022, 129, 103831. [Google Scholar] [CrossRef]
- Theil, H. Economics and information Theory. North-Holl. 1967, 25, 16–28. [Google Scholar]
- Xu, M.; Jiang, Y. Can the Chian’s Industrial Structure Upgrading Narrow the Gap between Urban and Rural Consumption. Quant. Tech. Econ. Res. 2015, 32, 3–21. [Google Scholar]
- Barnett, B.J.; Mahul, O. Weather index insurance for agriculture and rural areas in lower-income countries. Am. J. Agric. Econ. 2007, 89, 1241–1247. [Google Scholar] [CrossRef]
- Do, V.Q.; Phung, M.L.; Truong, D.T.; Pham, T.T.T.; Dang, V.T.; Nguyen, T.K. The impact of extreme events and climate change on agricultural and fishery enterprises in Central Vietnam. Sustainability 2021, 13, 7121. [Google Scholar] [CrossRef]
- Perera, A.T.D.; Nik, V.M.; Chen, D.; Scartezzini, J.-L.; Hong, T. Quantifying the impacts of climate change and extreme climate events on energy systems. Nat. Energy 2020, 5, 150–159. [Google Scholar] [CrossRef]
- Liu, L.; Wen, Y.; Liang, Y.; Zhang, F.; Yang, T. Extreme weather impacts on inland waterways transport of Yangtze River. Atmosphere 2019, 10, 133. [Google Scholar] [CrossRef]
- Jalal, M.J.E.; Khan, M.A.; Hossain, M.E.; Yedla, S.; Alam, G.M. Does climate change stimulate household vulnerability and income diversity? Evidence from southern coastal region of Bangladesh. Heliyon 2021, 7, 9. [Google Scholar] [CrossRef]
- Cevik, S.; João, T.J. For whom the bell tolls: Climate change and income inequality. Energy Policy 2023, 174, 113475. [Google Scholar] [CrossRef]
- Wiebelt, M.; Breisinger, C.; Ecker, O.; Al-Riffai, P.; Robertson, R.; Thiele, R. Compounding food and income insecurity in Yemen: Challenges from climate change. Food Policy 2013, 43, 77–89. [Google Scholar] [CrossRef]
- Alamgir, M.S.; Furuya, J.; Kobayashi, S.; Binte, M.R.; Salam, M.A. Farmers’ net income distribution and regional vulnerability to climate change: An empirical study of Bangladesh. Climate 2018, 6, 65. [Google Scholar] [CrossRef]
- Celia, M. Climatic and Environmental Change, Migration, and Health. Annu. Rev. Public Health 2023, 44, 171–191. [Google Scholar]
- Claudia, T.; O’Neill, B.; Lamarque, J.F. Sensitivity of regional climate to global temperature and forcing. Environ. Res. Lett. 2015, 10, 074001. [Google Scholar]
- Deng, H.; Sun, W.; Yip, W.; Zheng, S. Household income inequality aggravates high-temperature exposure inequality in urban China. J. Environ. Manag. 2020, 275, 111224. [Google Scholar] [CrossRef]
- Noack, F.; Riekhof, M.C.; Di Falco, S. Droughts, biodiversity, and rural incomes in the tropics. J. Assoc. Environ. Resour. Econ. 2019, 6, 823–852. [Google Scholar] [CrossRef]
Variable | Description | Mean | Std.Dev. |
---|---|---|---|
Dependent variable | |||
Ratio | Urban–rural income ratio | 2.572 | 0.651 |
Theil | Theil index | 0.0000814 | 0.4489857 |
Key variable | |||
Tem | Average annual temperature | 14.50 | 5.013 |
Rain | Average annual rainfall | 1016 | 534.7 |
Control variable | |||
GDP_people | GDP per capita | 35,950 | 95,569 |
DP | Population density | 428.9 | 349.9 |
Finance | Ratio of local financial revenues to expenditures | 0.491 | 0.227 |
Student | Number of students enrolled in higher education colleges per 10,000 people | 145.1 | 191.9 |
Hospital | Number of beds in medical institutions per 10,000 people | 36.06 | 14.79 |
