Improvement of Hot Air Dried Bitter Gourd (Momordica charantia L.) Product Quality: Optimization of Drying and Blanching Process by Experimental Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation, Blanching Methods and Drying Tests
2.2. Experimental Design and Setup
2.3. Measurements of Dependent Variables
2.3.1. Color Measurement
2.3.2. Total Antioxidant Activity (TAA)
2.3.3. Total Phenolic Content (TPC)
2.3.4. Ascorbic Acid Content
3. Results and Discussion
3.1. Effects of Drying Process on Drying Time, Color, TAA, TPC, and Vitamin C of Bitter Gourd
3.2. Modeling and Statistical Evaluation of Drying Process by Response Surface Methodology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Grover, J.; Yadav, S. Pharmacological actions and potential uses of Momordica charantia: A review. J. Ethnopharm. 2004, 93, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Braca, A.; Siciliano, T.; D’Arrigo, M.; Germanòb, M.P. Chemical composition and antimicrobial activity of Momordica charantia seed essential oil. Fitoterapia 2008, 79, 123–125. [Google Scholar] [CrossRef]
- Aziz, M.G.; Roy, J.; Sarker, M.S.H.; Yusof, Y.A. Isolation and use of bitter gourd polysaccharide in formulating dietetic soft drinks. Afr. J. Agric. Res. 2011, 6, 5313–5319. [Google Scholar]
- Yasmin, S.; Hasan, M.; Sohany, M.; Sarker, M.S.H. Drying kinetics and quality aspects of bitter gourd (Momordica charantia) dried in a novel cabinet dryer. Food Res. 2022, 6, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Namdeo, K.; Bodakhe, S.; Dwedi, J.; Saifi, A. A review on antidiabetic potential of M. charantia linn. Int. J. Pharm. Res. Bio. Sci. 2013, 2, 475–485. [Google Scholar]
- Jia, S.; Shen, M.; Zhang, F.; Xie, J. Recent advances in Momordica charantia: Functional components and biological activities. Int. J. Mol. Sci. 2017, 18, 2555. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.-K.; Wu, L.-X.; Qiao, Z.-R.; Cai, W.-D.; Ma, H. Effect of different drying methods on the product quality and bioactive polysaccharides of bitter gourd (Momordica charantia L.) slices. Food Chem. 2019, 271, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Lin, L.; Xie, J. A mini-review of chemical and biological properties of polysaccharides from Momordica charantia. Int. J. Bio. Macromol. 2016, 92, 246–253. [Google Scholar] [CrossRef]
- Budrat, P.; Shotipruk, A. Extraction of phenolic compounds from fruits of bitter melon (Momordica charantia) with subcritical water extraction and antioxidant activities of these extracts. Chiang Mai J. Sci. 2008, 35, 123–130. [Google Scholar]
- Zahoor, I.; Khan, M.A. Microwave assisted convective drying of bitter gourd: Drying kinetics and effect on ascorbic acid, total phenolics and antioxidant activity. J. Food Meas. Charac. 2019, 13, 2481–2490. [Google Scholar] [CrossRef]
- Vijayan, S.; Arjunan, T.V.; Kumar, A. Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices. Renew. Energy 2020, 146, 2210–2223. [Google Scholar] [CrossRef]
- Khalloufi, S.; Almeida-Rivera, C.; Bongers, P. A theoretical model and its experimental validation to predict the porosity as a function of shrinkage and collapse phenomena during drying. Food Res. Int. 2009, 42, 1122–1130. [Google Scholar] [CrossRef]
- Vatsyayan, S.; Raina, R.; Kumar, M. Influence of blanching and guar gum pretreatments on total phenolic content and antioxidant activity of cabinet-dried white bitter gourd Momordica charantia L. J. Appl. Nat. Sci. 2022, 14, 326–331. [Google Scholar] [CrossRef]
