Lightweight Pig Face Feature Learning Evaluation and Application Based on Attention Mechanism and Two-Stage Transfer Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Filtering
2.2. Division of the Dataset
2.3. Data Augmentation
3. Design and Training of the Identification Model
3.1. YOLOv8 Network
3.2. Coordinate Attention
3.3. Transfer Learning
3.4. Model Training
3.4.1. Training Model Parameters
3.4.2. Test Platform
3.4.3. Evaluation Metrics
4. Results and Discussion
4.1. YOLOv8 Model Compared with Other Models
4.2. Impact of CA on the Model
4.3. Analysis of Transfer Learning Results
5. Conclusions and Future Directions
- The pig face feature recognition model built on YOLOv8 demonstrates an impressive recognition accuracy of 97.73% on the test set, with 11.155 million parameters, an average detection speed of 13.032 milliseconds, and a model size of 42.7 million. YOLOv8 stands out for its concise parameter count, minimal computational requirements, compact model size, and exceptional performance, making it a valuable benchmark for upcoming endeavors in lightweight, non-contact, intelligent pig face feature recognition;
- Without modifying the model structure, four attention mechanisms—CA, CBAM, SE, and ECA—were integrated. Among these, CA emerged as the most effective in augmenting the pig face feature recognition model’s performance. The inclusion of CA led to a 0.3 percentage point enhancement in the model’s mAP value on the test set. These findings indicate that the attention module, particularly CA, intensifies the focus on crucial pig face features, thereby enhancing the model’s efficiency in feature recognition;
- This study introduces a two-stage transfer learning approach to enhance the accuracy of pig face recognition models in challenging environments. Initially, a YOLOv8 network was pre-trained through a two-stage transfer learning process on the Pascal VOC2012 dataset. Subsequently, the feature extraction network underwent fine-tuning on dataset A, resulting in a task-specific pre-trained network enriched with pertinent features for pig face recognition. Finally, this task-specific network underwent additional fine-tuning on dataset B, yielding the ultimate pig face recognition model. The refined model demonstrated precise recognition of eight test pigs, achieving an impressive mAP value of 95.73%. Particularly noteworthy is the improvement in the AP value for cs4 from 85.5% to 95.6%, showcasing robust performance in the presence of noise, occlusion, and other disturbances.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Han, L.; Wang, S. China’s Pork Supply and Demand Situation in 2019 and Outlook for 2020. Agric. Outlook 2020, 16, 7–11+17. [Google Scholar]
- Kolhar, S.; Jagtap, J. Plant trait estimation and classification studies in plant phenotyping using machine vision—A review. Inf. Process. Agric. 2023, 10, 114–135. [Google Scholar] [CrossRef]
- Bao, J.; Xie, Q. Artificial intelligence in animal farming: A systematic literature review. J. Clean. Prod. 2022, 331, 129956. [Google Scholar] [CrossRef]
- Kulkarni, R.; Di Minin, E. Towards automatic detection of wildlife trade using machine vision models. Biol. Conserv. 2023, 279, 109924. [Google Scholar] [CrossRef]
- Xie, Q.; Zhou, H.; Bao, J.; Li, Q. Review on Machine Vision-based Weight Assessment for Livestock and Poultry. Trans. Chin. Soc. Agric. Mach. 2022, 53, 1–15. [Google Scholar]
- Wang, P.; Liu, N.; Qiao, J. Application of machine vision image feature recognition in 3D map construction. Alex. Eng. J. 2023, 64, 731–739. [Google Scholar] [CrossRef]
- Liu, F.; Wu, W.; Liu, X.; Wang, X.; Fang, Y.; Li, G.; Du, X. Research Progress of Computer Vision and Deep Learning in Pig Recognition. J. Huazhong Agric. Univ. 2023, 42, 47–56. [Google Scholar] [CrossRef]
