The Impact of Soil and Water Pollutants Released from Poultry Farming on the Growth and Development of Two Plant Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site and Soil Characteristics
2.2. Sampling Water from the Piezometer
2.3. Pea Growth Conditions
2.4. Preparation of Soil Extracts and Cultivation of Duckweed
2.5. Plant Growth Analysis
2.6. Isolation and Measurement of Chlorophyll Absorption
2.7. Aminolevulinic Acid Dehydrogenase (ALAD) Activity
2.8. Aminolevulinic Acid (ALA) Content
2.9. Lipid Peroxidation—TBARS Test
2.10. Assessment of Mitochondrial Damage—WST-1 Test
2.11. Protein Isolation and ELISA for HSP70 Proteins
2.12. Pesticide and Pharmaceutical Analyses
2.13. Statistics
3. Results and Discussion
3.1. Analysis of Soils
3.2. Analysis of Groundwater Collected from the Vicinity of the Farm
3.3. Analysis of Morphological and Biochemical Parameters of Common Pea Pisum sativum L.
3.4. Analysis of Morphological and Biochemical Parameters of the Small Duckweed Lemna minor L.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Water Pollution from Agriculture: A Global Review. 2017. Available online: https://www.fao.org/3/i7754e/i7754e.pdf (accessed on 12 May 2023).
- Kleyn, F.J.; Ciacciariello, M. Future demands of the poultry industry: Will we meet our commitments sustainably in developed and developing economies? Worlds Poult. Sci. J. 2021, 77, 267–278. [Google Scholar] [CrossRef]
- Mottet, A.; Tempio, G. Global poultry production: Current state and future outlook and challenges. Worlds Poult. Sci. J. 2017, 73, 245–256. [Google Scholar] [CrossRef]
- OECD-FAO. Agricultural Outlook 2022–2031; OECD Publishing: Paris, France, 2022. [Google Scholar] [CrossRef]
- AVEC. AVEC Annual Report. Brussels, Belgium. 2022. Available online: https://avec-poultry.eu/wp-content/uploads/2022/09/AVEC-annual-report-2022_FINAL-WEB.pdf (accessed on 13 April 2023).
- Tucker, C.A. The significance of sensory appeal for reduced meat consumption. Appetite 2014, 81, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Zhang, T.; Fang, C.; Zeng, J.; Yang, X. Design and implementation of poultry farming information management system based on Cloud Database. Animals 2021, 11, 900. [Google Scholar] [CrossRef] [PubMed]
- Oloyo, A.; Ojerinde, A. Poultry housing and management. In Poultry—An Advanced Learning; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Wychodnik, K.; Gałęzowska, G.; Rogowska, J.; Potrykus, M.; Plenis, A.; Wolska, L. Poultry farms as a potential source of environmental pollution by pharmaceuticals. Molecules 2020, 25, 1031. [Google Scholar] [CrossRef]
- Nurzillah, M.; Norfadzrin, F.; Haryani, H. Influence of applying effective microorganisms (EM) in controlling ammonia and hydrogen sulphide from poultry manure. MJVR 2018, 9, 40–43. [Google Scholar]
- WHO. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022. Geneva, Switzerland. 2022. Available online: https://www.who.int/publications/i/item/9789240062702 (accessed on 26 March 2023).