- Ekezie, F.-G.C.; Sun, D.-W.; Han, Z.; Cheng, J.-H. Microwave-assisted food processing technologies for enhancing product quality and process efficiency: A review of recent developments. Trends Food Sci. Technol. 2017, 67, 58–69. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Kumar, A.; Nuntadusit, C.; Banout, J. Thermal modeling and drying kinetics of bitter gourd flakes drying in modified greenhouse dryer. Renew. Energy 2018, 118, 799–813. [Google Scholar] [CrossRef]
- Ahmad, A.; Prakash, O.; Kumar, A. Drying kinetics and economic analysis of bitter gourd flakes drying inside hybrid greenhouse dryer. Environ. Sci. Poll. Res. 2021, 30, 72026–72040. [Google Scholar] [CrossRef]
- Wakjira, M. Solar drying of fruits and windows of opportunities in Ethiopia. Afr. J. Food Sci. 2010, 4, 790–802. [Google Scholar]
- Mohamed, G.F.; Abdelmaguid, N.M.; Ibrahim, W.A.; Helmy, I.M.F.; Nadir, A.S. Effect of different drying methods and pre-treatments on quality characteristics of mango slices. Middle East J. App. Sci. 2017, 7, 519–531. [Google Scholar]
- Wang, Q.; Li, S.; Han, X.; Ni, Y.; Zhao, D.; Hao, J. Quality evaluation and drying kinetics of shitake mushrooms dried by hot air, infrared and intermittent microwave-assisted drying methods. LWT-Food Sci. Technol. 2019, 107, 236–242. [Google Scholar] [CrossRef]
- Adepoju, L.A.; Osunde, Z.D. Effect of pretreatments and drying methods on some qualities of dried mango (Mangifera indica) fruit. Agric. Eng. Int. CIGR 2017, 19, 187–194. [Google Scholar]
- Delfiya, A.; Mohapatra, D.; Mishra, A.K. Effect of microwave blanching and brine solution pretreatment on the quality of carrots dried in solar-biomass hybrid dryer. J. Food Proc. Preserv. 2017, 42, e13510. [Google Scholar] [CrossRef]
- Pott, I.; Neidhart, S.; Mu, W.; Carle, R. Quality improvement of non-sulphited mango slices by drying at high temperatures. Innov. Food Sci. Emerg. Technol. 2005, 6, 412–419. [Google Scholar] [CrossRef]
- Karim, O.R.; Awonorin, S.O.; Sanni, L.O. Effect of pretreatments on quality attributes of air-dehydrated pineapple slices. J. Food Technol. 2008, 6, 158–165. [Google Scholar]
- Abano, E.E.; Owusu, J.; Engmann, F.N. Effects of ascorbic acid, salt, lemon juice, and honey on drying kinetics and sensory characteristic of dried mango. Croat. J. Food Sci. Technol. 2013, 5, 1–10. [Google Scholar]
- Femenia, A. High-value co-products from plants: Cosmetics and pharmaceuticals. In Waste Management and Co-Product Recovery in Food Processing; Waldron, K.W., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2007; Volume 1, pp. 470–491. [Google Scholar]
- Kalra, C.L.; Pruthi, J.S.; Tiotia, M.S.; Raina, B.L. Influence of variety on the quality of processed bitter gourd. Indian Food Pucker 1983, 37, 71–77. [Google Scholar]
- Kumar, N.; Sarkar, B.C.; Sharma, H.K. Effect of air velocity on kinetics of thin layer carrot pomace drying. Food Sci. Technol. Int. 2011, 17, 459–469. [Google Scholar] [CrossRef]
- Lewicki, P.P. Design of hot air drying for better foods. Trends Food Sci. Technol. 2006, 17, 153–163. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, Y.; Fang, S.; Meng, Y.; Kang, X.; Xu, X.; Zuo, X. Mathematical modeling of hot air drying kinetics of Momordica charantia slices and its color change. Adv. J. Food Sci. Technol. 2013, 5, 1214–1219. [Google Scholar] [CrossRef]
- Ertekin, C.; Yaldiz, O. Drying of eggplant and selection of a suitable thin layer drying model. J. Food Eng. 2004, 63, 349–359. [Google Scholar] [CrossRef]