- Li, X.; Li, H. Pig Face Landmark Detection Method Based on Convolutional Neural Network. J. Jilin Univ. (Sci. Ed.) 2022, 60, 609–616. [Google Scholar] [CrossRef]
- Congdon, J.V.; Hosseini, M.; Gading, E.F.; Masousi, M.; Franke, M.; MacDonald, S.E. The Future of Artificial Intelligence in Monitoring Animal Identification, Health, and Behaviour. Animals 2022, 12, 1711. [Google Scholar] [CrossRef]
- Kounalakis, T.; Triantafyllidis, A.G.; Nalpantidis, L. Deep learning-based visual recognition of rumex for robotic precision farming. Comput. Electron. Agric. 2019, 165, 104973. [Google Scholar] [CrossRef]
- Xiong, B.; Fu, R.; Lin, Z.; Luo, Q.; Yang, L. Identification of swine individuals and construction of traceability system under free-range pig-rearing system. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2009, 25, 98–102. [Google Scholar]
- Pedro, R.F. The Impacts of Animal Farming: A Critical Overview of Primary School Textbooks. J. Agric. Environ. Ethics 2022, 35, 12. [Google Scholar]
- Fan, P.; Yan, B. Research on the Application of New Technologies and Products in Smart Farming. Anim. Husb. Poult. 2023, 34, 36–38. [Google Scholar] [CrossRef]
- Ma, C. Research on Pig Face Recognition Algorithm Based on Deep Learning. Northeast. Agric. Univ. 2023. [Google Scholar]
- Ning, Y.; Yang, Y.; Li, Z.; Wu, X.; Zhang, Q. Detecting and counting pig number using improved YOLOv5 in complex scenes. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2022, 38, 168–175. [Google Scholar] [CrossRef]
- Adrion, F.; Kapun, A.; Eckert, F.; Holland, E.-M.; Staiger, M.; Götz, S.; Gallmann, E. Monitoring trough visits of growing-finishing pigs with UHF-RFID. Comput. Electron. Agric. 2018, 144, 144–153. [Google Scholar] [CrossRef]
- Maselyne, J.; Saeys, W.; Ketelaere, D.B.; Mertens, K.; Vangeyte, J.; Hessel, E.F.; Millet, S.; Van Nuffel, A. Validation of a High Frequency Radio Frequency Identification (HF RFID) system for registering feeding patterns of growing-finishing pigs. Comput. Electron. Agric. 2014, 102, 10–18. [Google Scholar] [CrossRef]
- Ning, J.; Lin, J.; Yang, S.; Wang, Y.; Lan, X. Face Recognition Method of Dairy Goat Based on Improved YOLO v5s. Trans. Chin. Soc. Agric. Mach. 2023, 54, 331–337. [Google Scholar]
- Ferreira, R.E.P.; Tiago, B.; Rosa, G.J.M.; Dórea, J.R.R. Using dorsal surface for individual identification of dairy calves through 3D deep learning algorithms. Comput. Electron. Agric. 2022, 201, 107272. [Google Scholar] [CrossRef]
- Lu, J.; Wang, W.; Zhao, K.; Wang, H. Recognition and segmentation of individual pigs based on Swin Transformer. Anim. Genet. 2022, 53, 794–802. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, X.; Wu, J.; Yang, C.; Li, Z.; Shi, L.; Yu, H. Pig facial expression recognition using multi-attention cascaded LSTM model. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2021, 37, 181–190. [Google Scholar] [CrossRef]
- Zhu, W.-X.; Guo, Y.-Z.; Jiao, P.-P.; Ma, C.-H.; Chen, C. Recognition and drinking behaviour analysis of individual pigs based on machine vision. Livest. Sci. 2017, 205, 129–136. [Google Scholar] [CrossRef]
- Wada, N.; Shinya, M.; Shiraishi, M. [Short Paper] Pig Face Recognition Using Eigenspace Method. ITE Trans. Media Technol. Appl. 2013, 1, 328. [Google Scholar] [CrossRef]
- Kashiha, M.; Bahr, C.; Ott, S.; Moons, C.P.H.; Niewold, T.A.; Ödberg, F.O.; Berckmans, D. Automatic identification of marked pigs in a pen using image pattern recognition. Comput. Electron. Agric. 2013, 93, 111–120. [Google Scholar] [CrossRef]
- Si, Y.; Xiao, J.; Liu, G.; Wang, K. Individual Identification Method of Lying Cows Based on MSRCP and Improved YOLO v4 Model. Trans. Chin. Soc. Agric. Mach. 2023, 54, 243–250,262. [Google Scholar]
- Wang, R.; Gao, R.; Li, Q.; Liu, S.; Yu, Q.; Feng, L. Open-set Pig Face Recognition Method Combining Attention Mechanism. Trans. Chin. Soc. Agric. Mach. (Trans. CSAE) 2023, 54, 256–264. [Google Scholar]
