Hyperspectral Estimation of SPAD Value of Cotton Leaves under Verticillium Wilt Stress Based on GWO–ELM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Hyperspectral Data Acquisition
2.3. Determination of SPAD Values
2.4. Data Processing
2.4.1. Dataset Partitioning
2.4.2. Spectral Data Preprocessing
2.4.3. Selection of Spectral Characteristic Bands
2.5. Model Construction Method
2.5.1. PSO–BP Model
2.5.2. GWO–ELM Model
2.5.3. Model Construction Process
2.6. Model Evaluation Statistics
3. Results
3.1. Statistics of SPAD Values of Cotton Leaves
3.2. Spectral Characteristics of Cotton Leaves with Different SPAD Values
3.3. Characteristic Band Selection of Hyperspectral Data
3.3.1. Characteristic Bands Are Selected Based on Correlation Coefficients
3.3.2. Selection of Characteristic Parameters Based on Vegetation Indices
3.3.3. Selection of Characteristic Parameters Based on SPA and CARS
3.4. Construction and Optimal Selection of Cotton Leaf SPAD Estimation Model
3.4.1. Single-Factor Model Construction
3.4.2. Multifactor Model Construction Based on PSO–BP
3.4.3. Multifactor Model Construction Based on GWO–ELM
3.4.4. Comparison of Estimation Accuracy among Different Modeling Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fei, H.; Fan, Z.; Wang, C.; Zhang, N.; Wang, T.; Chen, R.; Bai, T. Cotton Classification Method at the County Scale Based on Multi-Features and Random Forest Feature Selection Algorithm and Classifier. Remote Sens. 2022, 14, 829. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, L.; Zhou, J.; Zhang, X.; Feng, Z.; Wei, F.; Zhao, L.; Zhang, Y.; Feng, H.; Zhu, H. Calcium-Dependent Protein Kinase GhCDPK28 Was Dentified and Involved in Verticillium Wilt Resistance in Cotton. Front. Plant Sci. 2021, 12, 772649. [Google Scholar] [CrossRef] [PubMed]
- Fradin, E.F.; Thomma, B.P. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol. Plant Pathol. 2006, 7, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Klosterman, S.J.; Atallah, Z.K.; Vallad, G.E.; Subbarao, K.V. Diversity, pathogenicity, and management of Verticillium species. Annu. Rev. Phytopathol. 2009, 47, 39–62. [Google Scholar] [CrossRef]
- Song, R.; Li, J.; Xie, C.; Jian, W.; Yang, X. An Overview of the Molecular Genetics of Plant Resistance to the Verticillium Wilt Pathogen Verticillium dahliae. Int. J. Mol. Sci. 2020, 21, 1120. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, X.; Lin, Z.; Zhu, Q.-H.; Li, Y.; Xue, F.; Cheng, S.; Feng, H.; Sun, J.; Liu, F. Comparative transcriptome analysis of interspecific CSSLs reveals candidate genes and pathways involved in Verticillium wilt resistance in cotton (Gossypium hirsutum L.). Ind. Crop. Prod. 2023, 197, 116560. [Google Scholar] [CrossRef]
- Ayele, A.G.; Wheeler, T.A.; Dever, J.K. Impacts of Verticillium Wilt on Photosynthesis Rate, Lint Production, and Fiber Quality of Greenhouse-Grown Cotton (Gossypium hirsutum). Plants 2020, 9, 857. [Google Scholar] [CrossRef]
