Impact of Poultry Manure-Derived Biochar and Bio-Fertilizer Application to Boost Production of Black Cumin Plants (Nigella sativa L.) Grown on Sandy Loam Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
- Biochar application (main plot factor):
- BC0 (Control): no biochar applied.
- BC1: biochar applied at 5 t ha−1.
- BC2: biochar applied at 10 t ha−1.
- Microbial inoculation (sub-plot factor):
- C (Control): no microbial inoculation.
- AMF: arbuscular mycorrhizal fungi (AMF) inoculation.
- PGPR: plant growth-promoting rhizobacteria (PGPR) inoculation.
- AMF + PGPR: a combination of AMF and PGPR inoculation.
- Treatment combinations:The combinations of these factors resulted in 12 treatment groups, as follows:
- BC0 + C (control: no biochar, no microbes),
- BC0 + AMF,
- BC0 + PGPR,
- BC0 + AMF + PGPR,
- BC1 + C,
- BC1 + AMF,
- BC1 + PGPR,
- BC1 + AMF + PGPR,
- BC2 + C,
- BC2 + AMF,
- BC2 + PGPR,
- BC2 + AMF + PGPR.
2.2. Biochar Preparation
2.3. Soil and Plant Analysis
2.4. Relative Water Content (RWC)
2.5. Fertility Index (FI)
2.6. Fixed Oil Determination
2.7. Volatile Oil Determination
2.8. Plant Sampling and Analysis
2.9. Data Analysis
3. Results
3.1. Biochar and Microbial Inoculants Effects on Soil Chemical Properties
3.2. Effects of Biochar and/or Microbial Inoculants on Nutrient Availability and Their Uptake
3.3. Effect of Biochar and/or Bio-Fertilizers on Black Cumin Growth Attributes
3.4. Effect of Biochar and/or Bio-Fertilizers on Chlorophyll Contents of Black Cumin Plants
3.5. Effects of Biochar and Microbial Inoculants on Black Cumin Yield
3.6. Effects of Biochar and/or Microbial Inoculants on Black Cumin Oil Content
4. Discussion
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, W.S.; Hammam, A.A. Poultry manure-derived biochar as a soil amendment and fertilizer for sandy soils under arid conditions. Egypt. J. Soil Sci. 2019, 59, 1–14. [Google Scholar] [CrossRef]
- Agbede, T.M.; Oyewumi, A. Benefits of biochar, poultry manure and biochar–poultry manure for improvement of soil properties and sweet potato productivity in degraded tropical agricultural soils. Resour. Environ. Sustain. 2022, 7, 100051. [Google Scholar] [CrossRef]
- Sayed, Y.A.; Al-Sayed, H.M.; Ali, A.M. Impact of Different Fertilizers on Black Cumin (Nigella Sativa L.) Plants and Their Relation to Release Kinetics of Nitrogen and Phosphorus. Egypt. J. Soil Sci. 2024, 64, 911–925. [Google Scholar]
- Chan, K.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Using poultry litter biochars as soil amendments. Soil Res. 2008, 46, 437–444. [Google Scholar] [CrossRef]
- Sikder, S.; Joardar, J. Biochar production from poultry litter as management approach and effects on plant growth. Int. J. Recycl. Org. Waste Agric. 2019, 8, 47–58. [Google Scholar] [CrossRef]
- Agyarko-Mintah, E.; Cowie, A.; Singh, B.P.; Joseph, S.; Van Zwieten, L.; Cowie, A.; Harden, S.; Smillie, R. Biochar increases nitrogen retention and lowers greenhouse gas emissions when added to composting poultry litter. Waste Manag. 2017, 61, 138–149. [Google Scholar] [CrossRef]
- Pituello, C.; Francioso, O.; Simonetti, G.; Pisi, A.; Torreggiani, A.; Berti, A.; Morari, F. Characterization of chemical–physical, structural and morphological properties of biochars from biowastes produced at different temperatures. J. Soils Sediments 2015, 15, 792–804. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management; Routledge: Oxfordshire, UK, 2015; pp. 1–13. [Google Scholar]
