Experimental Study on the Cleaning Performance of Hot Air Flow Cleaning Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hot Gas Flow Cleaning Device and Working Principle
2.2. Experimental Materials
2.3. Single-Factor Test Method
2.4. Data Processing
3. Results and Discussion
3.1. Results of Single-Factor Test Outlet Temperature
- Outlet temperature
- 2.
- Fan Speed
- 3.
- Louver Sieve Temperature
- 4.
- Louver Sieve Inclination
- 5.
- Eccentric Wheel Speed
3.2. Results of Muti-Factor Experiment
3.3. Response Surface Analysis
3.4. Parameter Optimization and Test Validation
4. Conclusions
- (1)
- The loss percentage of rice grains decreased with the increase in outlet temperature and louver sieve temperature but increased with the increase in fan speed. The cleaning impurity ratio increased with the increase in outlet temperature and louver sieve temperature but decreased with the increase in fan speed. The influence of the louver sieve inclination and the eccentric wheel speed on the cleaning loss rate and the impurity rate was not obvious.
- (2)
- Based on the central composite rotatable test, encompassing three factors at five levels, it was deduced that the influence hierarchy on the cleaning loss rate was, in descending order, outlet temperature, fan speed, and louver sieve temperature. In terms of the cleaning impurity rate, the sequence from most to least impactful was fan speed, louver sieve temperature, and outlet temperature. Noteworthy interaction effects were observed between the outlet temperature and the louver sieve temperature and between the fan speed and the louver sieve temperature concerning the average grain loss rate. Similarly, interaction effects between the outlet temperature and the louver sieve temperature affected the impurity rate.
- (3)
- Utilizing multi-objective parameter optimization of the test factors, the optimal parameter set for the hot air flow cleaning device was identified as an outlet temperature of 40.7 °C, a fan speed of 1300 rpm, and a louver sieve temperature of 50 °C. Under these conditions, the loss rate was registered at 0.75% and the impurity rate at 1.75%.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chai, X.Y.; Zhou, Y.; Xu, L.Z.; Li, Y.; Li, Y.M.; Lv, L.Y. Effect of guide strips on the distribution of threshed outputs and cleaning losses for a tangential-longitudinal flow rice combine harvester. Biosyst. Eng. 2020, 198, 223–234. [Google Scholar] [CrossRef]
- Wang, Q.R.; Mao, H.P.; Li, Q.L. Modelling and simulation of the grain threshing process based on the discrete element method. Comput. Electron. Agric. 2020, 178, 105790. [Google Scholar] [CrossRef]