- Chen, B.; Li, S.; Wang, K.; Zhou, G.; Bai, J. Evaluating the severity level of cotton Verticillium using spectral signature analysis. Int. J. Remote Sens. 2012, 33, 2706–2724. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Amirruddin, A.D.; Muharam, F.M.; Ismail, M.H.; Ismail, M.F.; Tan, N.P.; Karam, D.S. Hyperspectral remote sensing for assessment of chlorophyll sufficiency levels in mature oil palm (Elaeis guineensis) based on frond numbers: Analysis of decision tree and random forest. Comput. Electron. Agric. 2020, 169, 105221. [Google Scholar] [CrossRef]
- Vesali, F.; Omid, M.; Kaleita, A.; Mobli, H. Development of an android app to estimate chlorophyll content of corn leaves based on contact imaging. Comput. Electron. Agric. 2015, 116, 211–220. [Google Scholar] [CrossRef]
- Steele, M.R.; Gitelson, A.A.; Rundquist, D.C. A comparison of two techniques for nondestructive measurement of chlorophyll content in grapevine leaves. Agron. J. 2008, 100, 779–782. [Google Scholar] [CrossRef]
- Huang, X.; Guan, H.; Bo, L.; Xu, Z.; Mao, X. Hyperspectral proximal sensing of leaf chlorophyll content of spring maize based on a hybrid of physically based modelling and ensemble stacking. Comput. Electron. Agric. 2023, 208, 107745. [Google Scholar] [CrossRef]
- Uddling, J.; Gelang-Alfredsson, J.; Piikki, K.; Pleijel, H. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth. Res. 2007, 91, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Zhou, L.; Zhao, N.; He, Y.; Qiu, Z. Development of a low-cost portable device for pixel-wise leaf SPAD estimation and blade-level SPAD distribution visualization using color sensing. Comput. Electron. Agric. 2021, 190, 106487. [Google Scholar] [CrossRef]
- Cavallo, D.P.; Cefola, M.; Pace, B.; Logrieco, A.F.; Attolico, G. Contactless and non-destructive chlorophyll content prediction by random forest regression: A case study on fresh-cut rocket leaves. Comput. Electron. Agric. 2017, 140, 303–310. [Google Scholar] [CrossRef]
- Shen, L.; Gao, M.; Yan, J.; Wang, Q.; Shen, H. Winter Wheat SPAD Value Inversion Based on Multiple Pretreatment Methods. Remote Sens. 2022, 14, 4660. [Google Scholar] [CrossRef]
- Osco, L.P.; Ramos, A.P.M.; Moriya, É.A.S.; Bavaresco, L.G.; Lima, B.C.D.; Estrabis, N.; Pereira, D.R.; Creste, J.E.; Júnior, J.M.; Gonçalves, W.N.; et al. Modeling hyperspectral response of water-stress induced lettuce plants using artificial neural networks. Remote Sens. 2019, 11, 2797. [Google Scholar] [CrossRef]
- Sonobe, R.; Yamashita, H.; Mihara, H.; Morita, A.; Ikka, T. Hyperspectral reflectance sensing for quantifying leaf chlorophyll content in wasabi leaves using spectral pre-processing techniques and machine learning algorithms. Int. J. Remote Sens. 2021, 42, 1311–1329. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, D.; Cai, Z.; Wang, L.; Wang, J.; Sun, L.; Fan, X.; Shen, S.; Zhao, J. Spectral technology and multispectral imaging for estimating the photosynthetic pigments and SPAD of the Chinese cabbage based on machine learning. Comput. Electron. Agric. 2022, 195, 106814. [Google Scholar] [CrossRef]
- Mao, Z.-H.; Deng, L.; Duan, F.-Z.; Li, X.-J.; Qiao, D.-Y. Angle effects of vegetation indices and the influence on prediction of SPAD values in soybean and maize. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102198. [Google Scholar] [CrossRef]