- Dong, Y.; Wang, H.; Chang, E.; Zhao, Z.; Wang, R.; Xu, R.; Jiang, J. Alleviation of aluminum phytotoxicity by canola straw biochars varied with their cultivating soils through an investigation of wheat seedling root elongation. Chemosphere 2019, 218, 907–914. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, Y.; Chang, E.; Wang, R.; Hong, Z.; Cui, J.; Zhang, F.; Jiang, J.; Xu, R. Effect of biochar incorporation on phosphorus supplementation and availability in soil: A review. J. Soils Sediments 2023, 23, 672–686. [Google Scholar] [CrossRef]
- Awad, M.; Moustafa-Farag, M.; Liu, Z.; El-Shazoly, R.M. Combined effect of biochar and salicylic acid in alleviating heavy metal stress, antioxidant enhancement, and Chinese mustard growth in a contaminated soil. J. Soil Sci. Plant Nutr. 2022, 22, 4194–4206. [Google Scholar] [CrossRef]
- Javeed, H.M.R.; Naeem, R.; Ali, M.; Qamar, R.; Sarwar, M.A.; Nawaz, F.; Shehzad, M.; Farooq, A.; Khalid, S.; Mubeen, K. Coupling biochar with microbial inoculants improves maize growth and nutrients acquisition under phosphorous-limited soil. Acta Physiol. Plant. 2022, 44, 110. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, W.; Feng, Z.; Feng, G.; Zhu, H.; Yao, Q. Arbuscular mycorrhizal fungus differentially regulates P mobilizing bacterial community and abundance in rhizosphere and hyphosphere. Appl. Soil Ecol. 2022, 170, 104294. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants 2023, 12, 3101. [Google Scholar] [CrossRef] [PubMed]
- Hodge, A.; Storer, K. Arbuscular mycorrhiza and nitrogen: Implications for individual plants through to ecosystems. Plant Soil 2015, 386, 1–19. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, S.; Hu, W.; Xiao, L.; Tang, M. Arbuscular mycorrhizal fungus Rhizophagus irregularis increased potassium content and expression of genes encoding potassium channels in Lycium barbarum. Front. Plant Sci. 2017, 8, 440. [Google Scholar] [CrossRef]
- Hammer, E.; Balogh-Brunstad, Z.; Jakobsen, I.; Olsson, P.; Stipp, S.; Rillig, M. A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biol. Biochem. 2014, 77, 252–260. [Google Scholar] [CrossRef]
- Hammer, E.C.; Forstreuter, M.; Rillig, M.C.; Kohler, J. Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress. Appl. Soil Ecol. 2015, 96, 114–121. [Google Scholar] [CrossRef]
- Abujabhah, I.S.; Doyle, R.B.; Bound, S.A.; Bowman, J.P. Assessment of bacterial community composition, methanotrophic and nitrogen-cycling bacteria in three soils with different biochar application rates. J. Soils Sediments 2018, 18, 148–158. [Google Scholar] [CrossRef]
- Al-Sayed, H.M.; Khalafalla, M.Y.; Ali, A.M. Effects of compost and biofertilizer on carbon dioxide emission, yield, and quality of roselle (Hibiscus sabdariffa L.) plants grown on clay loam. J. Plant Nutr. 2023, 46, 2707–2723. [Google Scholar] [CrossRef]
- Ali, A.M.; Awad, M.Y.; Hegab, S.A.; Gawad, A.M.A.E.; Eissa, M.A. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. J. Plant Nutr. 2021, 44, 411–420. [Google Scholar] [CrossRef]
- Yousef, A.F.; Ali, A.M.; Azab, M.A.; Lamlom, S.F.; Al-Sayed, H.M. Improved plant yield of potato through exogenously applied potassium fertilizer sources and biofertilizer. AMB Express 2023, 13, 124. [Google Scholar] [CrossRef] [PubMed]
- Daryabeigi Zand, A.; Tabrizi, A.M.; Heir, A.V. The influence of association of plant growth-promoting rhizobacteria and zero-valent iron nanoparticles on removal of antimony from soil by Trifolium repens. Environ. Sci. Pollut. Res. 2020, 27, 42815–42829. [Google Scholar] [CrossRef] [PubMed]