- Gao, M. Simulation of Heat and Mass Transfer in Rice Kernel during Hot Air Drying Process. Master’s Thesis, Tianjin University of Science & Technology, Tianjin, China, 2017. [Google Scholar]
- Chandrajitha, U.G.; Gunathilakea, D.M.C.C.; Bandaraa, B.D.M.P.; Swarnasiria, D.P.C. Effects of combine harvesting on head rice yield and chaff content of long and short grain paddy harvest in Sri Lanka. Procedia Food Sci. 2016, 6, 242–245. [Google Scholar] [CrossRef]
- Cheng, C.; Fu, J.; Tang, X.L.; Chen, Z.; Ren, L.Q. Heating anti-adhesion experiments of jitter plate of rice harvesting machinery. Trans. Chin. Soc. Agric. Mach. 2019, 50, 110–118. [Google Scholar]
- Cheng, C.; Fu, J.; Tang, X.L.; Chen, Z.; Ren, L.Q. Effect of vibration mode on interface adhesion law of rice threshed mixtures. J. Jilin Univ. (Eng. Technol. E.) 2019, 49, 1228–1235. [Google Scholar]
- Cheng, C.; Fu, J.; Chen, Z.; Ren, L.Q. Influence of vibration parameters of harvester vibrating screen on adhesion characteristics of extractives with different humidity. Trans. Chin. Soc. Agric. Eng. 2019, 35, 29–36. [Google Scholar]
- Xu, L.Z.; Ma, Z.; Li, Y.M. Wettability of rape cleaning screen surface by laser-texture. Trans. Chin. Soc. Agric. Mach. 2011, 42, 168–171. [Google Scholar]
- Ma, Z.; Li, Y.M.; Xu, L.Z. Micro flow field on adjacent screen of bionic nonsmooth cleaning screen. Trans. Chin. Soc. Agric. Mach. 2011, 42, 74–77+79. [Google Scholar]
- Hubner, R. Entwicklung Eines Modells zur Auslegung Einer Rotierenden Reinigungseinrichtung im Mähdrescher. Ph.D. Thesis, TU Dresden, Dresden, Germany, 1997. [Google Scholar]
- Rothaug, S.; Wacker, P.; Yin, W.; Kutzbach, H.D. Capacity increase of cleaning units by circular oscillation. In Proceedings of the International Conference on Crop Harvesting and Processing, Louisville, KY, USA, 9 February 2003. [Google Scholar]
- Ren, S.G.; Xie, F.P.; Wang, X.S.; Liu, D.W.; Li, X.; Chen, L.Y. Gas-solid two-phase separation operation mechanism for 4LZ-0.8 rice combine harvester cleaning device. Trans. Chin. Soc. Agric. Eng. 2015, 31, 16–22. [Google Scholar]
- Dilin, P.; Sakai, T.; Wilson, M.; Whitfield, A. A computational and experimental evaluation of the performance of a centrifugal fan volute. J. Power Energy 1998, 212, 235–246. [Google Scholar] [CrossRef]
- Wang, Z.H.; Chen, C.Y. Virtual design of vibrating sieve of combine harvester based on ADAMS. Trans. Chin. Soc. Agric. Mach. 2003, 34, 53–56. [Google Scholar]
- Tong, S.G.; Shen, Q.; Tang, N.; Jia, Y.P.; Cong, Y.F.; Gu, W. Numerical simulation and optimization experiment of mixed flow field on longitudinal axial flow cleaning device. Trans. Chin. Soc. Agric. Mach. 2016, 47, 135–142. [Google Scholar]