- Wang, T.; Gao, M.; Cao, C.; You, J.; Zhang, X.; Shen, L. Winter wheat chlorophyll content retrieval based on machine learning using in situ hyperspectral data. Comput. Electron. Agric. 2022, 193, 106728. [Google Scholar] [CrossRef]
- Sudu, B.; Rong, G.; Guga, S.; Li, K.; Zhi, F.; Guo, Y.; Zhang, J.; Bao, Y. Retrieving SPAD values of summer maize using UAV hyperspectral data based on multiple machine learning algorithm. Remote Sens. 2022, 14, 5407. [Google Scholar] [CrossRef]
- Lu, J.; Qiu, H.; Zhang, Q.; Lan, Y.; Wang, P.; Wu, Y.; Mo, J.; Chen, W.; Niu, H.; Wu, Z. Inversion of chlorophyll content under the stress of leaf mite for jujube based on model PSO-ELM method. Front. Plant Sci. 2022, 13, 1009630. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Nan, R.; Mi, T.; Song, Y.; Shi, F.; Liu, X.; Wang, Y.; Sun, F.; Xi, Y.; Zhang, C. Rapid and Nondestructive Evaluation of Wheat Chlorophyll under Drought Stress Using Hyperspectral Imaging. Int. J. Mol. Sci. 2023, 24, 5825. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, H.; Wang, D.; Li, H.; Mouazen, A.M. A novel spectral index for estimation of relative chlorophyll content of sugar beet. Comput. Electron. Agric. 2021, 184, 106088. [Google Scholar] [CrossRef]
- Li, Q.; Li, D.; Xu, A.; Liu, H. Breeding and cultivation techniques of a new cotton variety, Tahe 2. China Cotton 2020, 47, 30+41. [Google Scholar] [CrossRef]
- Chen, B.; Li, S.-K.; Wang, K.-R.; Wang, F.-Y.; Xiao, C.-H.; Pan, W.-C. Study on hyperspectral estimation of pigment contents in leaves of cotton under disease stress. Spectrosc. Spectr. Anal. 2010, 30, 421–425. [Google Scholar] [CrossRef]
- Ren, P.; Feng, M.-C.; Yang, W.-D.; Wang, C.; Liu, T.-T.; Wang, H.-Q. Response of winter wheat (Triticum aestivum L.) hyperspectral characteristics to low temperature stress. Spectrosc. Spectr. Anal. 2014, 34, 2490–2494. [Google Scholar] [CrossRef]
- Wang, J.; Song, X.; Mei, X.; Yang, G.; Li, Z.; Li, H.; Meng, Y. Sensitive bands selection and nitrogen content monitoring of rice based on Gaussian regression analysis. Spectrosc. Spectr. Anal. 2021, 41, 1722–1729. [Google Scholar]
- Sun, J.; Zhou, X.; Wu, X.; Zhang, X.; Li, Q. Identification of moisture content in tobacco plant leaves using outlier sample eliminating algorithms and hyperspectral data. Biochem. Biophys. Res. Commun. 2016, 471, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Xiong, Y.; Xu, Z.; Li, L.; Du, Y. Piecewise preprocessing of near-infrared spectra for improving prediction ability of a PLS model. Infrared Phys. Technol. 2022, 126, 104359. [Google Scholar] [CrossRef]
- Mishra, P.; Biancolillo, A.; Roger, J.M.; Marini, F.; Rutledge, D.N. New data preprocessing trends based on ensemble of multiple preprocessing techniques. Trends Anal. Chem. 2020, 132, 116045. [Google Scholar] [CrossRef]
- Miloš, B.; Bensa, A.; Japundžić-Palenkić, B. Evaluation of Vis-NIR preprocessing combined with PLS regression for estimation soil organic carbon, cation exchange capacity and clay from eastern Croatia. Geoderma Reg. 2022, 30, e00558. [Google Scholar] [CrossRef]