- Baş, D.; Boyacı, İ.H. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 2007, 78, 836–845. [Google Scholar] [CrossRef]
- Miao, Y.; Hongzhi, L.; Ying, Y.; Aimin, S.; Li, L.; Hui, H.; Qiang, W.; Hongwei, Y.; Xiaohe, W. Optimising germinated conditions to enhance yield of resveratrol content in peanut sprout using response surface methodology. Int. J. Food Sci. Technol. 2016, 51, 1754–1761. [Google Scholar] [CrossRef]
- Hani, N.M.; Torkamani, A.E.; Abidin, S.Z.; Mahmood, W.A.K.; Juliano, P. The effects of ultrasound assisted extraction on antioxidative activity of polyphenolics obtained from Momordica charantia fruit using response surface approach. Food Biosci. 2017, 17, 7–16. [Google Scholar] [CrossRef]
- Yılmaz, F.; Kökdemir Ünşar, E.; Perendeci, N.A. Enhancement of methane production from banana harvesting residues: Optimization of thermal—Alkaline hydrogen peroxide pretreatment process by experimental design. Waste Bio. Valor. 2019, 10, 3071–3087. [Google Scholar] [CrossRef]
- Başar, İ.B.; Çoban, Ö.; Göksungur, M.Y.; Eskicioğlu, Ç.; Perendeci, N.A. Enhancement of lignocellulosic biomass anaerobic digestion by optimized mild alkaline hydrogen peroxide pretreatment for biorefinery applications. J. Environ. Manag. 2021, 298, 113539. [Google Scholar] [CrossRef] [PubMed]
- Prakash Maran, J.; Manikandan, S.; Thirugnanasambandham, K.; Vigna Nivetha, C.; Dinesh, R. Box–Behnken design based statistical modeling for ultrasoundassisted extraction of corn silk polysaccharide. Carbohydr. Polym. 2013, 92, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Zhong, K.; Wang, Q. Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology. Carbohydr. Polym. 2010, 80, 19–25. [Google Scholar] [CrossRef]
- Günerhan, U.; Dumlu, L.; Us, E.; Yılmaz, V.; Carrère, H.; Perendeci, N.A. Impacts of chemical assisted thermal pretreatments on methane production from fruit and vegetable harvesting wastes: Process optimization. Molecules 2020, 25, 500. [Google Scholar] [CrossRef]
- Alberti, A.; Zielinski, A.A.F.; Zardo, D.M.; Demiate, I.M.; Nogueira, A.; Mafra, L.I. Optimisation of the extraction of phenolic compounds from apples using response surface methodology. Food Chem. 2014, 149, 151–158. [Google Scholar] [CrossRef]
- Heybeli, N.; Ertekin, C.; Karayel, D. Optimization of an industrial type prototype shelf dryer by response surface methodology “A case study for potato”. Agric. Mech. Asia Afr. Lat. Am. 2015, 46, 53–60. [Google Scholar]
- Ciric, A.; Krajnc, B.; Heath, D.; Ogrinc, N. Response surface methodology and artificial neural network approach for the optimization of ultrasound-assisted extraction of polyphenols from garlic. Food Chem. Toxi. 2020, 135, 110976. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.; Prasad, P.; Bansal, V.; Siddiqui, M.W.; Sharma, A. Effect of drying techniques and treatment with blanching on the physicochemical analysis of bitter-gourd and capsicum. Int. J. Food Sci. Technol. 2017, 84, 479–488. [Google Scholar] [CrossRef]
- Akman, H.E.; Boyar, I.; Gozlekci, S.; Saracoglu, O.; Ertekin, C. Effects of convective drying of quince fruit (Cydonia oblonga) on color, antioxidant activity and phenolic compounds under various fruit juice dipping pre-treatments. Agriculture 2022, 12, 1224. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and analysis of experiments. In Design-Expertfi Software Version 6 User’s Guide; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Başar, İ.A.; Perendeci, N.A. Optimization of zero-waste hydrogen peroxide-Acetic acid pretreatment for sequential ethanol and methane production. Energy 2021, 225, 120324. [Google Scholar] [CrossRef]