Consuming | Total retail sales of social consumer goods per capita | 12,328 | 11,619 |
Mechanism variable | |||
IncUrb | Logarithm of per capita disposable income of urban residents | 19,136 | 11,059 |
IncRur | Logarithm of per capita disposable income of rural residents | 8172 | 5684 |
Ur | Urbanization rate | 0.422 | 0.183 |
In | Percentage of employees in non-agricultural industries | 96.85 | 6.752 |
ln_Ratio | |||
---|---|---|---|
(1) | (2) | (3) | |
ln_Tem | 0.484 *** | 0.597 *** | 0.563 *** |
(0.04) | (0.07) | (0.06) | |
ln_Rain | 0.676 *** | 1.112 *** | 1.039 *** |
(0.07) | (0.07) | (0.07) | |
ln_Tem2 | −0.090 *** | −0.092 *** | −0.084 *** |
(0.01) | (0.02) | (0.01) | |
ln_Rain2 | −0.056 *** | −0.087 *** | −0.082 *** |
(0.01) | (0.01) | (0.01) | |
ln_GDP_people | −0.019 * | −0.076 *** | |
(0.01) | (0.01) | ||
ln_DP | −0.093 *** | −0.092 *** | |
(0.00) | (0.00) | ||
ln_Finance | −0.051 *** | 0.014 | |
(0.01) | (0.01) | ||
ln_Student | 0.059 *** | 0.053 *** | |
(0.00) | (0.00) | ||
ln_Hospital | −0.067 *** | −0.037 *** | |
(0.01) | (0.01) | ||
ln_Consuming | −0.090 *** | −0.098 *** | |
(0.01) | (0.01) | ||
Constant | −1.727 *** | −2.013 *** | −1.258 *** |
(0.24) | (0.24) | (0.26) | |
Year-fixed effect | Yes | ||
Individual-fixed effect | Yes | Yes | |
N | 5016 | 4911 | 4911 |
Theil | |||
---|---|---|---|
(1) | (2) | (3) | |
ln_Tem | 0.104 *** | 0.134 *** | 0.129 *** |
(0.01) | (0.02) | (0.01) | |
ln_Rain | 0.198 *** | 0.342 *** | 0.318 *** |
(0.02) | (0.02) | (0.02) | |
ln_Tem2 | −0.023 *** | −0.021 *** | −0.020 *** |
(0.00) | (0.00) | (0.00) | |
ln_Rain2 | −0.015 *** | −0.026 *** | −0.024 *** |
(0.00) | (0.00) | (0.00) | |
ln_GDP_people | −0.003 | −0.017 *** | |
(0.00) | (0.00) | ||
ln_DP | −0.026 *** | −0.026 *** | |
(0.00) | (0.00) | ||
ln_Finance | −0.016 *** | 0.001 | |
(0.00) | (0.00) | ||
ln_Student | 0.011 *** | 0.010 *** | |
(0.00) | (0.00) | ||
ln_Hospital | −0.013 *** | −0.007 ** | |
(0.00) | (0.00) | ||
ln_Consuming | −0.022 *** | −0.025 *** | |
(0.00) | (0.00) | ||
Constant | −0.657 *** | −0.847 *** | −0.634 *** |
(0.06) | (0.06) | (0.06) | |
Year-fixed effect | Yes | ||
Individual-fixed effect | Yes | Yes | |
Observations | 4521 | 4451 | 4451 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
ln_IncRur | ln_IncUrb | ln_Ur | ln_In | |
ln_Tem | −0.474 *** | 0.089 *** | −1.129 *** | 0.496 *** |
(0.05) | (0.03) | (0.19) | (0.04) | |
ln_Rain | −1.049 *** | −0.010 | −1.337 *** | −0.034 |
(0.08) | (0.06) | (0.14) | (0.02) | |
ln_Tem2 | 0.077 *** | −0.007 | 0.221 *** | −0.095 *** |
(0.01) | (0.01) | (0.04) | (0.01) | |
ln_Rain2 | 0.086 *** | 0.004 | 0.099 *** | 0.002 |
(0.01) | (0.00) | (0.01) | (0.00) | |
ln_GDP_people | 0.278 *** | 0.202 *** | 0.150 *** | −0.000 |
(0.03) | (0.02) | (0.03) | (0.00) | |
ln_DP | 0.081 *** | −0.011 ** | 0.075 *** | 0.011 *** |
(0.01) | (0.00) | (0.01) | (0.00) | |
ln_Finance | 0.063 *** | 0.077 *** | 0.060 *** | −0.002 |
(0.01) | (0.01) | (0.02) | (0.00) | |
ln_Student | −0.046 *** | 0.007 ** | −0.005 | 0.010 *** |
(0.00) | (0.00) | (0.01) | (0.00) | |
ln_Hospital | −0.054 *** | −0.091 *** | 0.473 *** | −0.026 *** |
(0.02) | (0.01) | (0.02) | (0.01) | |
ln_Consuming | 0.173 *** | 0.075 ** | 0.099 *** | 0.010 ** |
(0.04) | (0.03) | (0.03) | (0.00) | |
Constant | 7.702 *** | 6.444 *** | 0.569 | 3.962 *** |
(0.34) | (0.24) | (0.49) | (0.09) | |