- Saberioon, M.; Císař, P.; Labbé, L.; Souček, P.; Pelissier, P. Spectral imaging application to discriminate different diets of live rainbow trout (Oncorhynchus mykiss). Comput. Electron. Agric. 2019, 165, 104949. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; Brown de Colstoun, E.; McMurtrey, J.E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Araújo, M.C.U.; Saldanha, T.C.B.; Galvao, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. Syst. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, N.; Feng, Y.; Gong, D.; Hu, X. Comparison of BP, PSO-BP and statistical models for predicting daily global solar radiation in arid Northwest China. Comput. Electron. Agric. 2019, 164, 104905. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar] [CrossRef]
- Deng, Y.; Xiao, H.; Xu, J.; Wang, H. Prediction model of PSO-BP neural network on coliform amount in special food. Saudi J. Biol. Sci. 2019, 26, 1154–1160. [Google Scholar] [CrossRef]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: A new learning scheme of feedforward neural networks. In Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), Budapest, Hungary, 25–29 July 2004; pp. 985–990. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Kunhare, N.; Tiwari, R.; Dhar, J. Intrusion detection system using hybrid classifiers with meta-heuristic algorithms for the optimization and feature selection by genetic algorithm. Comput. Electr. Eng. 2022, 103, 108383. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, X.; Shang, P.; Ma, R.; Yuan, X.; Li, L.; Bai, T. Detection of Cotton Verticillium Wilt Disease Severity Based on Hyperspectrum and GWO-SVM. Remote Sens. 2023, 15, 3373. [Google Scholar] [CrossRef]
- Yang, M.; Huang, C.; Kang, X.; Qin, S.; Ma, L.; Wang, J.; Zhou, X.; Lv, X.; Zhang, Z. Early Monitoring of Cotton Verticillium Wilt by Leaf Multiple “Symptom” Characteristics. Remote Sens. 2022, 14, 5241. [Google Scholar] [CrossRef]
- Jing, X.; Huang, W.-J.; Wang, J.-H.; Wang, J.-D.; Wang, K.-R. Hyperspectral inversion models on verticillium wilt severity of cotton leaf. Spectrosc. Spectr. Anal. 2009, 29, 3348–3352. [Google Scholar] [CrossRef]
- Guo, A.; Huang, W.; Ye, H.; Dong, Y.; Ma, H.; Ren, Y.; Ruan, C. Identification of wheat yellow rust using spectral and texture features of hyperspectral images. Remote Sens. 2020, 12, 1419. [Google Scholar] [CrossRef]
- Guo, S.; Chang, Q.; Cui, X.; Zhang, Y.; Chen, Q.; Jiang, D.; Luo, L. Hyperspectral estimation of maize SPAD value based on spectrum transformation and SPA-SVR. J. Northeast Agric. Univ. 2021, 52, 79–88. [Google Scholar] [CrossRef]
- Xie, C.; Wang, Q.; He, Y. Identification of different varieties of sesame oil using near-infrared hyperspectral imaging and chemometrics algorithms. PLoS ONE 2014, 9, e98522. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Chao, M.; Zhang, J.; Xu, X.; Song, P.; Zhang, J.; Huang, Z. Identification of Soybean Seed Varieties Based on Hyperspectral Imaging Technology. Sensors 2019, 19, 5225. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhu, J.; Yin, H.; Yan, Q.; Liu, H.; Guan, S.; Cai, Q.; Sun, J.; Yao, S.; Wei, R. Extreme learning machine and genetic algorithm in quantitative analysis of sulfur hexafluoride by infrared spectroscopy. Appl. Opt. 2022, 61, 2834–2841. [Google Scholar] [CrossRef] [PubMed]