- Srivastava, A.K.; Goering, C.E.; Rohrbach, R.P.; Buckmaster, D.R. Engineering Principles of Agricultural Machines; American Society of Agricultural and Biological Engineers (ASAE): St. Joseph, MI, USA, 2006. [Google Scholar]
- Miu, P.I. Stochastic modeling of separation process on combine cleaning shoe. In Proceedings of the International Conference on Crop Harvesting and Processing, Louisville, KY, USA, 9 February 2003. [Google Scholar]
- Liang, Z.W. Research on Design Method of Multi-Duct Cleaning Device and Cleaning Loss Monitoring and Control Technology. Ph.D. Thesis, Jiangsu University, Zhenjiang, China, 2018. [Google Scholar]
- Zhang, M.; Jin, C.Q.; Liang, S.N.; Tang, Q.; Wu, C.Y. Parameter optimization and experiment on air-screen cleaning device of rapeseed combine harvester. Trans. Chin. Soc. Agric. Eng. 2015, 31, 8–15. [Google Scholar]
- Hundtoft, E.B. Establishing the effects of post-harvest treatment on fresh market papayas by response surface methodology. J. Agric. Eng. Res. 1971, 16, 343–352. [Google Scholar] [CrossRef]
- Mirzazadeh, A.; Abdollahpour, S.; Hakimzadeh, M. Optimized Mathematical Model of a Grain Cleaning System Functioning in a Combine Harvester using Response Surface Methodology. Acta Technol. Agric. 2022, 25, 20–26. [Google Scholar] [CrossRef]
- Bulduk, I. Optimization of extraction techniques and RP-HPLC analysis of anti-parkinson drug levodopa from flowers of Vicia faba L. Acta Chromatogr. 2020, 32, 281. [Google Scholar] [CrossRef]
- Liu, D.W.; Lu, W.; Xie, F.P.; Ren, S.G.; Wang, X.S.; Chen, L.Y. Analysis of grain separation efficiency in cyclone cleaning cylinder of rice effluent. Chin. J. Agric. Sci. Technol. 2017, 19, 55–65. [Google Scholar]
Number | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Heating film temperature/°C | 66 | 76 | 86 | 96 |
Screening temperature/°C | 30 | 40 | 50 | 60 |
Ingredients | Proportion (%) | Moist Content (%) | Density (kg/m3) |
---|---|---|---|
Full grains | 76.56 | 28.2 | 1220 |
Grains with small tails | 3.24 | — | — |
Blight grains | 1.71 | — | — |
Straw | 10.02 | 65.5 | 161 |
Light impurity | 8.47 | 52.4 | 95 |
Factor | |||||
---|---|---|---|---|---|
Levels | Outlet Temperature/°C | Fan Speed/rpm | Louver Sieve Temperature/°C | Louver Sieve Angle/° | Eccentric Wheel Speed/rpm |
1 | 20 | 1000 | 20 | 45 | 250 |
2 | 28 | 1100 | 30 | 50 | 270 |
3 | 36 | 1200 | 40 | 55 | 290 |
4 | 44 | 1300 | 50 | 60 | 310 |
5 | 52 | 1400 | 60 | 65 | 330 |
Index | Number | Outlet Temperature/°C | ||||
---|---|---|---|---|---|---|
20 | 28 | 36 | 44 | 52 | ||
Loss rate/% | 1 | 1.55 | 1.30 | 1.20 | 0.87 | 0.48 |
2 | 1.10 | 1.19 | 1.02 | 0.64 | 0.66 | |
3 | 1.46 | 1.25 | 0.86 | 0.79 | 0.52 | |