- Hazar, D.; Boyar, I.; Dincer, C.; Ertekin, C. Investigation of color and bioactive compounds of different colors from pansy (Viola × wittrockiana Gams.) dried in hot air dryer. Horticulturae 2023, 9, 186. [Google Scholar] [CrossRef]
- Menges, H.O.; Ünver, A.; Özcan, M.M.; Ertekin, C.; Sonmete, M.H. The effects of drying parameters on drying characteristics, colorimetric differences, antioxidant capacity and total phenols of sliced kiwifruit. Erwerbs-Obstbau 2019, 61, 195–207. [Google Scholar] [CrossRef]
- Fernández-León, M.F.; Fernández-León, A.M.; Lozano, M.; Ayuso, M.C.; González-Gómez, D. Altered commercial controlled atmosphere storage conditions for ‘Parhenon’broccoli plants (Brassica oleracea L. var. italica). Influence on the outer quality parameters and on the health-promoting compounds. LWT-Food Sci. Technol. 2013, 50, 665–672. [Google Scholar] [CrossRef]
- Škerget, M.; Kotnik, P.; Hadolin, M.; Hraš, A.R.; Simonič, M.; Knez, Ž. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 2005, 89, 191–198. [Google Scholar] [CrossRef]
- Asami, D.K.; Hong, Y.J.; Barrett, D.M.; Mitchell, A.E. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agri. Food Chem. 2003, 51, 1237–1241. [Google Scholar] [CrossRef]
- Bi, J.; Yang, A.; Liu, X.; Wu, X.; Chen, Q.; Wang, Q.; Lv, J.; Wang, X. Effects of pretreatments on explosion puffing drying kinetics of apple chips. LWT Food Sci. Technol. 2015, 60, 1136–1142. [Google Scholar] [CrossRef]
- Doymaz, I. Kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat Mass Transf. 2017, 53, 25–35. [Google Scholar] [CrossRef]
- Kayisoglu, S.; Ertekin, C. Vacuum drying kinetics of barbunya bean (Phaseolus vulgaris L. elipticus Mart.). Philipp. Agric. Sci. 2011, 94, 285–291. [Google Scholar]
- Bhattacharjee, D.; Das, S.; Dhua, R.S. Dehydration for better quality value added product of bitter gourd (Momordica charantia L.). Indian J. Pharm. Biol. Res. 2016, 4, 39–45. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Zura-Bravo, L.; Lemus-Mondaca, R.; Martinez Monzó, J.; Quispe-Fuentes, I.; Puente, L.; Di Scala, K. Influence of drying temperature on dietary fibre, rehydration properties, texture and microstructure of Cape gooseberry (Physalis peruviana L.). J. Food Sci. Technol. 2015, 52, 2304–2311. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Ma, H.; Qu, W.; Wang, B.; Zhang, X.; Wang, P.; Wang, J.; Atungulu, G.G.; Pan, Z. Catalytic infrared and hot air dehydration of carrot slices. J. Food Process Eng. 2014, 37, 111–121. [Google Scholar] [CrossRef]
- Lim, Y.J.; Eom, S.H. The different contributors to antioxidant activity in thermally dried flesh and peel of astringent persimmon fruit. Antioxidants 2022, 11, 597. [Google Scholar] [CrossRef] [PubMed]
- Kulapichitr, F.; Borompichaichartkul, C.; Fang, M.; Suppavorasatit, I.; Cadwallader, K.R. Effect of post-harvest drying process on chlorogenic acids, antioxidant activities and CIE-Lab color of Thai Arabica green coffee beans. Food Chem. 2022, 366, 130504. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lim, Y.J.; Duan, S.; Park, T.J.; Eom, S.H. Accumulation of antioxidative phenolics and carotenoids using thermal processing in different stages of Momordica charantia fruit. Molecules 2023, 28, 1500. [Google Scholar] [CrossRef]
- Vishwanathan, K.H.; Hebbar, H.U.; Raghavarao, K.S.M.S. Hot air assisted infrared drying of vegetables and its quality. Food Sci. Technol. Res. 2010, 16, 381–388. [Google Scholar] [CrossRef]
