Surveying North American Specialty Crop Growers’ Current Use of Soilless Substrates and Future Research and Education Needs
Abstract
:1. Introduction
2. Materials and Methods
2.1. North American Specialty Crop Grower Survey
2.2. North American Specialty Crop Growers Focus Groups
3. Results and Discussion
3.1. Grower Survey
3.2. Focus Groups
Accessibility of Information to Growers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gruda, N. Soilless Culture Systems and Growing Media in Horticulture: An Overview. In Advances in Horticultural Soilless Culture; Gruda, N.S., Ed.; Burleigh Dodds Science: Cambridge, UK, 2021; pp. 1–20. [Google Scholar]
- Detweiler, M.B.; Sharma, T.; Detweiler, J.G.; Murphy, P.F.; Lane, S.; Carman, J.; Chudhary, A.S.; Halling, M.H.; Kim, K.Y. What Is the Evidence to Support the Use of Therapeutic Gardens for the Elderly? Psychiatry Investig. 2012, 9, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Landis, T.D.; Tinus, R.W.; McDonald, S.E.; Barnett, J.P. Containers and growing media. In The Container Tree Nursery Manual; Agricultural Handbook 674; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1990. [Google Scholar]
- U.S. Department of Agriculture. 2017 Census of Agriculture, 2019 Census of Horticultural Specialties. In N.A.S. Service; U.S. Department of Agriculture: Washington, DC, USA, 2020; p. 1. [Google Scholar]
- Blok, C.; Eveleens, B.; van Winkel, A. Growing media for food and quality of life in the period 2020–2050. Acta Hortic. 2021, 1305, 341–355. [Google Scholar] [CrossRef]
- Claire, D.; Watters, N.; Gendron, L.; Boily, C.; Pépin, S.; Caron, J. High productivity of soilless strawberry cultivation under rain shelters. Sci. Hortic. 2018, 232, 127–138. [Google Scholar] [CrossRef]
- Kingston, P.H.; Scagel, C.F.; Bryla, D.R.; Strik, B. Suitability of sphagnum moss, coir, and douglas fir bark as soilless sub-strates for container production of highbush blueberry. HortScience 2017, 52, 1692–1699. [Google Scholar] [CrossRef]
- Sambo, P.; Nicoletto, C.; Giro, A.; Pii, Y.; Valentinuzzi, F.; Mimmo, T.; Lugli, P.; Orzes, G.; Mazzetto, F.; Astolfi, S.; et al. Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective. Front. Plant Sci. 2019, 10, 923. [Google Scholar] [CrossRef] [PubMed]
- Raviv, M.; Leith, J.H. Soilless Culture Theory and Practice; Elsevier: San Diego, CA, USA, 2008. [Google Scholar]
- UN. The Worlds Cities in 2018. 2018. Available online: https://www.un.org/events/citiesday/assets/pdf/the_worlds_cities_in_2018_data_booklet.pdf (accessed on 28 August 2023).
- Tremblay, M.A. The key informant technique. A non-ethnographic application. Am. Anthropol. 1957, 59, 688–701. [Google Scholar]
- Gibson, K.E.; Lamm, A.J.; Masambuka-Kanchewa, F.; Fisher, P.R.; Gómez, C. Identifying Indoor Plant Propagation Research and Education Needs of Specialty Crop Growers. HortTechnology 2020, 30, 519–527. [Google Scholar] [CrossRef]
- Ary, D.; Jacobs, L.C.; Sorensen, C.K.; Walker, D.A. Introduction to Research in Education; Wadsworth Cengage Learning: Belmont, CA, USA, 2014. [Google Scholar]
- Chalofsky, N. How to Conduct Focus Groups; American Society for Training and Development: Alexandria, VA, USA, 1999. [Google Scholar]
- Lincoln, Y.S.; Guba, E.G. Judging the quality of case study reports. In The Qualitative Researcher’s Companion; Huberman, A.M., Miles, M.B., Eds.; Sage Publication: Thousand Oaks, CA, USA, 2002; pp. 205–216. [Google Scholar]
- Creswell, J.W.; Creswell, J.D. Research Design: Qualitative, Quantitative, and Mixed Method Approaches; Sage Publication: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Sandelowski, M. Combining qualitative and quantitative sampling, data collection, and analysis techniques in mixed-method studies. Res. Nursing Health 2000, 23, 246–255. [Google Scholar] [CrossRef]
- Bazeley, P. Integrative Analysis Strategies for Mixed Data Sources. Am. Behav. Sci. 2011, 56, 814–828. [Google Scholar] [CrossRef]
- White, A.S. From Nursery to Nature: Evaluating Native Herbaceous Flowering Plants versus Native Cultivars for Pollinator Habitat Restoration. 2016. A Dissertations. The University of Vermont. Available online: http://proxy.lib.ohio-state.edu/login?url=https://www.proquest.com/dissertations-theses/nursery-nature-evaluating-native-herbaceous/docview/1805944753/se-2 (accessed on 28 August 2023).