- Mashabela, M.D.; Piater, L.A.; Dubery, I.A.; Tugizimana, F.; Mhlongo, M.I. Rhizosphere tripartite interactions and PGPR-mediated metabolic reprogramming towards ISR and plant priming: A metabolomics review. Biology 2022, 11, 346. [Google Scholar] [CrossRef]
- Zafar-ul-Hye, M.; Bhutta, T.S.; Shaaban, M.; Hussain, S.; Qayyum, M.F.; Aslam, U.; Zahir, Z.A. Influence of plant growth promoting rhizobacterial inoculation on wheat productivity under soil salinity stress. Phyton 2019, 88, 119. [Google Scholar] [CrossRef]
- Chen, D.; Saeed, M.; Ali, M.N.H.A.; Raheel, M.; Ashraf, W.; Hassan, Z.; Hassan, M.Z.; Farooq, U.; Hakim, M.F.; Rao, M.J. Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi combined application reveals enhanced soil fertility and rice production. Agronomy 2023, 13, 550. [Google Scholar] [CrossRef]
- Ren, H.; Li, Z.; Chen, H.; Zhou, J.; Lv, C. Effects of Biochar and Plant Growth-Promoting Rhizobacteria on Plant Performance and Soil Environmental Stability. Sustainability 2022, 14, 10922. [Google Scholar] [CrossRef]
- Hassan, S.E.-D. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J. Adv. Res. 2017, 8, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, F.; Rafeeq, R.; Majeed, S.; Ismail, M.S.; Ahsan, M.; Ahmad, K.S.; Akram, A.; Haider, G. Biochar amendment in combination with endophytic bacteria stimulates photosynthetic activity and antioxidant enzymes to improve soybean yield under drought stress. J. Soil Sci. Plant Nutr. 2023, 23, 746–760. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Rezadoost, H.; Nadjafi, F.; Asareh, M.H. Comparative essential oil composition and fatty acid profiling of some Iranian black cumin landraces. Ind. Crops Prod. 2019, 140, 111628. [Google Scholar] [CrossRef]
- Randhawa, M.A.; Alghamdi, M.S. Anticancer activity of Nigella sativa (black seed)—A review. Am. J. Chin. Med. 2011, 39, 1075–1091. [Google Scholar] [CrossRef]
- Amin, B.; Hosseinzadeh, H. Black cumin (Nigella sativa) and its active constituent, thymoquinone: An overview on the analgesic and anti-inflammatory effects. Planta Medica 2016, 82, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Abdou, N.M.; Roby, M.H.; Al-Huqail, A.A.; Elkelish, A.; Sayed, A.A.; Alharbi, B.M.; Mahdy, H.A.; Abou-Sreea, A.I.B. Compost improving morphophysiological and biochemical traits, seed yield, and oil quality of Nigella sativa under drought stress. Agronomy 2023, 13, 1147. [Google Scholar] [CrossRef]
- Albakry, Z.; Karrar, E.; Ahmed, I.A.M.; Oz, E.; Proestos, C.; El Sheikha, A.F.; Oz, F.; Wu, G.; Wang, X. Nutritional composition and volatile compounds of black cumin (Nigella sativa L.) seed, fatty acid composition and tocopherols, polyphenols, and antioxidant activity of its essential oil. Horticulturae 2022, 8, 575. [Google Scholar] [CrossRef]
- Ozer, H.; Coban, F.; Sahin, U.; Ors, S. Response of black cumin (Nigella sativa L.) to deficit irrigation in a semi-arid region: Growth, yield, quality, and water productivity. Ind. Crops Prod. 2020, 144, 112048. [Google Scholar] [CrossRef]
- Ibrahim, M. The role of vermicompost and chitosan nanoparticles as foliar application to enhancing growth, yield and oil of black cumin (Nigella sativa L.) plants. Arch. Agric. Sci. J. 2020, 3, 205–223. [Google Scholar] [CrossRef]