- Xie, Q.; Wu, M.; Bao, J.; Yin, H.; Liu, H.; Li, X.; Zheng, P.; Liu, W.; Chen, G. Individual pig face recognition combined with attention mechanism. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2022, 38, 180–188. [Google Scholar] [CrossRef]
- Huang, L.; Qian, B.; Guan, F.; Hou, Z.; Zhang, Q. Goat Face Recognition Model Based on Wavelet Transform and Convolutional Neural Networks. Trans. Chin. Soc. Agric. Mach. 2023, 54, 278–287. [Google Scholar]
- Hansen, M.F.; Smith, M.L.; Smith, L.N.; Salter, M.G.; Baxter, E.M.; Farish, M.; Grieve, B. Towards on-farm pig face recognition using convolutional neural networks. Comput. Ind. 2018, 98, 145–152. [Google Scholar] [CrossRef]
- Marsot, M.; Mei, J.; Shan, X.; Ye, L.; Feng, P.; Yan, X.; Li, C.; Zhao, Y. An adaptive pig face recognition approach using Convolutional Neural Networks. Comput. Electron. Agric. 2020, 173, 105386. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, G.; Wang, K.; Si, Y. Cow identification in free-stall barns based on an improved Mask R-CNN and an SVM. Comput. Electron. Agric. 2022, 194, 106738. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, T. Two-stage method based on triplet margin loss for pig face recognition. Comput. Electron. Agric. 2022, 194, 106737. [Google Scholar] [CrossRef]
- Xu, B.; Wang, W.; Guo, L.; Chen, G.; Li, Y.; Cao, Z.; Wu, S. CattleFaceNet: A cattle face identification approach based on RetinaFace and ArcFace loss. Comput. Electron. Agric. 2022, 193, 106675. [Google Scholar] [CrossRef]
- Kang, J.; Zhao, L.; Wang, K.; Zhang, K. Research on an Improved YOLOV8 Image Segmentation Model for Crop Pests. Adv. Comput. Signals Syst. 2023, 7, 1–8. [Google Scholar]
- Jose, M.-C.; Hernández-Farías, D.I.; Rojas-Perez, L.O.; Cabrera-Ponce, A.A. Language meets YOLOv8 for metric monocular SLAM. J. Real-Time Image Process. 2023, 20, 59. [Google Scholar]
- Sun, L.; Wang, X.; Wang, B.; Wang, J.; Meng, X. Identification Method of Fish Satiation Level Based on ResNet-CA. Trans. Chin. Soc. Agric. Mach. 2022, 53, 219–225. [Google Scholar]
- Singh, R.; Ahmed, T.; Singh, R.; Udmale, S.S.; Udmale, S.S. Identifying tiny faces in thermal images using transfer learning. J. Ambient Intell. Humaniz. Comput. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Zhang, G.; Lyu, Z.; Liu, H.; Liu, W.; Long, C.; Huang, C. Model for identifying lotus leaf pests and diseases using improved DenseNet and transfer learning. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2023, 39, 188–196. [Google Scholar] [CrossRef]
- Chen, L.; Li, W.; Feng, D.; Wu, H.; Wang, K. Transfer Learning-Based Image Recognition of Nitrogen and Potassium Nutrient Stress in Rice. Rice Sci. 2023, 30, 100–103. [Google Scholar]
- Everingham, M.; Eslami SM, A.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The pascal visual object classes challenge: A retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, X.; Zhu, X.; Li, Z.; Lin, J. Detection of the olive fruit maturity based on improved EfficientDet. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2022, 38, 158–166. [Google Scholar] [CrossRef]
- Jia, J.; Fu, M.; Liu, X.; Zheng, B. Underwater Object Detection Based on Improved EfficientDet. Remote Sens. 2022, 14, 4487. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, S.; Li, N.; Zhang, Y.; Chen, G.; Gao, X. Apple Location and Classification Based on Improved SSD Convolutional Neural Network. Trans. Chin. Soc. Agric. Mach. 2023, 54, 223–232. [Google Scholar]
- Liu, Q.; Dong, L.; Zeng, Z.; Zhu, W.; Zhu, Y.; Meng, C. SSD with multi-scale feature fusion and attention mechanism. Sci. Rep. 2023, 13, 21387. [Google Scholar] [CrossRef]
- Huang, W.; Huo, Y.; Yang, S.; Liu, M.; Li, H.; Zhang, M. Detection of Laodelphax striatellus (small brown planthopper) based on improved YOLOv5. Comput. Electron. Agric. 2023, 206, 107657. [Google Scholar] [CrossRef]