- Bevan, L.; Jones, M.; Zheng, Y. Optimisation of Nitrogen, Phosphorus, and Potassium for Soilless Production of Cannabis sativa in the Flowering Stage Using Response Surface Analysis. Front. Plant Sci. 2021, 12, 2587. [Google Scholar] [CrossRef]
- Summers, H.M.; Sproul, E.; Quinn, J.C. The greenhouse gas emissions of indoor cannabis production in the United States. Nat. Sustain. 2021, 4, 644–650. [Google Scholar] [CrossRef]
- Zheng, Y. Soilless production of drug-type Cannabis sativa. Acta Hortic. 2021, 1305, 376–382. [Google Scholar] [CrossRef]
- Knight, A. Towards Sustainable Growing Media. Chairman’s Report and Roadmap, Sustainable Growing Media Task Force. 2012. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/221019/pb13867-towards-sustainable-growing-media.pdf (accessed on 28 August 2023).
- Fulcher, A.; LeBude, A.V.; Owen, J.S.; White, S.A.; Beeson, R.C. The Next Ten Years: Strategic Vision of Water Resources for Nursery Producers. HortTechnology 2016, 26, 121–132. [Google Scholar] [CrossRef]
- Fields, J.S.; Gruda, N.S. Developments in inorganic materials, synthetic organic materials and peat in soilless culture systems. In Advances in Horticultural Soilless Culture; Gruda, N.S., Ed.; Burleigh Dodds Science: Cambridge, UK, 2021. [Google Scholar]
- Gruda, N.S.; Bragg, N. Developments in alternative organic materials for growing media in soilless culture systems. In Advances in Horticultural Soilless Culture; Gruda, N.S., Ed.; Burleigh Dodds Science: Cambridge, UK, 2021. [Google Scholar]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving environmentally sustainable growing media for soilless plant cultivation systems—A review. Sci. Hortic. 2016, 212, 220–234. [Google Scholar] [CrossRef]
- Karan, E.; Asgari, S. Resilience of food, energy, and water systems to a sudden labor shortage. Environ. Syst. Decis. 2021, 41, 63–81. [Google Scholar] [CrossRef] [PubMed]
- Levanon, G.; Cheng, B.; Paterra, M. The Risk of Future Labor Shortages in Different Occupations and Industries in the United States. Bus. Econ. 2014, 49, 227–243. [Google Scholar] [CrossRef]
- Gruda, N. Do soilless culture systems have an influence on product quality of vegetables? J. App. Bot. Food Qual. 2009, 82, 141–147. [Google Scholar]
- Massantini, F.; Favilli, R.; Magnani, G.; Oggiano, N. Soilless culture-biotechnology for high quality vegetables. Soil. Cult. 1988, 4, 27–40. [Google Scholar]
- Verbeke, W. Agriculture and the food industry in the information age. Eur. Rev. Agric. Econ. 2005, 32, 347–368. [Google Scholar] [CrossRef]
- Gizaw, Z. Public health risks related to food safety issues in the food market: A systematic literature review. Environ. Health Prev. Med. 2019, 24, 68. [Google Scholar] [CrossRef]
- Pennisi, G.; Orsini, F.; Gasperi, D.; Mancarella, S.; Sanoubar, R.; Antisari, L.V.; Vianello, G.; Gianquinto, G. Soilless system on peat reduce trace metals in urban-grown food: Unexpected evidence for a soil origin of plant contamination. Agron. Sustain. Dev. 2016, 36, 56. [Google Scholar] [CrossRef]
- Balan, C.; Bulai, P.; Bilba, D.; Macoveanu, M. Sphagnum moss peat: A green and economical sorbent for removal of heavy metals (Cd and Cr) from wastewaters. Environ. Eng. Manag. J. 2010, 9, 469–477. [Google Scholar] [CrossRef]