- Ramadan, M.F. Nutritional value, functional properties and nutraceutical applications of black cumin (Nigella sativa L.): An overview. Int. J. Food Sci. Technol. 2007, 42, 1208–1218. [Google Scholar] [CrossRef]
- El-Din, S.; Attia, M.; Abo-Sedera, S. Evaluation of several substrates for mass multiplication of arbuscular mycorrhizal (AM) fungi grown on onion. Egypt. J. Microbiol. 1999, 34, 57–65. [Google Scholar]
- Gao, C.; El-Sawah, A.M.; Ali, D.F.I.; Alhaj Hamoud, Y.; Shaghaleh, H.; Sheteiwy, M.S. The integration of bio and organic fertilizers improve plant growth, grain yield, quality and metabolism of hybrid maize (Zea mays L.). Agronomy 2020, 10, 319. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. Methods of Soil Analysis, Part 3: Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 14. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Burt, R. Soil Survey Laboratory Methods Manual, Investigations Reports No 42, Version 4.0; Natural Resources Conservation Service; United States Department of Agriculture: Washington, DC, USA, 2004. [Google Scholar]
- Olsen, S.; Sommers, L. Methods of Soil Analysis: Chemical and Microbiological Properties Part 2, American Society of Agronomy; Soil Science Society of America: Madison, WI, USA, 1982. [Google Scholar]
- Smart, R.E.; Bingham, G.E. Rapid estimates of relative water content. Plant Physiol. 1974, 53, 258–260. [Google Scholar] [CrossRef]
- Abdellatif, M.A.; El Baroudy, A.A.; Arshad, M.; Mahmoud, E.K.; Saleh, A.M.; Moghanm, F.S.; Shaltout, K.H.; Eid, E.M.; Shokr, M.S. A GIS-based approach for the quantitative assessment of soil quality and sustainable agriculture. Sustainability 2021, 13, 13438. [Google Scholar] [CrossRef]
- Chemists, A.o.O.A.; Chemists, A.o.O.A. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Rockville, MD, USA, 1931; Volume 3. [Google Scholar]
- Pharmacopoeia, E. General Organization for Governmental Printing Office; Ministry of Health: Cairo, Egypt, 1984; pp. 31–33.
- Alkharabsheh, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al-Saif, A.M. Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy 2021, 11, 993. [Google Scholar] [CrossRef]
- Khaledi, S.; Delbari, M.; Galavi, H.; Bagheri, H.; Chari, M.M. Effects of biochar particle size, biochar application rate, and moisture content on thermal properties of an unsaturated sandy loam soil. Soil Tillage Res. 2023, 226, 105579. [Google Scholar] [CrossRef]
- Vahedi, R.; Rasouli-Sadaghiani, M.H.; Barin, M.; Vetukuri, R.R. Effect of biochar and microbial inoculation on P, Fe, and Zn bioavailability in a calcareous soil. Processes 2022, 10, 343. [Google Scholar] [CrossRef]
- Jiang, N.; Guo, Q.; Yu, Y.; Guan, Y.; Yang, W. Soil sodicity affected the arbuscular mycorrhizal community and its interactions with bacteria in the Western Songnen Plain. Appl. Soil Ecol. 2022, 180, 104602. [Google Scholar] [CrossRef]
- Wen, Z.; Chen, Y.; Liu, Z.; Meng, J. Biochar and arbuscular mycorrhizal fungi stimulate rice root growth strategy and soil nutrient availability. Eur. J. Soil Biol. 2022, 113, 103448. [Google Scholar] [CrossRef]
- Al-Sayed, H.M.; Ali, A.M.; Mohamed, M.A.; Ibrahim, M.F. Combined effect of prickly pear waste biochar and Azolla on soil fertility, growth, and yield of Roselle (Hibiscus sabdariffa L.) plants. J. Soil Sci. Plant Nutr. 2022, 22, 3541–3552. [Google Scholar] [CrossRef]
- Phares, C.A.; Amoakwah, E.; Danquah, A.; Afrifa, A.; Beyaw, L.R.; Frimpong, K.A. Biochar and NPK fertilizer co-applied with plant growth promoting bacteria (PGPB) enhanced maize grain yield and nutrient use efficiency of inorganic fertilizer. J. Agric. Food Res. 2022, 10, 100434. [Google Scholar] [CrossRef]