- Nalawade, S.A.; Sinha, A.; Umesh Hebbar, H. Infrared based dry blanching and hybrid drying of bitter gourd slices: Process efficiency evaluation. J. Food Process Eng. 2018, 41, 12672. [Google Scholar] [CrossRef]
- Kumar, C.; Joardder, M.U.H.; Farrell, T.W.; Millar, G.J.; Karim, M.A. Mathematical model for intermittent microwave convective drying of food materials. Dry. Technol. 2016, 34, 962–973. [Google Scholar] [CrossRef]
- Sirichai, P.; Kittibunchakul, S.; Thangsiri, S.; On-Nom, N.; Chupeerach, C.; Temviriyanukul, P.; Inthachat, W.; Nuchuchua, O.; Aursalung, A.; Sahasakul, Y.; et al. Impact of drying processes on phenolics and in vitro health-related activities of indigenous plants in Thailand. Plants 2022, 11, 294. [Google Scholar] [CrossRef] [PubMed]
- Kittibunchakul, S.; Temviriyanukul, P.; Chaikham, P.; Kemsawasd, V. Effects of freeze drying and convective hot-air drying on predominant bioactive compounds, antioxidant potential and safe consumption of maoberry fruits. LWT-Food Sci. Technol. 2023, 184, 114992. [Google Scholar] [CrossRef]
- Oancea, S. A review of the current knowledge of thermal stability of anthocyanins and approaches to their stabilization to heat. Antioxidants 2021, 10, 1337. [Google Scholar] [CrossRef]
- Mbondo, N.N.; Owino, W.O.; Ambuko, J.; Sila, D.N. Effect of drying methods on the retention of bioactive compounds in African eggplant. Food Sci. Nutr. 2018, 6, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Chandra, A.; Kumar, S.; Tarafdar, A.; Nema, P.K. Ultrasonic and osmotic pre-treatments followed by convective and vacuum drying of papaya slices. J. Sci. Food Agri. 2021, 101, 2264–2272. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Kheto, A.; Singh, L.; Sharanagat, V.S. Ultrasound pretreated hot air drying of spine gourd (Momordica dioica Roxb. Ex Willd): The effect on quality attributes. Food Chem. Adv. 2023, 2, 100167. [Google Scholar] [CrossRef]
- Kheto, A.; Dhua, S.; Nema, P.K.; Sharanagat, V.S. Influence of drying temperature on quality attributes of bell pepper (Capsicum annuum L.): Drying kinetics and modeling, rehydration, color, and antioxidant analysis. J. Food Proc. Eng. 2021, 44, e13880. [Google Scholar] [CrossRef]
- Horax, R.; Hettiarachchy, N.; Chen, P. Extraction, quantification, and antioxidant activities of phenolics from pericarp and seeds of bitter melons (Momordica charantia) harvested at three maturity stages (immature, mature, and ripe). J. Agric. Food Chem. 2010, 58, 4428–4433. [Google Scholar] [CrossRef]
- Yang, L.; Hu, Z.; Yang, L.; Xie, S.; Yang, M. Hot-air drying characteristics and quality evaluation of bitter melon slice. Inmateh-Agri. Eng. 2018, 55, 53–62. [Google Scholar]
- Kaya, A.; Aydin, O.; Kolayli, S. Effect of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia deliciosa Planch). Food Bioprod. Proces. 2010, 88, 165–173. [Google Scholar] [CrossRef]
- Demiray, E.; Tulek, Y.; Yilmaz, Y. Degradation kinetics of lycopene, β-carotene and ascorbic acid in tomatoes during hot air drying. LWT-Food Sci. Technol. 2013, 50, 172–176. [Google Scholar] [CrossRef]
- Mohammadi, X.; Deng, Y.; Matinfar, G.; Singh, A.; Mandal, R.; Pratap-Singh, A. Impact of three different dehydration methods on nutritional values and sensory quality of dried broccoli, oranges, and carrots. Foods 2020, 9, 1464. [Google Scholar] [CrossRef]
- Us, E.; Perendeci, N.A. Improvement of methane production from greenhouse residues: Optimization of thermal and H2SO4 pretreatment process by experimental design. Chem. Eng. J. 2012, 181, 120–131. [Google Scholar] [CrossRef]