Year-fixed effect | Yes | Yes | Yes | Yes |
Individual-fixed effect | Yes | Yes | Yes | Yes |
Observations | 4911 | 4911 | 4452 | 4908 |
ln_Ratio | |||
---|---|---|---|
Eastern Region | Central Region | Western Region | |
ln_Tem | 0.880 *** | 0.514 *** | −0.076 |
(0.19) | (0.09) | (0.20) | |
ln_Rain | −1.983 *** | −0.604 | 1.311 *** |
(0.24) | (0.37) | (0.11) | |
ln_Tem2 | −0.135 *** | −0.088 *** | 0.008 |
(0.04) | (0.02) | (0.04) | |
ln_Rain2 | 0.134 *** | 0.038 | −0.096 *** |
(0.02) | (0.03) | (0.01) | |
ln_GDP_people | −0.088 *** | −0.089 ** | −0.141 *** |
(0.01) | (0.04) | (0.03) | |
ln_DP | −0.089 *** | −0.047 *** | −0.078 *** |
(0.01) | (0.01) | (0.01) | |
ln_Finance | 0.068 *** | 0.052 *** | 0.113 *** |
(0.02) | (0.02) | (0.02) | |
ln_Student | 0.042 *** | 0.029 *** | 0.025 *** |
(0.00) | (0.01) | (0.01) | |
ln_Hospital | −0.068 *** | −0.112 *** | −0.007 |
(0.02) | (0.02) | (0.03) | |
ln_Consuming | 0.027 | −0.033 | −0.076 *** |
(0.02) | (0.03) | (0.02) | |
Constant | 7.943 *** | 4.130 *** | −0.985 ** |
(0.85) | (1.23) | (0.42) | |
Year-fixed effect | Yes | Yes | Yes |
Individual-fixed effect | Yes | Yes | Yes |
Observations | 1808 | 1828 | 1275 |
ln_Ratio | ||||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
high_Tem_num | −0.006 ** | −0.006 ** | ||||
(0.00) | (0.00) | |||||
low_Tem_num | 0.000 | 0.000 | ||||
(0.00) | (0.00) | |||||
high_Rain_num | 0.001 | 0.001 | ||||
(0.00) | (0.00) | |||||
low_Rain_num | 0.001 *** | 0.001 *** | ||||
(0.00) | (0.00) | |||||
ln_GDP_people | −0.057 *** | −0.057 *** | −0.057 *** | −0.057 *** | −0.055 *** | −0.055 *** |
(0.01) | (0.01) | (0.01) | (0.01) | (0.01) | (0.01) | |
ln_DP | −0.009 | −0.010 | −0.009 | −0.010 | −0.010 | −0.010 |
(0.01) | (0.01) | (0.01) | (0.01) | (0.01) | (0.01) | |
ln_Finance | 0.018 ** | 0.018 ** | 0.018 ** | 0.018 ** | 0.019 ** | 0.019 ** |
(0.01) | (0.01) | (0.01) | (0.01) | (0.01) | (0.01) | |
ln_Student | 0.004 | 0.004 | 0.004 | 0.004 | 0.003 | 0.003 |
(0.01) | (0.01) | (0.01) | (0.01) | (0.01) | (0.01) | |
ln_Hospital | −0.099 *** | −0.099 *** | −0.100 *** | −0.099 *** | −0.100 *** | −0.100 *** |
(0.01) | (0.01) | (0.01) | (0.01) | (0.01) | (0.01) | |
ln_Consuming | −0.012 | −0.012 | −0.012 | −0.012 | −0.013 * | −0.013 * |
(0.01) | (0.01) | (0.01) | (0.01) | (0.01) | (0.01) | |
Constant | 1.826 *** | 1.711 *** | 1.821 *** | 1.705 *** | 1.659 *** | 1.643 *** |
−0.12 | −0.12 | −0.13 | −0.12 | −0.11 | −0.12 | |
Year-fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
Individual-fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 4911 | 4911 | 4911 | 4911 | 4911 | 4911 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Wu, H.; Yao, R. The Impact of Climate Change on the Urban–Rural Income Gap in China. Agriculture 2023, 13, 1703. https://doi.org/10.3390/agriculture13091703
Xie Y, Wu H, Yao R. The Impact of Climate Change on the Urban–Rural Income Gap in China. Agriculture. 2023; 13(9):1703. https://doi.org/10.3390/agriculture13091703
Chicago/Turabian StyleXie, Yifeng, Haitao Wu, and Ruikuan Yao. 2023. "The Impact of Climate Change on the Urban–Rural Income Gap in China" Agriculture 13, no. 9: 1703. https://doi.org/10.3390/agriculture13091703
APA StyleXie, Y., Wu, H., & Yao, R. (2023). The Impact of Climate Change on the Urban–Rural Income Gap in China. Agriculture, 13(9), 1703. https://doi.org/10.3390/agriculture13091703