- Bártíková, H.; Podlipná, R.; Skálová, L. Veterinary drugs in the environment and their toxicity to plants. Chemosphere 2016, 144, 2290–2301. [Google Scholar] [CrossRef]
- Gržinić, G.; Piotrowicz-Cieślak, A.; Klimkowicz-Pawlas, A.; Górny, R.L.; Ławniczek-Wałczyk, A.; Piechowicz, L.; Olkowska, E.; Potrykus, M.; Tankiewicz, M.; Krupka, M.; et al. Intensive poultry farming: A review of the impact on the environment and human health. Sci. Total Environ. 2023, 858, 160014. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. EU Soil Strategy for 2030. Reaping the Benefits of Healthy Soils for People, Food, Nature and Climate; COM (699)2021, SWD (2021)323; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Zhou, Y.; Wu, J.; Wang, B.; Duan, L.; Zhang, Y.; Zhao, W.; Wang, F.; Sui, Q.; Chen, Z.; Xu, D.; et al. Occurrence, source and ecotoxicological risk assessment of pesticides in surface water of Wujin District (northwest of Taihu Lake), China. Environ. Pollut. 2020, 265, 114953. [Google Scholar] [CrossRef]
- Mahugija, J.A.M.; Kayombo, A.; Peter, R. Pesticide residues in raw and processed maize grains and flour from selected areas in Dar es Salaam and Ruvuma, Tanzania. Chemosphere 2017, 185, 137–144. [Google Scholar] [CrossRef]
- Wang, J.; Xu, J.; Ji, X.; Wu, H.; Yang, H.; Zhang, H.; Zhang, X.; Li, Z.; Ni, X.; Qian, M. Determination of veterinary drug/pesticide residues in livestock and poultry excrement using selective accelerated solvent extraction and magnetic material purification combined with ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2020, 26, 460808. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Yang, L.; Chen, L.; Li, S.; Sun, L. Bioaccumulation of antibiotics in crops under long-term manure application: Occurrence, biomass response and human exposure. Chemosphere 2019, 219, 882–895. [Google Scholar] [CrossRef] [PubMed]
- Harrower, J.; McNaughtan, M.; Hunter, C.; Hough, R.; Zhang, Z.; Helwig, K. Chemical fate and partitioning behavior of antibiotics in the aquatic environment-a review. Environ. Toxicol. Chem. 2021, 40, 3275–3298. [Google Scholar] [CrossRef] [PubMed]
- Tasho, R.P.; Cho, J.Y. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Sci. Total Environ. 2016, 563–564, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Glossary: Type of Manure Application. 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Type_of_manure_application (accessed on 15 May 2023).
- Köninger, J.; Lugato, E.; Panagos, P.; Kochupillai, M.; Orgiazzi, A.; Briones, M.J. Manure management and soil biodiversity: Towards more sustainable food systems in the EU. Agric. Syst. 2021, 194, 103251. [Google Scholar] [CrossRef]
- Muhammad, J.; Khan, S.; Su, J.Q.; Hesham, A.E.-L.; Ditta, A.; Nawab, J.; Ali, A. Antibiotics in poultry manure and their associated health issues: A systematic review. J. Soils Sediments 2020, 20, 486–497. [Google Scholar] [CrossRef]
- Font-Palma, C. Methods for the Treatment of Cattle Manure—A Review. C 2019, 5, 27. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, F.; Chang, J.; Wu, R.; Tibamba, M.; Lu, X.; Zhang, X. Effect and risk assessment of animal manure pollution on Huaihe River Basin, China. Chin. Geogr. Sci. 2021, 31, 751–764. [Google Scholar] [CrossRef]
- Zainab, S.M.; Junaid, M.; Xu, N.; Malik, R.N. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 2020, 187, 116455. [Google Scholar] [CrossRef]
- Debaene, G.; Niedźwiecki, J.; Pecio, A.; Żurek, A. Effect of the number of calibration samples on the prediction several soil properties at the farm-scale. Geoderma 2014, 214–215, 114–115. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Siebielec, G.; Siebielec, S.; Pecio, M. The impact of exogenous organic matter on wheat growth and mineral nitrogen availability in soil. Agronomy 2020, 10, 1314. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiol. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- OECD. Test No. 221: Lemna sp. Growth Inhibition Test. 2006. Available online: https://www.oecd-ilibrary.org/environment/test-no-221-lemna-sp-growth-inhabition-test_9789264016194-en (accessed on 15 May 2023).