- Harker, F.; Gunson, F.; Jaeger, S.R. The case for fruit quality: An interpretive review of consumer attitudes, and preferences for apples. Postharvest Biol. Technol. 2003, 28, 333–347. [Google Scholar] [CrossRef]
- Zheng, Y. Integrated rootzone management for successful soilless culture. Acta Hortic. 2020, 1273, 1–8. [Google Scholar] [CrossRef]
- Howitt, R.; Medellín-Azuara, J.; MacEwan, D.; Lund, J.; Sumner, D. Economic Analysis of the 2014 Drought for California Agriculture; Center for Watershed Sciences, University of California: Davis, CA, USA, 2014. [Google Scholar]
- Haman, D.; Yeager, H. Irrigation System Selection for Container Nurseries; University of Florida Cooperative Extension Service: Gainesville, FL, USA, 2010. [Google Scholar]
- Hoskins, T.C.; Owen, J.S.; Fields, J.S.; Altland, J.E.; Easton, Z.M.; Niemiera, A.X. Solute Transport through a Pine Bark-based Substrate under Saturated and Unsaturated Conditions. J. Am. Soc. Hortic. Sci. 2014, 139, 634–641. [Google Scholar] [CrossRef]
- Mack, R.; Owen, J.S.; Niemiera, A.X.; Sample, D.J. Validation of Nursery and Greenhouse Best Management Practices through Scientific Evidence. HortTechnology 2019, 29, 700–715. [Google Scholar] [CrossRef]
- Abdi, D.E.; Fernandez, R.T. Reducing Water and Pesticide Movement in Nursery Production. HortTechnology 2019, 29, 730–735. [Google Scholar] [CrossRef]
- Bilderback, T.E.; Owen, J.S., Jr.; Altland, J.E.; Fain, G.B.; Jackson, B.E.; Riley, E.D.; Kraus, H.T.; Fonteno, W.C. Strategies for developing sustainable substrates in nursery crop production. Acta Hortic. 2013, 1013, 43–56. [Google Scholar] [CrossRef]
- Pershey, N.A.; Cregg, B.M.; Andresen, J.A.; Fernandez, R.T. Irrigation based on daily water use reduces nursery runoff volume and nutrient load without reducing growth of four conifers. HortScience 2015, 50, 1553–1561. [Google Scholar] [CrossRef]
- Asrey, R.; Kumar, S.; Meena, N.K. Influence of water quality on postharvest fruit and vegetable quality. In Preharvest Modulation of Postharvest Fruit and Vegetable Quality; Siddiqui, M.W., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 169–187. [Google Scholar]
- Taylor, A.J.; Fernandez, R.; Nzokou, P.; Cregg, B. Carbon Isotope Discrimination, Gas Exchange, and Growth of Con-tainer-grown Conifers Under Cyclic Irrigation. HortScience 2013, 48, 848–854. [Google Scholar] [CrossRef]
- Million, J.B.; Yeager, T.H. Leaching Fraction-based Microirrigation Schedule Reduced Water Use but Not N and P Loss during Production of a Container-grown Shrub. HortScience 2021, 56, 147–153. [Google Scholar] [CrossRef]
- Lea-Cox, J.D.; Smith, I.E. The interaction of air-filled porosity and irrigation regime on the growth of three woody per-ennial (citrus) species in pine bark substrates. Proc. South. Nurs. Assoc. Res. Conf. 1997, 42, 169–174. [Google Scholar]
- Bruckner, M. The Gulf of Mexico Dead Zone. Montana State Univ. Microbial. Life. Educ. Resources. 2019. Available online: https://serc.carleton.edu/microbelife/topics/deadzone/advanced.html (accessed on 28 August 2023).