Mean value | 1.37 | 1.25 | 1.03 | 0.77 | 0.55 | |
Standard deviation | 0.19 | 0.04 | 0.14 | 0.10 | 0.08 | |
Impurity rate/% | 1 | 1.74 | 1.85 | 2.15 | 2.08 | 2.3 |
2 | 1.71 | 1.81 | 1.83 | 2.1 | 2.15 | |
3 | 1.82 | 1.78 | 2.05 | 2.19 | 2.24 | |
Mean value | 1.76 | 1.81 | 2.01 | 2.12 | 2.23 | |
Standard deviation | 0.05 | 0.03 | 0.13 | 0.05 | 0.06 |
Index | Sum of Squares | df | Mean Square | F Value | p-Value | |
---|---|---|---|---|---|---|
Loss rate/% | Between groups | 1.36 | 4.00 | 0.34 | 15.24 | <0.01 |
Within groups | 0.22 | 10.00 | 0.02 | |||
Total | 1.58 | 14.00 | ||||
Impurity rate/% | Between groups | 0.48 | 4.00 | 0.12 | 14.98 | <0.01 |
Within groups | 0.08 | 10.00 | 0.01 | |||
Total | 0.57 | 14.00 |
Index | Number | Fan Speed | ||||
---|---|---|---|---|---|---|
1000 | 1100 | 1200 | 1300 | 1400 | ||
Loss rate/% | 1 | 0.87 | 1.01 | 1.2 | 1.13 | 1.28 |
2 | 0.86 | 0.97 | 1.02 | 1.16 | 1.33 | |
3 | 0.9 | 0.92 | 0.86 | 1.22 | 1.23 | |
Mean value | 0.88 | 0.97 | 1.03 | 1.17 | 1.28 | |
Standard deviation | 0.02 | 0.04 | 0.14 | 0.04 | 0.04 | |
Impurity rate/% | 1 | 2.42 | 2.09 | 2.15 | 1.7 | 1.62 |
2 | 2.13 | 1.97 | 1.83 | 1.92 | 1.59 | |
3 | 2.1 | 2.14 | 2.05 | 1.88 | 1.54 | |
Mean value | 2.22 | 2.07 | 2.01 | 1.83 | 1.58 | |
Standard deviation | 0.14 | 0.07 | 0.13 | 0.10 | 0.03 |
Index | Sum of Squares | df | Mean Square | F Value | p-Value | |
---|---|---|---|---|---|---|
Loss rate/% | Between groups | 0.31 | 4.00 | 0.08 | 10.82 | <0.01 |
Within groups | 0.07 | 10.00 | 0.01 | |||
Total | 0.38 | 14.00 | ||||
Impurity rate/% | Between groups | 0.71 | 4.00 | 0.18 | 10.92 | <0.01 |
Within groups | 0.16 | 10.00 | 0.02 | |||
Total | 0.87 | 14.00 |
Index | Number | Louver Sieve Temperature/°C | ||||
---|---|---|---|---|---|---|
20 | 30 | 40 | 50 | 60 | ||
Loss rate% | 1 | 1.34 | 1.12 | 1.2 | 0.81 | 0.82 |
2 | 1.41 | 1.24 | 1.02 | 0.89 | 0.66 | |
3 | 1.27 | 1.15 | 0.86 | 0.91 | 0.62 | |
Mean value | 1.34 | 1.17 | 1.03 | 0.87 | 0.70 | |
Standard deviation | 0.06 | 0.05 | 0.14 | 0.04 | 0.09 | |
Impurity rate% | 1 | 1.55 | 1.92 | 2.15 | 2.08 | 2.19 |
2 | 1.64 | 1.85 | 1.83 | 2.18 | 2.12 | |
3 | 1.62 | 1.78 | 2.05 | 2.09 | 2.3 | |
Mean value | 1.60 | 1.85 | 2.01 | 2.12 | 2.20 | |
Standard deviation | 0.04 | 0.06 | 0.13 | 0.04 | 0.07 |
Index | Sum of Squares | df | Mean Square | F Value | p-Value | |
---|---|---|---|---|---|---|
Loss rate/% | Between groups | 0.75 | 4.00 | 0.19 | 18.11 | <0.01 |
Within groups | 0.10 | 10.00 | 0.01 | |||
Total | 0.85 | 14.00 | ||||
Impurity rate/% | Between groups | 0.68 | 4.00 | 0.17 | 18.71 | <0.01 |
Within groups | 0.09 | 10.00 | 0.01 | |||
Total | 0.77 | 14.00 |
Index | Number | Louver Sieve Inclination/° | ||||