- Rydzyński, D.; Piotrowicz-Cieślak, A.I.; Grajek, H.; Michalczyk, D.J. Instability of chlorophyll in yellow lupin seedlings grown in soil contaminated with ciprofloxacin and tetracycline. Chemosphere 2017, 184, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Seely, G.R.; Jensen, R.G. Effect of solvent on the spectrum of chlorophyll. Spectrochim. Acta 1965, 21, 1835–1845. [Google Scholar] [CrossRef]
- Jiao, L.; Wang, L.; Qiu, Z.; Wang, Q.; Zhou, Q.; Huang, X. Effects of bisphenol A on chlorophyll synthesis in soybean seedlings. ESPR 2015, 22, 5877–5886. [Google Scholar] [CrossRef] [PubMed]
- Kumar, T.A.; Charan, T.B. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiol. 1998, 117, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Averina, N.G.; Gritskevich, E.R.; Vershilovskaya, I.V.; Usatov, A.V.; Yaronskaya, E.B. Mechanisms of salt stress tolerance development in barley plants under the influence of 5-aminolevulinic acid. Russ. J. Plant Physiol. 2010, 57, 792–798. [Google Scholar] [CrossRef]
- Hodges, D.M.; DeLong, J.M.; Forney, C.F.; Prange, R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Heckman, N.L.; Elthon, T.E.; Horst, G.L.; Gaussoin, R.E. Influence of trinexapac-ethyl on respiration of isolated wheat mitochondria. Crop Sci. 2002, 42, 423–427. [Google Scholar] [CrossRef]
- Krupka, M.; Michalczyk, D.J.; Žaltauskaitė, J.; Sujetovienė, G.; Głowacka, K.; Grajek, H.; Wierzbicka, M.; Piotrowicz-Cieślak, A.I. Physiological and biochemical parameters of common duckweed Lemna minor after the exposure to tetracycline and the recovery from this stress. Molecules 2021, 26, 6765. [Google Scholar] [CrossRef]
- Isaacson, T.; Damasceno, C.M.B.; Saravanan, R.S.; He, Y.; Catalá, C.; Saladié, M.; Rose, J.K.C. Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat. Protoc. 2006, 1, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Borshch, O.O.; Gutyj, B.V.; Borshch, O.V.; Sobolev, O.I.; Chernyuk, S.V.; Rudenko, O.P.; Kalyn, B.M.; Lytvyn, N.A.; Savchuk, L.B.; Kit, L.P.; et al. Environmental pollution caused by the manure storage. Ukr. J. Ecol. 2020, 10, 110–114. [Google Scholar]
- FAO. The State of Food and Agriculture 2018: Migration, Agriculture and Rural Development; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Siebielec, G.; Łopatka, A.; Smreczak, B.; Kaczyński, R.; Siebielec, S.; Koza, P.; Dach, J. Materia organiczna w glebach mineralnych Polski. Stud. I Rap. IUNG-PIB 2020, 64, 9–30. (In Polish) [Google Scholar] [CrossRef]
- European Environmental Agency. Soil Monitoring in Europe—Indicators and Thresholds for Soil Health Assessments; EEA Report, No 08/2022; European Environmental Agency: Copenhagen, Denmark, 2023; p. 186. [CrossRef]
- Ukalska-Jaruga, A.; Klimkowicz-Pawlas, A.; Smreczak, B. Characterization of organic matter fractions in top layer of soils under different land uses from Central-Eastern Europe. Soil Use Manag. 2019, 35, 595–606. [Google Scholar] [CrossRef]
- FAO; UNEP. Global Assessment of Soil Pollution—Summary for Policy Makers; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Smreczak, B.; Ochal, P.; Siebielec, G. Wpływ zakwaszenia na funkcje gleb oraz wyznaczanie obszarów ryzyka na użytkach rolnych w Polsce. Stud. I Rap. IUNG-PIB 2020, 64, 31–47. (In Polish) [Google Scholar] [CrossRef]