- Li, G.; Zha, W.; Chen, C.; Shi, G.; Gu, L.; Jiao, J. Pig Face Recognition and Detection Method Based on Improved YOLOv5s. Southwest China J. Agric. Sci. 2023, 36, 1346–1356. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, J.; Zhang, Y.; Hu, H. Multi-pose dragon fruit detection system for picking robots based on the optimal YOLOv7 model. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2023, 39, 276–283. [Google Scholar] [CrossRef]
- Wen, C.; Guo, H.; Li, J.; Hou, B.; Huang, Y.; Li, K.; Nong, H.; Long, X.; Lu, Y. Application of improved YOLOv7-based sugarcane stem node recognition algorithm in complex environments. Front. Plant Sci. 2023, 14, 1230517. [Google Scholar]
- Wang, C.; Liu, H.; An, X.; Gong, Z.; Deng, F. SwinCrack: Pavement crack detection using convolutional swin-transformer network. Digit. Signal Process. 2024, 145, 104297. [Google Scholar] [CrossRef]
- Yang, S.; Wang, W.; Gao, S.; Deng, Z. Strawberry ripeness detection based on YOLOv8 algorithm fused with LW-Swin Transformer. Comput. Electron. Agric. 2023, 215, 108360. [Google Scholar] [CrossRef]
- Xia, Y.; Luo, C.; Zhou, Y.; Jia, L. Lightweight TFT-LCD Panel Defect Classification Algorithm Based on Swin Transformer. Opt. Precis. Eng. 2023, 31, 3357–3370. [Google Scholar] [CrossRef]
Configuration | Parameters |
---|---|
Operating System | Windows11 |
CPU | Intel(R)Core(TM)I7-13700KF |
Memory | 64 G |
GPU | NVIDIA GeForce RTX 4080 |
Python | 3.8 |
Deep Learning Framework | Pytorch 1.12.1 |
Models | mAP@0.5 /% | mAP@0.9 /% | Precision /% | Recall /% | F1 /% | Parameters /M | Floating Point /G | Velocity /ms |
---|---|---|---|---|---|---|---|---|
Efficientdet | 97.41 | 69.73 | 97.06 | 95.34 | 95.92 | 11.98 | 49.30 | 84.91 |
SSD | 96.50 | 22.67 | 97.59 | 86.25 | 90.80 | 38.90 | 64.75 | 17.35 |
Yolov5 | 96.17 | 66.04 | 96.38 | 94.79 | 95.41 | 7.16 | 16.37 | 15.82 |
Yolov7-tiny | 97.30 | 70.04 | 95.43 | 96.12 | 95.65 | 6.15 | 13.61 | 12.55 |
Yolov8 | 97.73 | 79.37 | 96.11 | 96.10 | 95.93 | 11.16 | 25.75 | 13.03 |
swin_transformer | 97.59 | 74.32 | 97.74 | 97.81 | 96.77 | 27.54 | 8.74 | 51.42 |
EfficientDet | SSD | YOLOv5 | YOLOv7-Tiny | YOLOv8 | Swin_Transformer | |
---|---|---|---|---|---|---|
Backbone network | 88.50% | 85.05% | 92.40% | 95.80% | 95.93% | 87.76% |
Pre-training weights | 97.41% | 96.50% | 96.17% | 97.30% | 97.73% | 97.59% |
Models | mAP@0.5 /% | Precision /% | Recall /% | F1 /% |
---|---|---|---|---|
Yolov8 | 97.73 | 96.11 | 96.10 | 95.93 |
Yolov8-CA | 98.03 | 96.16 | 95.30 | 95.37 |
Yolov8-CBAM | 97.67 | 96.18 | 96.21 | 95.90 |
Yolov8-ECA | 92.89 | 90.80 | 85.35 | 86.90 |
Yolov8-SE | 97.57 | 96.00 | 97.02 | 96.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Z.; Peng, M.; Guo, Z.; Zhao, Y.; Li, Y.; Zhang, W.; Li, F.; Guo, X. Lightweight Pig Face Feature Learning Evaluation and Application Based on Attention Mechanism and Two-Stage Transfer Learning. Agriculture 2024, 14, 156. https://doi.org/10.3390/agriculture14010156
Yin Z, Peng M, Guo Z, Zhao Y, Li Y, Zhang W, Li F, Guo X. Lightweight Pig Face Feature Learning Evaluation and Application Based on Attention Mechanism and Two-Stage Transfer Learning. Agriculture. 2024; 14(1):156. https://doi.org/10.3390/agriculture14010156
Chicago/Turabian StyleYin, Zhe, Mingkang Peng, Zhaodong Guo, Yue Zhao, Yaoyu Li, Wuping Zhang, Fuzhong Li, and Xiaohong Guo. 2024. "Lightweight Pig Face Feature Learning Evaluation and Application Based on Attention Mechanism and Two-Stage Transfer Learning" Agriculture 14, no. 1: 156. https://doi.org/10.3390/agriculture14010156
APA StyleYin, Z., Peng, M., Guo, Z., Zhao, Y., Li, Y., Zhang, W., Li, F., & Guo, X. (2024). Lightweight Pig Face Feature Learning Evaluation and Application Based on Attention Mechanism and Two-Stage Transfer Learning. Agriculture, 14(1), 156. https://doi.org/10.3390/agriculture14010156