- Bai, J.; Huang, Y.; Bai, Y.; Chen, D.; Haider, S.; Song, J.; Moreira, B.R.D.A.; Ren, G.; Yang, G.; Feng, Y. Impact of straw-biochar amendments on microbial activity and soil carbon dynamics in wheat-maize system. Soil Tillage Res. 2024, 244, 106284. [Google Scholar] [CrossRef]
- Lu, W.; Ding, W.; Zhang, J.; Li, Y.; Luo, J.; Bolan, N.; Xie, Z. Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: A negative priming effect. Soil Biol. Biochem. 2014, 76, 12–21. [Google Scholar] [CrossRef]
- Chen, Y.; Du, Z.; Weng, Z.; Sun, K.; Zhang, Y.; Liu, Q.; Yang, Y.; Li, Y.; Wang, Z.; Luo, Y. Formation of soil organic carbon pool is regulated by the structure of dissolved organic matter and microbial carbon pump efficacy: A decadal study comparing different carbon management strategies. Glob. Chang. Biol. 2023, 29, 5445–5459. [Google Scholar] [CrossRef] [PubMed]
- Ortas, I. The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Res. 2012, 125, 35–48. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Spokas, K.A.; Novak, J.M.; Lentz, R.D.; Cantrell, K.B. Biochar elemental composition and factors influencing nutrient retention. In Biochar for Environmental Management; Routledge: Oxfordshire, UK, 2015; pp. 139–163. [Google Scholar]
- Rabbi, S.M.; Warren, C.R.; Swarbrick, B.; Minasny, B.; McBratney, A.B.; Young, I.M. Microbial decomposition of organic matter and wetting–drying promotes aggregation in artificial soil but porosity increases only in wet-dry condition. Geoderma 2024, 447, 116924. [Google Scholar] [CrossRef]
- Wei, M.; Liu, X.; He, Y.; Xu, X.; Wu, Z.; Yu, K.; Zheng, X. Biochar inoculated with Pseudomonas putida improves grape (Vitis vinifera L.) fruit quality and alters bacterial diversity. Rhizosphere 2020, 16, 100261. [Google Scholar] [CrossRef]
- Cavagnaro, T.R.; Bender, S.F.; Asghari, H.R.; van der Heijden, M.G. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci. 2015, 20, 283–290. [Google Scholar] [CrossRef]
- Fellbaum, C.R.; Gachomo, E.W.; Beesetty, Y.; Choudhari, S.; Strahan, G.D.; Pfeffer, P.E.; Kiers, E.T.; Bücking, H. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. USA 2012, 109, 2666–2671. [Google Scholar] [CrossRef]
- Al-Sayed, H.M.; Hegab, S.; Youssef, M.; Khalafalla, M.Y.; Eissa, M.A. Compost and non-symbiotic nitrogen fixers to reduce inorganic-N rates for roselle (Hibiscus sabdariffa L.). Commun. Soil Sci. Plant Anal. 2023, 54, 431–443. [Google Scholar] [CrossRef]
- Esitken, A.; Yildiz, H.E.; Ercisli, S.; Donmez, M.F.; Turan, M.; Gunes, A. Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci. Hortic. 2010, 124, 62–66. [Google Scholar] [CrossRef]
- Kim, K.; Neuberger, P.; Daly, E.J.; Gorzelak, M.; Hernandez-Ramirez, G. Arbuscular mycorrhizal fungi community linkages to soil nutrient availability across contrasting agroecosystems. Appl. Soil Ecol. 2022, 176, 104464. [Google Scholar] [CrossRef]
- Koide, R.; Kabir, Z. Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol. 2000, 148, 511–517. [Google Scholar] [CrossRef]
- Mackay, J.E.; Cavagnaro, T.R.; Stöver, D.S.M.; Macdonald, L.M.; Grønlund, M.; Jakobsen, I. A key role for arbuscular mycorrhiza in plant acquisition of P from sewage sludge recycled to soil. Soil Biol. Biochem. 2017, 115, 11–20. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Y.; Chiu, P.C.; Imhoff, P.T.; Guo, M. Phosphorus release behaviors of poultry litter biochar as a soil amendment. Sci. Total Environ. 2015, 512, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Chintala, R.; Schumacher, T.E.; McDonald, L.M.; Clay, D.E.; Malo, D.D.; Papiernik, S.K.; Clay, S.A.; Julson, J.L. Phosphorus sorption and availability from biochars and soil/B iochar mixtures. CLEAN–Soil Air Water 2014, 42, 626–634. [Google Scholar] [CrossRef]