- Siebielec, G.; Smreczak, B.; Klimkowicz-Pawlas, A.; Maliszewska-Kordybach, B.; Terelak, H.; Koza, P.; Łysiak, M.; Gałazka, R.; Pecio, M.; Suszek, B. Monitoring of Soil Chemical Quality of Agricultural Land in Poland in 2010–2012; Biblioteka Monitoringu Środowiska: Warszawa, Poland, 2012; p. 196. (In Polish) [Google Scholar]
- Fageria, N.K.; Moreira, A. The role of mineral nutrition on root growth of crop plants. Adv. Argonomy 2011, 110, 251–331. [Google Scholar] [CrossRef]
- Jurowski, K.; Szewczyk, B.; Nowak, G.; Piekoszewski, W. Biological consequences of zinc deficiency in the pathomechanisms of selected diseases. JBIC 2014, 19, 1069–1079. [Google Scholar] [CrossRef]
- Cachada, A.; Rocha-Santos, T.; Duarte, A.C. Soil and pollution. In Soil Pollution; Academic Press: Cambridge, UK, 2018; pp. 1–28. [Google Scholar] [CrossRef]
- Trouchon, T.; Lefebvre, S. A review of enrofloxacin for veterinary use. Open J. Vet. Med. 2016, 6, 40–58. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Yang, Q.; Sun, L.; Yang, X.; Zhou, M.; Deng, R.; Bi, L. Plant growth, antibiotic uptake, and prevalence of antibiotic resistance in an endophytic system of Pakchoi under antibiotic exposure. Int. J. Environ. Res. Public Health 2017, 14, 1336. [Google Scholar] [CrossRef]
- CDDEP. The State of the World’s Antibiotics 2021—A Global Analysis of Antimicrobial Resistance and Its Drivers; Center for Disease Dynamics, Economics & Policy: Washington, DC, USA, 2021. [Google Scholar]
- Soto-Giron, M.J.; Kim, J.N.; Schott, E.; Tahmin, C.; Ishoey, T.; Mincer, T.J.; DeWalt, J.; Toledo, G. The Edible Plant Microbiome represents a diverse genetic reservoir with functional potential in the human host. Sci. Rep. 2021, 11, 24017. [Google Scholar] [CrossRef]
- Larsson, D.G.J. Antibiotics in the environment. Upsala J. Med. Sci. 2014, 119, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.S.; Sthiannopkao, S.; Du, J.; Chen, Z.J.; Kim, K.W.; Mohamed Yasin, M.S.; Hashim, J.H.; Wong, C.K.C.; Wong, M.H. Daily intake and human risk assessment of organochlorine pesticides (OCPs) based on Cambodian market basket data. J. Hazard. Mater. 2011, 192, 1441–1449. [Google Scholar] [CrossRef] [PubMed]
- Malusá, E.; Tartanus, M.; Danelski, W.; Miszczak, A.; Szustakowska, E.; Kicińska, J.; Furmanczyk, E.M. Monitoring of DDT in agricultural soils under organic farming in Poland and the risk of crop contamination. Environ. Manag. 2020, 66, 916–929. [Google Scholar] [CrossRef] [PubMed]
- Necibi, M.; Mzoughi, N. Determination of organochlorine pesticides in the surface water from Medjerda river, Tunisia. J. Environ. Anal. Chem. 2020, 103, 31–42. [Google Scholar] [CrossRef]
- Gao, J.; Garrison, A.W.; Hoehamer, C.; Mazur, C.S.; Wolfe, N.L. Uptake and phytotransformation of o,p’-DDT and p,p’-DDT by axenically cultivated aquatic plants. J. Agric. Food Chem. 2000, 48, 6121–6127. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Karunanidhi, D.; Subramani, T.; Srinivasamoorthy, K. Sources and consequences of groundwater contamination. AECT 2021, 80, 1–10. [Google Scholar] [CrossRef]
- Unesco. The United Nations World Water Development Report 2022: Groundwater: Making the Invisible Visible; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2022; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000380721 (accessed on 27 April 2023).