- El-Amin, O.M.A.; Dieter, V.H.; Wolfgang, L. Drying kinetics and colour change of mango slices as affected by drying temperature and time. In Proceedings of the Tropentag International Conference, Hohenheim, Germany, 7–9 October 2008. [Google Scholar]
Independent Variable Abbreviations in Models | Independent Variables | Independent Variable Ranges and Coded Levels | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
A | Drying Air Temperature (°C) (DAT) | 60 | 70 | 80 |
B | Slice Thickness (mm) (ST) | 6 | 8 | 10 |
C | Blanching Time (min.) (BT) | 0 | 2.5 | 5 |
Drying Time (Quadratic Model) | |||||
---|---|---|---|---|---|
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value |
Model | 1.318 × 105 | 9 | 14,647.23 | 182.17 | <0.0001 |
A-Drying Air Temp. | 73,084.05 | 1 | 73,084.05 | 908.97 | <0.0001 |
B-Slice Thickness | 52,531.25 | 1 | 52,531.25 | 653.35 | <0.0001 |
C-Blanching Time | 1095.20 | 1 | 1095.20 | 13.62 | 0.0014 |
AB | 3192.25 | 1 | 3192.25 | 39.70 | <0.0001 |
AC | 676.00 | 1 | 676.00 | 8.41 | 0.0086 |
BC | 6.25 | 1 | 6.25 | 0.0777 | 0.7831 |
A2 | 36.04 | 1 | 36.04 | 0.4482 | 0.5105 |
B2 | 645.88 | 1 | 645.88 | 8.03 | 0.0099 |
C2 | 9.91 | 1 | 9.91 | 0.1233 | 0.7290 |
Fit Statistics | |||||
Standard deviation | 8.97 | R2 | 0.9874 | ||
Mean | 254.42 | Adjusted R2 | 0.9819 | ||
Coefficient of variation | 3.52 | Predicted R2 | 0.9741 | ||
Adequate precision | 46.7721 | ||||
Model Equation in Terms of Actual Factors | |||||
Drying Time = −171.00583 + 2.63510 × A + 119.88956 × B − 19.05709 × C − 0.706250 × A × B + 0.260000 × A × C − 0.125000 × B × C − 0.026286 × A2 − 2.78216 × B2 − 0.220583 × C2 | |||||
Total Color Change (Quadratic Model) | |||||
Source | Sum of squares | Degree of freedom | Mean Square | F-value | p-value |
Model | 15.52 | 9 | 1.72 | 13.37 | <0.0001 |
A-Drying Air Temp | 5.99 | 1 | 5.99 | 46.44 | <0.0001 |
B-Slice Thickness | 0.2957 | 1 | 0.2957 | 2.29 | 0.1448 |
C-Blanching Time | 2.29 | 1 | 2.29 | 17.73 | 0.0004 |
AB | 0.5267 | 1 | 0.5267 | 4.09 | 0.0562 |
AC | 1.91 | 1 | 1.91 | 14.85 | 0.0009 |
BC | 0.1178 | 1 | 0.1178 | 0.9139 | 0.3500 |
A2 | 2.95 | 1 | 2.95 | 22.92 | <0.0001 |
B2 | 0.8717 | 1 | 0.8717 | 6.76 | 0.0167 |
C2 | 0.3784 | 1 | 0.3784 | 2.94 | 0.1014 |
Fit Statistics | |||||
Standard deviation | 0.3590 | R2 | 0.8514 | ||
Mean | 3.99 | Adjusted R2 | 0.7878 | ||
Coefficient of variation | 8.99 | Predicted R2 | 0.6968 | ||
Adequate precision | 10.5381 | ||||
Model Equation in Terms of Actual Factors | |||||
Sqrt (Total Color Change) = −19.23690 + 0.960941 × A − 2.37403 × B + 1.18195 × C + 0.009071 × A × B − 0.013836 × A × C + 0.017161B × C − 0.007526 × A2 + 0.102208 × B2 − 0.043096 × C2 |
Total Antioxidant Activity (Reduced 2FI Model) | |||||
---|---|---|---|---|---|
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value |
Model | 1.678 × 105 | 5 | 33,554.41 | 7.32 | 0.0002 |
A-Drying Air Temp. | 1.063 × 105 | 1 | 1.063 × 105 | 23.20 | <0.0001 |
B-Slice Thickness | 5498.23 | 1 | 5498.23 | 1.20 | 0.2838 |
C-Blanching Time | 10,332.95 | 1 | 10,332.95 | 2.25 | 0.1458 |
AB | 19,104.32 | 1 | 19,104.32 | 4.17 | 0.0519 |
AC | 26,499.72 | 1 | 26,499.72 | 5.78 | 0.0239 |
Fit Statistics | |||||
Standard deviation | 67.70 | R2 | 0.5942 | ||
Mean | 323.3 | Adjusted R2 | 0.5130 | ||
Coefficient of variation | 20.94 | Predicted R2 | 0.4427 | ||
Adequate precision | 9.9493 | ||||
Model Equation in Terms of Actual Factors | |||||