---|---|---|---|---|---|---|
45 | 50 | 55 | 60 | 65 | ||
Loss rate% | 1 | 1.02 | 1.16 | 1.2 | 1.18 | 1.08 |
2 | 1.19 | 1.05 | 1.02 | 1.07 | 1.43 | |
3 | 1.23 | 1.03 | 0.86 | 1.14 | 1.51 | |
Mean value | 1.15 | 1.08 | 1.03 | 1.13 | 1.34 | |
Standard deviation | 0.09 | 0.06 | 0.14 | 0.05 | 0.19 | |
Impurity rate% | 1 | 1.94 | 2.09 | 2.15 | 2.31 | 2.03 |
2 | 1.75 | 1.7 | 1.83 | 2.01 | 2.45 | |
3 | 1.67 | 2.01 | 2.05 | 1.9 | 1.96 | |
Mean value | 1.79 | 1.93 | 2.01 | 2.07 | 2.15 | |
Standard deviation | 0.11 | 0.17 | 0.13 | 0.17 | 0.22 |
Index | Sum of Squares | df | Mean Square | F Value | p-Value | |
---|---|---|---|---|---|---|
Loss rate/% | Between groups | 0.14 | 4.00 | 0.04 | 1.40 | 0.30 |
Within groups | 0.25 | 10.00 | 0.03 | |||
Total | 0.39 | 14.00 | ||||
Impurity rate/% | Between groups | 0.23 | 4.00 | 0.06 | 1.41 | 0.30 |
Within groups | 0.41 | 10.00 | 0.04 | |||
Total | 0.64 | 14.00 |
Index | Number | Eccentric Wheel Speed/rpm | ||||
---|---|---|---|---|---|---|
250 | 270 | 290 | 310 | 330 | ||
Loss rate% | 1 | 1.16 | 1.24 | 1.2 | 0.93 | 1.24 |
2 | 1.21 | 1.15 | 1.02 | 1.13 | 1.27 | |
3 | 1.28 | 0.92 | 0.86 | 0.78 | 1.09 | |
Mean value | 1.22 | 1.10 | 1.03 | 0.95 | 1.20 | |
Standard deviation | 0.05 | 0.13 | 0.14 | 0.14 | 0.08 | |
Impurity rate% | 1 | 1.89 | 1.81 | 2.15 | 2.04 | 1.9 |
2 | 1.96 | 2.05 | 1.83 | 2.08 | 1.79 | |
3 | 1.58 | 1.87 | 2.05 | 2.15 | 1.84 | |
Mean value | 1.81 | 1.91 | 2.01 | 2.09 | 1.84 | |
Standard deviation | 0.17 | 0.10 | 0.13 | 0.05 | 0.04 |
Index | Sum of Squares | df | Mean Square | F Value | p-Value | |
---|---|---|---|---|---|---|
Loss rate/% | Between groups | 0.16 | 4.00 | 0.04 | 1.97 | 0.18 |
Within groups | 0.20 | 10.00 | 0.02 | |||
Total | 0.36 | 14.00 | ||||
Impurity rate/% | Between groups | 0.16 | 4.00 | 0.04 | 2.28 | 0.13 |
Within groups | 0.18 | 10.00 | 0.02 | |||
Total | 0.34 | 14.00 |
Coded | Factors | ||
---|---|---|---|
Air Outlet Wind Temperature (x1)/°C | Fan Speed (x2)/rpm | Louver Sieve Temperature (x3)/°C | |
1.682 | 52 | 1400 | 60 |
1 | 44 | 1300 | 50 |
0 | 36 | 1200 | 40 |
−1 | 28 | 1100 | 30 |
−1.682 | 20 | 1000 | 20 |
Number | Experimental Factors | Test Index | |||
---|---|---|---|---|---|
Air Outlet Wind Temperature (x1) | Fan Speed (x2) | Louver Sieve Temperature (x3) | Loss Rate (P1) | Impurity Rate (P2) | |
1 | 1 (44) | −1 (1100) | −1 (30) | 0.54 | 2.13 |
2 | 0 (36) | −1.682 (1000) | 0 (40) | 0.73 | 2.17 |
3 | −1 (28) | −1 (1100) | −1 (30) | 1.16 | 2.08 |
4 | 1 (44) | −1 (1100) | 1 (50) | 0.42 | 2.68 |
5 | 0 (36) | 0 (1200) | 0 (40) | 1.01 | 2.10 |
6 | −1.682 (20) | 0 (1200) | 0 (40) | 1.84 | 1.82 |
7 | 1 (44) | 1 (1300) | 1 (50) | 0.52 | 1.98 |