- Zhi, D.; Yang, D.; Zheng, Y.; Yang, Y.; He, Y.; Luo, L.; Zhou, Y. Current progress in the adsorption, transport and biodegradation of antibiotics in soil. J. Environ. Manag. 2019, 251, 109598. [Google Scholar] [CrossRef]
- Chen, K.L.; Liu, L.C.; Chen, W.R. Adsorption of sulfamethoxazole and sulfapyridine antibiotics in high organic content soils. Environ. Pollut. 2017, 231, 1163–1171. [Google Scholar] [CrossRef]
- Buta, M.; Korzeniewska, E.; Harnisz, M.; Hubeny, J.; Zieliński, W.; Rolbiecki, D.; Bajkacz, S.; Felis, E.; Kokoszka, K. Microbial and chemical pollutants on the manure-crops pathway in the perspective of “One Health” holistic approach. Sci. Total Environ. 2021, 785, 147411. [Google Scholar] [CrossRef]
- Hu, Y.; Jin, L.; Zhao, Y.; Jiang, L.; Yao, S.; Zhou, W.; Lin, K.; Cui, C. Annual trends and health risks of antibiotics and antibiotic resistance genes in a drinking water source in East China. Sci. Total Environ. 2021, 791, 148152. [Google Scholar] [CrossRef]
- Jurado, A.; Pujades, E.; Walther, M.; Diaz-Cruz, M.S. Occurrence, fate, and risk of the organic pollutants of the surface water watch List in European groundwaters: A review. Environ. Chem. Lett. 2022, 20, 3313–3333. [Google Scholar] [CrossRef]
- Moles, S.; Gozzo, S.; Ormad, M.P.; Mosteo, R.; Gómez, J.; Laborda, F.; Szpunar, J. Long-term study of antibiotic presence in Ebro River Basin (Spain): Identification of the emission sources. Water 2022, 14, 1033. [Google Scholar] [CrossRef]
- Mahmood, A.R.; Al-Haideri, H.H.; Hassan, F.M. Detection of antibiotics in drinking water treatment plants in Baghdad City, Iraq. Adv. Public Health 2019, 2019, 7851354. [Google Scholar] [CrossRef]
- Burke, V.; Richter, D.; Greskowiak, J.; Mehrtens, A.; Schulz, L.; Massmann, G. Occurrence of antibiotics in surface and groundwater of a drinking water catchment area in Germany. Water Environ. Res. 2016, 88, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Kuchta, S.L.; Cessna, A.J.; Elliott, J.A.; Peru, K.M.; Headley, J.V. Transport of lincomycin to surface and ground water from manure-amended cropland. J. Environ. Qual. 2009, 38, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Mehrtens, A.; Licha, T.; Burke, V. Occurrence, effects and behaviour of the antibiotic lincomycin in the agricultural and aquatic environment—A review. Sci. Total Environ. 2021, 778, 146306. [Google Scholar] [CrossRef]
- Conde-Cid, M.; Fernández-Sanjurjo, M.J.; Ferreira-Coelho, G.; Fernández-Calviño, D.; Arias-Estevez, M.; Núñez-Delgado, A.; Álvarez-Rodríguez, E. Competitive adsorption and desorption of three tetracycline antibiotics on bio-sorbent materials in binary systems. Environ. Res. 2020, 190, 110003. [Google Scholar] [CrossRef]
- Mackie, R.I.; Koike, S.; Krapac, I.; Chee-Sanford, J.; Maxwell, S.; Aminov, R.I. Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities. Anim. Biotechnol. 2006, 17, 157–176. [Google Scholar] [CrossRef]
- Szekeres, E.; Chiriac, C.M.; Baricz, A.; Szőke-Nagy, T.; Lung, I.; Soran, M.-L.; Rudi, K.; Dragos, N.; Coman, C. Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas. Environ. Pollut. 2018, 236, 734–744. [Google Scholar] [CrossRef]
- Li, N.; Ho, K.W.K.; Ying, G.G.; Deng, W.J. Veterinary antibiotics in food, drinking water, and the urine of preschool children in Hong Kong. Environ. Int. 2017, 108, 246–252. [Google Scholar] [CrossRef]
- Azad, M.B.; Bridgman, S.L.; Becker, A.B.; Kozyrskyj, A.L. Infant antibiotic exposure and the development of childhood overweight and central adiposity. IJO 2014, 38, 1290–1298. [Google Scholar] [CrossRef]