- Ferraro, N.; Bosch, D.; Pease, J.; Owen, J.S. Costs of Capturing and Recycling Irrigation Water in Container Nurseries. HortScience 2017, 52, 258–263. [Google Scholar] [CrossRef]
- Acher, A.; Heuer, B.; Rubinskaya, E.; Fischer, E. Use of ultraviolet-disinfected nutrient solutions in greenhouses. J. Hortic. Sci. 1997, 72, 117–123. [Google Scholar] [CrossRef]
- Schnitzler, W. Pest and disease management of soilless culture. Acta Hortic. 2004, 648, 191–203. [Google Scholar] [CrossRef]
- Baker, K. The U.C. System for producing healthy container-grown plants: Through the use of clean soil, clean stock, and san-itation. Calif. Agric. Exp. Stn. Man. 1957, 23, 1–332. [Google Scholar]
- Hall, C.R.; Campbell, B.L.; Behe, B.K.; Yue, C.; Lopez, R.G.; Dennis, J.H. The Appeal of Biodegradable Packaging to Floral Consumers. HortScience 2010, 45, 583–591. [Google Scholar] [CrossRef]
- Isaak, M.; Lentz, W. Consumer Preferences for Sustainability in Food and Non-Food Horticulture Production. Sustainability 2020, 12, 7004. [Google Scholar] [CrossRef]
- Muller, A.; Ferre, M.; Engel, S.; Gattinger, A.; Holzkamper, A.; Huber, R.; Muller, M.; Six, J. Can soil-less crop production be a sustainable option for soil conservation and future agriculture? Land Use Pol. 2017, 69, 102–105. [Google Scholar] [CrossRef]
- Paranjpe, A.; Cantliffe, D.; Lamb, E.; Stoffella, P.; Powell, C. Winter strawberry production in greenhouses using soilless substrates: An alternative to methyl bromide soil fumigation. Proc. Fla. State Hortic. Soc. 2003, 116, 98–105. [Google Scholar]
- Pignata, G.; Casale, M.; Nicola, S. Water and nutrient supply in horticultural crops grown in soilless culture: Resource efficiency in dynamic and intensive systems. In Advances in Research on Fertilization Management of Vegetable Crops; Springer: Cham, Germany, 2017. [Google Scholar] [CrossRef]
- Putra, A.P.; Yuliando, H. Soilless culture system to support water use efficiency and product quality: A review. Agric. Agric. Sci. Procedia 2015, 3, 283–288. [Google Scholar] [CrossRef]
- Knox, G.W.; Chappell, M. Nursery Crop Selection and Market Niches; University of Florida Cooperative Extension Services ENH1194/EP455; University of Florida: Gainesville, FL, USA, 2011. [Google Scholar]
- Fulcher, A.; Cochran, D.R.; Koeser, A.K. An Introduction to the Impact of Utilizing Alternative Containers in Ornamental Crop Production Systems. HortTechnology 2015, 25, 6–7. [Google Scholar] [CrossRef]
- Brumfield, R.G.; DeVincentis, A.J.; Wang, X.; Fernandez, R.T.; Nambuthiri, S.; Geneve, R.L.; Koeser, A.K.; Bi, G.; Li, T.; Sun, Y.; et al. Economics of utilizing alternative containers in ornamental crop pro-duction systems. HortTechnology 2015, 25, 17–25. [Google Scholar] [CrossRef]
- Nambuthiri, S.; Fulcher, A.; Koeser, A.K.; Geneve, R.; Niu, G. Moving Toward Sustainability with Alternative Containers for Greenhouse and Nursery Crop Production: A Review and Research Update. HortTechnology 2015, 25, 8–16. [Google Scholar] [CrossRef]
- Li, T.; Bi, G.; Niu, G.; Nambuthiri, S.; Geneve, R.L.; Wang, X.; Fernandez, R.T.; Sun, Y.; Zhao, X. Feasibility of using bio-containers in a pot-in-pot system for nursery production of river birch. HortTechnology 2015, 25, 57–62. [Google Scholar] [CrossRef]