- Ali, S.; Rizwan, M.; Noureen, S.; Anwar, S.; Ali, B.; Naveed, M.; Abd_Allah, E.F.; Alqarawi, A.A.; Ahmad, P. Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environ. Sci. Pollut. Res. 2019, 26, 11288–11299. [Google Scholar] [CrossRef]
- Rafique, M.; Ortas, I.; Ahmed, I.A.; Rizwan, M.; Afridi, M.S.; Sultan, T.; Chaudhary, H.J. Potential impact of biochar types and microbial inoculants on growth of onion plant in differently textured and phosphorus limited soils. J. Environ. Manag. 2019, 247, 672–680. [Google Scholar] [CrossRef]
- Habib, A. Response of pearl millet to fertilization by mineral phosphorus, humic acid and mycorrhiza under calcareous soils conditions. Egypt. J. Soil Sci. 2021, 61, 399–411. [Google Scholar] [CrossRef]
- Nada, R.S.; Soliman, M.N.; Zarad, M.M.; Sheta, M.H.; Ullah, S.; Abdel-Gawad, A.I.; Ghoneim, A.H.; Elateeq, A.A. Effect of Organic Fertilizer and Plant Growth-Promoting Microbes on Growth, Flowering, and Oleanolic Acid Content in Calendula officinalis under Greenhouse Conditions. Egypt. J. Soil Sci. 2024, 64, 815–831. [Google Scholar] [CrossRef]
- Taha, N.; Kamel, S.; Elsakhawy, T.; Bayoumi, Y.; Omara, A.E.-D.; El-Ramady, H.R. Sustainable approaches of trichoderma under changing environments for vegetable production. Environ. Biodivers. Soil Secur. 2020, 4, 291–311. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota–a review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Alotaibi, M.O.; Alotibi, M.M.; Eissa, M.A.; Ghoneim, A.M. Compost and plant growth-promoting bacteria enhanced steviol glycoside synthesis in stevia (Stevia rebaudiana Bertoni) plants by improving soil quality and regulating nitrogen uptake. S. Afr. J. Bot. 2022, 151, 306–314. [Google Scholar] [CrossRef]
- Azhar, M.; ur Rehman, M.Z.; Ali, S.; Qayyum, M.F.; Naeem, A.; Ayub, M.A.; ul Haq, M.A.; Iqbal, A.; Rizwan, M. Comparative effectiveness of different biochars and conventional organic materials on growth, photosynthesis and cadmium accumulation in cereals. Chemosphere 2019, 227, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Sammama, H.; Mazri, M.A.; Ouahmane, L.; Sammama, A.; Hsissou, D.; El Kaoua, M.; Alfeddy, M.N. Microbial inoculation improves soil properties, nutrient uptake, and plant growth in soft wheat-faba bean intercropping. J. Soil Sci. Plant Nutr. 2022, 22, 5159–5173. [Google Scholar] [CrossRef]
- Ali, A.M.; Mahdy, A.Y.; Al-Sayed, H.M.; Bayomi, K.M. Phosphorus sources and sheep manure fertilization for soil properties enhancement and sugar beet yield. Gesunde Pflanz. 2023, 75, 2785–2795. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Hu, T.; Mahmoud, A.; Li, J.; Zhu, R.; Jiao, X.; Jing, P. A quantitative review of the effects of biochar application on rice yield and nitrogen use efficiency in paddy fields: A meta-analysis. Sci. Total Environ. 2022, 830, 154792. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, M.; Tian, Y.; Zhao, M.; Zeng, K.; Zhang, B.; Zhao, M.; Yin, B. Azolla biofertilizer for improving low nitrogen use efficiency in an intensive rice cropping system. Field Crops Res. 2018, 216, 158–164. [Google Scholar] [CrossRef]