8 | 0 (36) | 1.682 (1400) | 0 (45) | 1.67 | 0.77 |
9 | 1 (44) | 1 (1300) | −1 (30) | 2.06 | 1.33 |
10 | 0 (36) | 0 (1200) | 0 (40) | 1.06 | 1.94 |
11 | 0 (36) | 0 (1200) | 0 (40) | 0.93 | 2.07 |
12 | 0 (36) | 0 (1200) | 0 (40) | 0.94 | 2.03 |
13 | −1 (28) | 1 (1300) | 1 (50) | 1.81 | 1.53 |
14 | 0 (36) | 0 (1200) | 1.682 (60) | 0.80 | 2.11 |
15 | 0 (36) | 0 (1200) | 0 (40) | 1.15 | 1.95 |
16 | 0 (36) | 0 (1200) | −1.682 (20) | 1.20 | 1.82 |
17 | −1 (28) | 1 (1300) | −1 (30) | 2.23 | 1.31 |
18 | −1 (28) | −1 (1100) | 1 (50) | 1.79 | 2.09 |
19 | 0 (36) | 0 (1200) | 0 (40) | 1.18 | 1.96 |
20 | 1.682 (52) | 0 (1200) | 0 (40) | 0.91 | 2.21 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value |
---|---|---|---|---|---|
Clear selection of loss rate (P1) | |||||
Model | 5.10 | 9 | 0.57 | 25.93 | <0.0001 |
x1 | 1.84 | 1 | 1.84 | 84.18 | <0.0001 |
x2 | 1.35 | 1 | 1.35 | 61.65 | <0.0001 |
x3 | 0.33 | 1 | 0.33 | 15.09 | 0.0030 |
x1x2 | 0.035 | 1 | 0.035 | 1.61 | 0.2338 |
x1x3 | 0.44 | 1 | 0.44 | 19.99 | 0.0012 |
x2x3 | 0.76 | 1 | 0.76 | 34.87 | 0.0001 |
x12 | 0.29 | 1 | 0.29 | 13.12 | 0.0047 |
x22 | 0.090 | 1 | 0.090 | 4.13 | 0.0694 |
x32 | 0.001 | 1 | 0.001 | 0.048 | 0.8316 |
Residual | 0.22 | 10 | 0.022 | ||
Lack of fit | 0.16 | 5 | 0.033 | 2.98 | 0.1280 |
Pure error | 0.055 | 5 | 0.011 | ||
Clear selection of impurity rate (P2) | |||||
Model | 3.05 | 9 | 0.34 | 37.10 | <0.0001 |
x1 | 0.23 | 1 | 0.23 | 24.99 | 0.0005 |
x2 | 1.97 | 1 | 1.97 | 215.43 | <0.0001 |
x3 | 0.27 | 1 | 0.27 | 29.48 | 0.0003 |
x1x2 | 0.004 | 1 | 0.004 | 0.40 | 0.5436 |
x1x3 | 0.12 | 1 | 0.12 | 12.87 | 0.0049 |
x2x3 | 0.012 | 1 | 0.012 | 1.31 | 0.2782 |
x12 | 0.006 | 1 | 0.006 | 0.67 | 0.4334 |
x22 | 0.43 | 1 | 0.43 | 46.74 | <0.0001 |
x32 | 0.0001 | 1 | 0.0001 | 0.013 | 0.9115 |
Residual | 0.091 | 10 | 0.009 | ||
Lack of fit | 0.068 | 5 | 0.014 | 2.96 | 0.1295 |
Pure error | 0.023 | 5 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Li, Y.; You, G. Experimental Study on the Cleaning Performance of Hot Air Flow Cleaning Device. Agriculture 2023, 13, 1828. https://doi.org/10.3390/agriculture13091828
Zhang T, Li Y, You G. Experimental Study on the Cleaning Performance of Hot Air Flow Cleaning Device. Agriculture. 2023; 13(9):1828. https://doi.org/10.3390/agriculture13091828
Chicago/Turabian StyleZhang, Tao, Yaoming Li, and Guoliang You. 2023. "Experimental Study on the Cleaning Performance of Hot Air Flow Cleaning Device" Agriculture 13, no. 9: 1828. https://doi.org/10.3390/agriculture13091828
APA StyleZhang, T., Li, Y., & You, G. (2023). Experimental Study on the Cleaning Performance of Hot Air Flow Cleaning Device. Agriculture, 13(9), 1828. https://doi.org/10.3390/agriculture13091828