Total Antioxidant Activity = +323.30 − 72.92 × A + 16.58 × B + 22.73 × C − 34.55 × A × B − 40.70 × A × C | |||||
Total Phenolic Content (Reduced Quadratic Model) | |||||
Source | Sum of squares | Degree of freedom | Mean Square | F-value | p-value |
Model | 6.873 × 106 | 6 | 1.145 × 106 | 11.18 | <0.0001 |
A-Drying Air Temp | 4.901 × 105 | 1 | 4.901 × 105 | 4.78 | 0.0387 |
B-Slice Thickness | 3.801 × 105 | 1 | 3.801 × 105 | 3.71 | 0.0660 |
C-Blanching Time | 60,247.39 | 1 | 60,247.39 | 0.5881 | 0.4506 |
AB | 1.151 × 106 | 1 | 1.151 × 106 | 11.24 | 0.0027 |
AC | 3.786 × 106 | 1 | 3.786 × 106 | 36.95 | <0.0001 |
C2 | 1.005 × 106 | 1 | 1.005 × 106 | 9.81 | 0.0045 |
Fit Statistics | |||||
Standard deviation | 320.08 | R2 | 0.7365 | ||
Mean | 3558.69 | Adjusted R2 | 0.6706 | ||
Coefficient of variation | 8.99 | Predicted R2 | 0.5866 | ||
Adequate precision | 11.9818 | ||||
Model Equation in Terms of Actual Factors | |||||
Total Phenolic Content = +3315.86 − 156.54 × A + 137.86 × B − 54.89 × C − 268.23 × A × B − 486.44 × A × C + 376.38 × C2 | |||||
Vitamin C (Quadratic Model) | |||||
Source | Sum of squares | Degree of freedom | Mean Square | F-value | p-value |
Model | 2.409 × 107 | 9 | 2.677 × 106 | 10.32 | <0.0001 |
A-Drying Air Temp. | 1.139 × 107 | 1 | 1.139 × 107 | 43.90 | <0.0001 |
B-Slice Thickness | 3.753 × 105 | 1 | 3.753 × 105 | 1.45 | 0.2424 |
C-Blanching Time | 6.672 × 105 | 1 | 6.672 × 105 | 2.57 | 0.1237 |
AB | 5.891 × 105 | 1 | 5.891 × 105 | 2.27 | 0.1467 |
AC | 2.334 × 105 | 1 | 2.334 × 105 | 0.8998 | 0.3536 |
BC | 4.775 × 105 | 1 | 4.775 × 105 | 1.84 | 0.1893 |
A2 | 1.016 × 107 | 1 | 1.016 × 107 | 39.16 | <0.0001 |
B2 | 1.185 × 106 | 1 | 1.185 × 106 | 4.57 | 0.0445 |
C2 | 1.659 × 106 | 1 | 1.659 × 106 | 6.40 | 0.0195 |
Fit Statistics | |||||
Standard deviation | 509.32 | R2 | 0.8156 | ||
Mean | 1795.82 | Adjusted R2 | 0.7366 | ||
Coefficient of variation | 28.36 | Predicted R2 | 0.5999 | ||
Adequate precision | 10.7624 | ||||
Model Equation in Terms of Actual Factors | |||||
Vitamin C = +2024.82 − 754.56 × A + 136.99 × B − 182.65 × C − 191.88 × A × B − 120.78 × A × C − 172.75 × B × C − 1395.62 × A2 + 476.62 × B2 + 564.06 × C2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozsan Kilic, T.; Boyar, I.; Gungor, K.K.; Torun, M.; Perendeci, N.A.; Ertekin, C.; Onus, A.N. Improvement of Hot Air Dried Bitter Gourd (Momordica charantia L.) Product Quality: Optimization of Drying and Blanching Process by Experimental Design. Agriculture 2023, 13, 1849. https://doi.org/10.3390/agriculture13091849
Ozsan Kilic T, Boyar I, Gungor KK, Torun M, Perendeci NA, Ertekin C, Onus AN. Improvement of Hot Air Dried Bitter Gourd (Momordica charantia L.) Product Quality: Optimization of Drying and Blanching Process by Experimental Design. Agriculture. 2023; 13(9):1849. https://doi.org/10.3390/agriculture13091849
Chicago/Turabian StyleOzsan Kilic, Tugce, Ismail Boyar, Keziban Kubra Gungor, Mehmet Torun, Nuriye Altınay Perendeci, Can Ertekin, and Ahmet Naci Onus. 2023. "Improvement of Hot Air Dried Bitter Gourd (Momordica charantia L.) Product Quality: Optimization of Drying and Blanching Process by Experimental Design" Agriculture 13, no. 9: 1849. https://doi.org/10.3390/agriculture13091849
APA StyleOzsan Kilic, T., Boyar, I., Gungor, K. K., Torun, M., Perendeci, N. A., Ertekin, C., & Onus, A. N. (2023). Improvement of Hot Air Dried Bitter Gourd (Momordica charantia L.) Product Quality: Optimization of Drying and Blanching Process by Experimental Design. Agriculture, 13(9), 1849. https://doi.org/10.3390/agriculture13091849