- Bar-Tal, A.; Saha, U.K.; Raviv, M.; Tuller, M. Inorganic and Synthetic Organic Components of Soilless Culture and Potting Mixtures. In Soilless Culture: Theory and Practice, 2nd ed.; Raviv, M., Lieth, J.H., Bar-Tal, A., Eds.; Academic Press: London, UK, 2019. [Google Scholar]
- Bohme, M. Evaluation of organic, synthetic, and mineral substrates for hydroponically grown cucumbers. Acta Hortic. 1995, 401, 209–217. [Google Scholar] [CrossRef]
- Yap, Z.S.; Khalid, N.H.A.; Haron, Z.; Mohamed, A.; Tahir, M.M.; Hasyim, S.; Saggaff, A. Waste material wool and its opportunities—A review. Materials 2021, 14, 5777. [Google Scholar] [CrossRef]
- Kennard, N.; Stirling, R.; Prashar, A.; Lopez-Capel, E. Evaluation of Recycled Materials as Hydroponic Growing Media. Agronomy 2020, 10, 1092. [Google Scholar] [CrossRef]
- Knox, G.W.; Chappell, M. Alternatives to Petroleum-Based Containers for the Nursery Industry; EDIS: Fort Bragg, NC, USA, 2014. [Google Scholar]
- Jones, G.E.; Garforth, C. Chapter 1—The History, Development, and Future of Agriculture Extension. Improving Agriculture Extension. A Reference Manual; Food and Agriculture Organization of the United Nations: Rome, Italy, 1997; ISBN 92-5-104007-9. [Google Scholar]
Area | West | East | Total |
---|---|---|---|
Effect on crop quality and uniformity | 4 | 5 | 9 |
Fertilizer management | 3 | 5 | 8 |
Water management | 4 | 4 | 8 |
Economic costs/benefits; ROI | 2 | 4 | 6 |
Effect on production time | 0 | 4 | 4 |
Disease and pest management | 0 | 3 | 3 |
Labor management | 0 | 1 | 1 |
Selecting materials to use with specific crops | 0 | 1 | 1 |
Clear options, plans, and guidelines for use | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fields, J.S.; Owen, J.S., Jr.; Lamm, A.; Altland, J.; Jackson, B.; Oki, L.; Samtani, J.B.; Zheng, Y.; Criscione, K.S. Surveying North American Specialty Crop Growers’ Current Use of Soilless Substrates and Future Research and Education Needs. Agriculture 2023, 13, 1727. https://doi.org/10.3390/agriculture13091727
Fields JS, Owen JS Jr., Lamm A, Altland J, Jackson B, Oki L, Samtani JB, Zheng Y, Criscione KS. Surveying North American Specialty Crop Growers’ Current Use of Soilless Substrates and Future Research and Education Needs. Agriculture. 2023; 13(9):1727. https://doi.org/10.3390/agriculture13091727
Chicago/Turabian StyleFields, Jeb S., James S. Owen, Jr., Alexa Lamm, James Altland, Brian Jackson, Lorence Oki, Jayesh B. Samtani, Youbin Zheng, and Kristopher S. Criscione. 2023. "Surveying North American Specialty Crop Growers’ Current Use of Soilless Substrates and Future Research and Education Needs" Agriculture 13, no. 9: 1727. https://doi.org/10.3390/agriculture13091727
APA StyleFields, J. S., Owen, J. S., Jr., Lamm, A., Altland, J., Jackson, B., Oki, L., Samtani, J. B., Zheng, Y., & Criscione, K. S. (2023). Surveying North American Specialty Crop Growers’ Current Use of Soilless Substrates and Future Research and Education Needs. Agriculture, 13(9), 1727. https://doi.org/10.3390/agriculture13091727