- Hills, R.D.; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut Microbiome: Profound implications for diet and disease. Nutrients 2019, 11, 1613. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.D.; Chen, E.Z.; Baldassano, R.N.; Otley, A.R.; Griffiths, A.M.; Lee, D.; Bittinger, K.; Bailey, A.; Friedman, E.S.; Hoffmann, C.; et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s Disease. Cell Host Microbe 2015, 18, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Andrade, L.; Kelly, M.; Hynds, P.; Weatherill, J.; Majury, A.; O’Dwyer, J. Groundwater resources as a global reservoir for antimicrobial-resistant bacteria. Water Res. 2020, 170, 115360. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimzadeh, S.; Castiglioni, S.; Riva, F.; Zuccato, E.; Azzellino, A. Carbamazepine levels related to the demographic indicators in groundwater of densely populated area. Water 2021, 13, 2539. [Google Scholar] [CrossRef]
- Loos, R.; Locoro, G.; Comero, S.; Contini, S.; Schwesig, D.; Werres, F.; Balsaa, P.; Gans, O.; Weiss, S.; Blaha, L.; et al. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res. 2010, 44, 4115–4126. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Sengupta, S.; Fritschi, F.B.; Azad, R.K.; Nechushtai, R.; Mittler, R. The impact of multifactorial stress combination on plant growth and survival. New Phytol. 2021, 230, 1034–1048. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Mittler, R. Plant responses to multifactorial stress combination. New Phytol. 2022, 234, 1161–1167. [Google Scholar] [CrossRef]
- Pandiyan, K.; Kushwaha, P.; Kashyap, P.L.; Bagul, S.Y.; Karthikeyan, N.; Saxena, A.K. 12-Phyllosphere microbiome: Modern prospectus and application. In Microbiomes and Plant Health; Elsevier: Amsterdam, The Netherlands, 2021; pp. 345–366. [Google Scholar] [CrossRef]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant-microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef]
- FAO. The FAO Action Plan on Antimicrobial Resistance 2021–2025. Rome. 2021. Available online: https://www.fao.org/documents/card/en/c/cb5545en (accessed on 27 April 2023).
- Xie, X.; He, Z.; Chen, N.; Tang, Z.; Wang, Q.; Cai, Y. The roles of environmental factors in regulation of oxidative stress in plants. BioMed. Res. Int. 2019, 8, 9732325. [Google Scholar] [CrossRef]
- Fekete-Kertész, I.; Kunglné-Nagy, Z.; Gruiz, K.; Magyar, Á.; Farkas, É.; Molnár, M. Assessing toxicity of organic aquatic micropollutants based on the total chlorophyll content of Lemna minor as a sensitive endpoint. Period. Polytech. Chem. Eng. 2015, 59, 262–271. [Google Scholar] [CrossRef]
- Margas, M.; Piotrowicz-Cieślak, A.I.; Michalczyk, D.J.; Głowacka, K. A strong impact of soil tetracycline on physiology and biochemistry of pea seedlings. Scientifica 2019, 2019, 3164706. [Google Scholar] [CrossRef] [PubMed]
- Krupka, M.; Piotrowicz-Cieślak, A.I.; Michalczyk, D.J. Effects of antibiotics on the photosynthetic apparatus of plants. J. Plant Interact. 2022, 17, 96–104. [Google Scholar] [CrossRef]
- Beale, S.I. Green genes gleaned. Trends Plant Sci. 2005, 10, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Gashi, B.; Osmani, M.; Aliu, S.; Zogaj, M.; Kastrati, F. Risk assessment of heavy metal toxicity by sensitive biomarker δ-aminolevulinic acid dehydratase (ALA-D) for onion plants cultivated in polluted areas in Kosovo. J. Environ. Sci. Health 2020, 55, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, W.; Nie, X.; Guan, C.; Yang, Y.; Wang, Z.; Liao, W. Growth response and toxic effects of three antibiotics on Selenastrum capricornutum evaluated by photosynthetic rate and chlorophyll biosynthesis. J. Environ. Sci. 2011, 23, 1558–1563. [Google Scholar] [CrossRef] [PubMed]