Vegetation Index | Expression | Reference |
---|---|---|
TCARI (Transformed Chlorophyll Absorption in Reflectance Index) | [36] | |
MCARI (Modified Chlorophyll Absorption in Reflectance Index) | [37] | |
MTCI (MERIS Terrestrial Chlorophyll Index) | [38] | |
mNDVI (modified Normalized Difference Vegetation Index) | [39] |
Leaf Type | Preprocessing Type | Modeling Parameter | Regression Equation | Modeling Set | Validation Set | ||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | MRE (%) | R2 | RMSE | MRE (%) | ||||
Healthy | R | MTCI | 0.467 | 3.590 | 4.504 | 0.622 | 3.103 | 3.917 | |
SG-MC | 0.558 | 3.270 | 4.219 | 0.642 | 2.939 | 4.052 | |||
MTCI | 0.458 | 3.620 | 4.535 | 0.624 | 3.106 | 3.880 | |||
SG-MSC | 0.572 | 3.217 | 4.072 | 0.534 | 3.369 | 4.445 | |||
TCARI | 0.470 | 3.582 | 4.525 | 0.562 | 3.320 | 4.133 | |||
SG-SNV | 0.572 | 3.219 | 4.076 | 0.528 | 3.389 | 4.492 | |||
MCARI | 0.489 | 3.516 | 4.463 | 0.553 | 3.339 | 4.108 | |||
(1/SG)″ | 0.470 | 3.579 | 4.510 | 0.187 | 4.506 | 5.917 | |||
TCARI | 0.249 | 4.262 | 5.399 | 0.223 | 4.352 | 5.680 | |||
[lg(SG)]″ | 0.486 | 3.524 | 4.429 | 0.489 | 3.574 | 4.594 | |||
VW | R | MTCI | 0.410 | 4.324 | 5.948 | 0.663 | 3.489 | 4.767 | |
SG-MC | 0.472 | 4.090 | 5.441 | 0.706 | 3.153 | 3.861 | |||
MTCI | 0.404 | 4.347 | 5.998 | 0.662 | 3.521 | 4.828 | |||
SG-MSC | 0.606 | 3.534 | 4.636 | 0.684 | 3.409 | 4.505 | |||
MTCI | 0.403 | 4.348 | 6.001 | 0.665 | 3.507 | 4.813 | |||
SG-SNV | 0.614 | 3.496 | 4.596 | 0.665 | 3.546 | 4.705 | |||
MCARI | 0.432 | 4.243 | 5.843 | 0.610 | 3.658 | 4.776 | |||
(1/SG)″ | 0.503 | 3.967 | 5.298 | 0.539 | 3.958 | 5.168 | |||
TCARI | 0.291 | 4.739 | 6.337 | 0.273 | 4.998 | 6.464 | |||
[lg(SG)]″ | 0.546 | 3.793 | 5.258 | 0.674 | 3.348 | 4.567 |
Method | Healthy | VW | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Modeling Set | Validation Set | Modeling Set | Validation Set | |||||||||
R2 | RMSE | MRE (%) | R2 | RMSE | MRE (%) | R2 | RMSE | MRE (%) | R2 | RMSE | MRE (%) | |
R-SPA | 0.788 | 2.265 | 2.855 | 0.715 | 2.622 | 3.540 | 0.718 | 2.989 | 4.001 | 0.737 | 2.972 | 3.580 |
R-CARS | 0.789 | 2.261 | 2.786 | 0.749 | 2.460 | 3.141 | 0.802 | 2.505 | 3.299 | 0.767 | 2.797 | 3.592 |
SG-MC-SPA | 0.716 | 2.620 | 3.398 | 0.661 | 0.861 | 3.905 | 0.703 | 3.068 | 4.258 | 0.705 | 3.149 | 4.059 |
SG-MC-CARS | 0.828 | 2.038 | 2.527 | 0.755 | 2.433 | 3.013 | 0.801 | 2.511 | 3.494 | 0.750 | 2.901 | 3.801 |
SG-MSC-SPA | 0.735 | 2.532 | 3.164 | 0.713 | 2.633 | 3.533 | 0.765 | 2.731 | 3.715 | 0.788 | 2.670 | 3.428 |
SG-MSC-CARS | 0.751 | 2.453 | 3.126 | 0.734 | 2.534 | 3.377 | 0.817 | 2.411 | 3.294 | 0.795 | 2.625 | 3.646 |
SG-SNV-SPA | 0.675 | 2.803 | 3.513 | 0.735 | 2.530 | 3.352 | 0.804 | 2.493 | 3.377 | 0.777 | 2.737 | 3.659 |
SG-SNV-CARS | 0.765 | 2.386 | 2.915 | 0.742 | 2.496 | 2.859 | 0.821 | 2.379 | 3.182 | 0.806 | 2.557 | 3.395 |