- Tulkova, E.; Kabashnikova, L. Malondialdehyde content in the leaves of small-leaved linden tilia cordata and Norway maple acer platanoides under the influence of volatile organic compounds. Plant Biosys. 2022, 156, 619–627. [Google Scholar] [CrossRef]
- Awasthi, J.P.; Saha, B.; Chowardhara, B.; Devi, S.S.; Borgohain, P.; Panda, S.K. Qualitative analysis of lipid peroxidation in plants under multiple stress through Shiff’s reagent: A histochemical approach. Bio-Protocol 2018, 8, e2807. [Google Scholar] [CrossRef]
- Akpinar, A.; Cansev, A.; Isleyen, M. Impact of Peltigera praetextata on zucchini grown in weathered p,p’-DDE-contaminated soil and its responses. Acta Physiol. Plant. 2022, 44, 140. [Google Scholar] [CrossRef]
- Alimova, A.A.; Sitnikov, V.V.; Pogorelov, D.I.; Boyko, O.N.; Vitkalova, I.Y.; Gureev, A.P.; Popov, V.N. High doses of pesticides induce mtDNA damage in intact mitochondria of potato in vitro and do not impact on mtDNA integrity of mitochondria of shoots and tubers under in vivo exposure. Int. J. Mol. Sci. 2022, 23, 2970. [Google Scholar] [CrossRef]
- Usman, M.G.; Rafii, M.Y.; Martini, M.Y.; Yusuff, O.A.; Ismail, M.R.; Miah, G. Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress. Biotechnol. Genet. Eng. Rev. 2017, 33, 26–39. [Google Scholar] [CrossRef]
- WHO. Protecting Surface Water for Health: Identifying, Assessing and Managing Drinking-Water Quality Risks in Surface-Water Catchments. Geneva, Switzerland. 2016. Available online: https://www.who.int/publications/i/item/9789241510554 (accessed on 14 May 2023).
- Choudhary, M.; Muduli, M.; Ray, S. A comprehensive review on nitrate pollution and its remediation: Conventional and recent approaches. Sustain. Water Resour. Manag. 2022, 8, 113. [Google Scholar] [CrossRef]
- Cesoniene, L.; Dapkiene, M.; Sileikiene, D. The impact of livestock farming activity on the quality of surface water. ESPR 2019, 26, 32678–32686. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Cho, K.H.; Ligaray, M.; Choi, M.J. Organic matter composition of manure and its potential impact on plant growth. Sustainability 2019, 11, 2346. [Google Scholar] [CrossRef]
- Barrios, R.E.; Khuntia, H.K.; Bartelt-Hunt, S.L.; Gilley, J.E.; Schmidt, A.M.; Snow, D.D.; Li, X. Fate and transport of antibiotics and antibiotic resistance genes in runoff and soil as affected by the timing of swine manure slurry application. Sci. Total Environ. 2020, 712, 136505. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Chen, C.; Zeng, Q.; Ding, D.; Gu, J.; Mo, J. Field study on loss of tetracycline antibiotics from manure-applied soil and their risk assessment in regional water environment of Guangzhou, China. Sci. Total Environ. 2022, 827, 154273. [Google Scholar] [CrossRef]
- Meng, T.; Cheng, W.; Wan, T.; Wang, M.; Ren, J.; Li, Y.; Huang, C. Occurrence of antibiotics in rural drinking water and related human health risk assessment. Environ. Technol. 2021, 42, 671–681. [Google Scholar] [CrossRef]
- Maheshwari, S. Environmental impacts of poultry production. Poult. Fish Wild Sci. 2013, 1, 101. [Google Scholar] [CrossRef]
- Fang, W.; Peng, Y.; Muir, D.; Lin, J.; Zhang, X. A critical review of synthetic chemicals in surface waters of the US, the EU and China. Environ. Int. 2019, 131, 104994. [Google Scholar] [CrossRef]
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Ayele, S.; Mamo, Y.; Deribe, E.; Eklo, O.M. Levels of organochlorine pesticides in five species of fish from Lake Ziway, Ethiopia. Sci. Afr. 2022, 16, e01252. [Google Scholar] [CrossRef]
- Ziegler, P.; Sree, K.S.; Appenroth, K.J. Duckweed biomarkers for identifying toxic water contaminants? ESPR 2019, 26, 14797–14822. [Google Scholar] [CrossRef] [PubMed]
- Park, M.K.; Oh, J.Y.; Lee, S.E.; Choi, S.D. Determination of veterinary pharmaceutical runoffs from a swine manure pile using LC–MS/MS. Appl. Biol. Chem. 2020, 63, 69. [Google Scholar] [CrossRef]
- Li, G.; Li, H.; Leffelaar, P.A.; Shen, J.; Zhang, F. Characterization of phosphorus in animal manures collected from three (dairy, swine, and broiler) farms in China. PLoS ONE 2014, 9, e102698. [Google Scholar] [CrossRef]
- Sackey, L.N.A.; Kočí, V.; van Gestel, C.A.M. Ecotoxicological effects on Lemna minor and Daphnia magna of leachates from differently aged landfills of Ghana. Sci. Total Environ. 2020, 698, 134295. [Google Scholar] [CrossRef]
Sample Name/Parameter | pHKCl | TOC | TN | TC/TN | Available P | Available K | N-NO3 | N-NH4 |
---|---|---|---|---|---|---|---|---|
Soil S1 | 5.7 | 9.6 | 1.22 | 7.89 | 16.7 | 43.5 | 4.38 | 4.89 |
Soil S2 | 4.9 | 12.8 | 1.33 | 9.60 | 40.4 | 43.2 | 11.49 | 34.97 |
Compound Name | Pharmaceutical Class |
---|---|
Ciprofloxacin | Fluoroquinolone antibiotic |
Enrofloxacin | Fluoroquinolone antibiotic |
Carbamazepine | Anticonvulsant and anxiolytic drug |
Metoclopramide | Antiemetic drug |
Trimethoprim | Antibiotic |
Compound Name | Action |
---|---|
Diflufenican | Inhibitor of carotenoid biosynthesis |
Flufenacet | Herbicide, blocks enzymes that catalyze the biosynthesis of very long chain fatty acids |
p,p′-DDE | Insecticide from the group of chlorinated hydrocarbons |
Compound Name | Pharmaceutical Class |
---|---|
Ciprofloxacin | Fluoroquinolone antibiotic |
Enrofloxacin | Fluoroquinolone antibiotic |
Carbamazepine | Anticonvulsant and anxiolytic drug |
Lincomycin | Antibiotic from the group of lincosamides |
Metoclopramide | Antiemetic drug |
Tetracycline | Tetracycline group antibiotic |
Trimethoprim | Antibiotic |
Sample Type | Chlorophyll Concentration [M] |
---|---|
Soil S1 | 1.5 × 10−5 a |
Soil S2 | 1.18 × 10−5 b |
Control S3 | 1.59 × 10−5 a |
Sample Type | Chlorophyll Concentration [M] |
---|---|
S1 | 1.70 × 10−5 a |
S2 | 1.01 × 10−5 b |
S3 | 1.53 × 10−5 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krupka, M.; Olkowska, E.; Klimkowicz-Pawlas, A.; Łęczyński, L.; Tankiewicz, M.; Michalczyk, D.J.; Wolska, L.; Piotrowicz-Cieślak, A.I. The Impact of Soil and Water Pollutants Released from Poultry Farming on the Growth and Development of Two Plant Species. Agriculture 2024, 14, 87. https://doi.org/10.3390/agriculture14010087
Krupka M, Olkowska E, Klimkowicz-Pawlas A, Łęczyński L, Tankiewicz M, Michalczyk DJ, Wolska L, Piotrowicz-Cieślak AI. The Impact of Soil and Water Pollutants Released from Poultry Farming on the Growth and Development of Two Plant Species. Agriculture. 2024; 14(1):87. https://doi.org/10.3390/agriculture14010087
Chicago/Turabian StyleKrupka, Magdalena, Ewa Olkowska, Agnieszka Klimkowicz-Pawlas, Leszek Łęczyński, Maciej Tankiewicz, Dariusz J. Michalczyk, Lidia Wolska, and Agnieszka I. Piotrowicz-Cieślak. 2024. "The Impact of Soil and Water Pollutants Released from Poultry Farming on the Growth and Development of Two Plant Species" Agriculture 14, no. 1: 87. https://doi.org/10.3390/agriculture14010087
APA StyleKrupka, M., Olkowska, E., Klimkowicz-Pawlas, A., Łęczyński, L., Tankiewicz, M., Michalczyk, D. J., Wolska, L., & Piotrowicz-Cieślak, A. I. (2024). The Impact of Soil and Water Pollutants Released from Poultry Farming on the Growth and Development of Two Plant Species. Agriculture, 14(1), 87. https://doi.org/10.3390/agriculture14010087