(1/SG)″-SPA | 0.527 | 3.384 | 4.513 | 0.498 | 3.480 | 4.497 | 0.646 | 3.349 | 4.421 | 0.675 | 3.305 | 4.109 |
(1/SG)″-CARS | 0.765 | 2.385 | 2.711 | 0.584 | 3.171 | 4.020 | 0.724 | 2.958 | 3.967 | 0.790 | 2.658 | 3.623 |
[lg(SG)]″-SPA | 0.575 | 3.208 | 4.074 | 0.421 | 3.738 | 4.864 | 0.624 | 3.450 | 4.694 | 0.711 | 3.118 | 4.315 |
[lg(SG)]″-CARS | 0.801 | 2.194 | 2.743 | 0.727 | 2.569 | 3.234 | 0.779 | 2.644 | 3.475 | 0.781 | 2.711 | 3.751 |
Method | Healthy | VW | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Modeling Set | Validation Set | Modeling Set | Validation Set | |||||||||
R2 | RMSE | MRE (%) | R2 | RMSE | MRE (%) | R2 | RMSE | MRE (%) | R2 | RMSE | MRE (%) | |
R-SPA | 0.759 | 2.416 | 3.045 | 0.714 | 2.628 | 3.521 | 0.742 | 2.861 | 3.955 | 0.745 | 2.929 | 3.857 |
R-CARS | 0.818 | 2.099 | 2.641 | 0.741 | 2.500 | 3.364 | 0.818 | 2.399 | 3.133 | 0.762 | 2.832 | 3.426 |
SG-MC-SPA | 0.751 | 2.456 | 3.147 | 0.685 | 2.758 | 3.560 | 0.769 | 2.703 | 3.697 | 0.682 | 3.271 | 4.497 |
SG-MC-CARS | 0.788 | 2.263 | 2.907 | 0.778 | 2.313 | 3.186 | 0.830 | 2.323 | 3.146 | 0.806 | 2.555 | 3.057 |
SG-MSC-SPA | 0.705 | 2.673 | 3.430 | 0.766 | 2.376 | 3.173 | 0.792 | 2.569 | 3.343 | 0.801 | 2.587 | 3.461 |
SG-MSC-CARS | 0.753 | 2.442 | 3.064 | 0.809 | 2.150 | 2.757 | 0.832 | 2.310 | 3.075 | 0.824 | 2.431 | 3.071 |
SG-SNV-SPA | 0.709 | 2.652 | 3.321 | 0.770 | 2.356 | 3.119 | 0.803 | 2.497 | 3.304 | 0.808 | 2.540 | 3.263 |
SG-SNV-CARS | 0.761 | 2.403 | 3.063 | 0.823 | 2.066 | 2.805 | 0.816 | 2.415 | 3.197 | 0.800 | 2.592 | 3.408 |
(1/SG)″-SPA | 0.545 | 3.319 | 4.396 | 0.491 | 3.506 | 4.500 | 0.673 | 3.217 | 4.334 | 0.684 | 3.260 | 4.178 |
(1/SG)″-CARS | 0.910 | 1.475 | 1.976 | 0.742 | 2.497 | 3.275 | 0.808 | 2.467 | 3.285 | 0.817 | 2.478 | 3.338 |
[lg(SG)]″-SPA | 0.636 | 2.966 | 3.920 | 0.474 | 3.563 | 4.727 | 0.701 | 3.078 | 3.998 | 0.699 | 3.182 | 4.427 |
[lg(SG)]″-CARS | 0.956 | 1.026 | 1.179 | 0.887 | 1.654 | 1.879 | 0.836 | 2.277 | 3.011 | 0.762 | 2.830 | 4.167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Zhang, X.; Zhang, N.; Ma, R.; He, D.; Bao, H.; Sun, W. Hyperspectral Estimation of SPAD Value of Cotton Leaves under Verticillium Wilt Stress Based on GWO–ELM. Agriculture 2023, 13, 1779. https://doi.org/10.3390/agriculture13091779
Yuan X, Zhang X, Zhang N, Ma R, He D, Bao H, Sun W. Hyperspectral Estimation of SPAD Value of Cotton Leaves under Verticillium Wilt Stress Based on GWO–ELM. Agriculture. 2023; 13(9):1779. https://doi.org/10.3390/agriculture13091779
Chicago/Turabian StyleYuan, Xintao, Xiao Zhang, Nannan Zhang, Rui Ma, Daidi He, Hao Bao, and Wujun Sun. 2023. "Hyperspectral Estimation of SPAD Value of Cotton Leaves under Verticillium Wilt Stress Based on GWO–ELM" Agriculture 13, no. 9: 1779. https://doi.org/10.3390/agriculture13091779
APA StyleYuan, X., Zhang, X., Zhang, N., Ma, R., He, D., Bao, H., & Sun, W. (2023). Hyperspectral Estimation of SPAD Value of Cotton Leaves under Verticillium Wilt Stress Based on GWO–ELM. Agriculture, 13(9), 1779. https://doi.org/10.3390/agriculture13091779