- Kimani, S.M.; Bimantara, P.O.; Kautsar, V.; Tawaraya, K.; Cheng, W. Poultry litter biochar application in combination with chemical fertilizer and Azolla green manure improves rice grain yield and nitrogen use efficiency in paddy soil. Biochar 2021, 3, 591–602. [Google Scholar] [CrossRef]
- Moradzadeh, S.; Siavash Moghaddam, S.; Rahimi, A.; Pourakbar, L.; Sayyed, R. Combined bio-chemical fertilizers ameliorate agro-biochemical attributes of black cumin (Nigella sativa L.). Sci. Rep. 2021, 11, 11399. [Google Scholar] [CrossRef]
Properties | 1st Season * | 2nd Season * |
---|---|---|
Sand (g kg−1) | 786 | 785 |
Silt (g kg−1) | 143 | 141 |
Clay (g kg−1) | 71 | 74 |
Texture | Sandy loam | Sandy loam |
Soil reaction (pH) | 7.83 | 7.81 |
Electrical Conductivity (EC, dS m−1) | 0.98 | 1.1 |
CaCO3 (g kg−1) | 35.1 | 35.5 |
Organic matter (OM, g kg−1) | 4.3 | 4.5 |
Available-N (mg kg−1) | 24 | 29 |
Available-P (mg kg−1) | 3.25 | 3.37 |
Available-K (mg kg−1) | 98 | 105 |
Property | Value |
---|---|
Soil reaction (pH 1:10) | 10.11 |
Electrical conductivity (EC 1:10 dS m−1) | 6.25 |
Total C (g kg−1) | 360 |
Organic matter (g kg−1) | 620.64 |
Total nitrogen (g kg−1) | 29.51 |
C:N ratio | 12.20 |
Total phosphorous (g kg−1) | 18.31 |
Total potassium (g kg−1) | 19.5 |
Total Fe (g kg−1) | 0.337 |
Total Mn (g kg−1) | 0.453 |
Total Zn (g kg−1) | 0.291 |
Total Cu (g kg−1) | 0.17 |
Treatment | pH | EC | OM (g kg−1) | FI | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 1st | 2nd | 1st | 2nd | 1st | 2nd | |||
Biochar A | BC0 | 8.09C | 8.08C | 0.61C | 0.63C | 4.35C | 4.25C | 6.50C | 6.57C | |
BC1 | 8.15B | 8.16B | 0.82B | 0.99B | 9.05B | 10.25B | 10.11B | 10.49B | ||
BC2 | 8.20A | 8.22A | 0.98A | 1.18A | 10.04A | 11.24A | 11.34A | 11.70A | ||
Bio-fertilizer B | C | 8.14A | 8.15A | 0.67C | 0.79C | 6.58B | 7.34B | 8.03C | 8.25C | |
AMF | 8.15A | 8.15A | 0.81B | 0.95B | 8.04A | 8.80A | 9.54B | 9.76B | ||
PGRP | 8.15A | 8.16A | 0.84AB | 0.98AB | 8.26A | 9.03A | 9.78A | 10.08A | ||
AMF + PGRP | 8.16A | 8.16A | 0.89A | 1.03A | 8.38A | 9.14A | 9.92A | 10.26A | ||
Interaction | BC0 | C | 8.11def | 8.10e | 0.58g | 0.56f | 4.51e | 4.41e | 6.46f | 6.42g |
AMF | 8.10def | 8.08e | 0.60g | 0.64ef | 4.41e | 4.31e | 6.50f | 6.50g | ||
PGRP | 8.09ef | 8.08e | 0.61g | 0.65ef | 4.31e | 4.24e | 6.53f | 6.69g | ||
AMF + PGRP | 8.07f | 8.05e | 0.65g | 0.69e | 4.17e | 4.04e | 6.50f | 6.66g | ||
BC1 | C | 8.14cde | 8.10e | 0.68fg | 0.84d | 7.18d | 8.38d | 8.63e | 8.94f | |
AMF | 8.15bcd | 8.08e | 0.83de | 0.99bc | 9.38c | 10.58c | 10.24d | 10.58d | ||
PGRP | 8.15bcd | 8.08e | 0.86de | 1.02bc | 9.68bc | 10.88bc | 10.67c | 11.06c | ||
AMF + PGRP | 8.17bc | 8.05e | 0.92cd | 1.10b | 9.95abc | 11.15abc | 10.90c | 11.39c | ||
BC2 | C | 8.18abc | 8.20bcd | 0.75ef | 0.97c | 8.04d | 9.24d | 8.99e | 9.40e | |
AMF | 8.19abc | 8.22abc | 0.99bc | 1.21a | 10.32abc | 11.52abc | 11.88b | 12.19b | ||
PGRP | 8.21ab | 8.23ab | 1.05ab | 1.27a | 10.78ab | 11.98ab | 12.15ab | 12.48ab | ||
AMF + PGRP | 8.23a | 8.25a | 1.11a | 1.29a | 11.02a | 12.22a | 12.35a | 12.74a |
ANOVA | |||||||
---|---|---|---|---|---|---|---|
pH | EC | OM | N | P | K | FI | |
A | ns | *** | *** | * | ns | ns | *** |
B | *** | *** | *** | *** | *** | *** | *** |
C | ns | *** | *** | *** | *** | *** | *** |
A × B | ns | *** | ** | ns | ns | ns | ns |
A × C | ns | ns | ns | ns | ns | ns | ns |
B × C | * | *** | *** | *** | *** | *** | *** |
A × B × C | ns | ns | ns | ns | ns | ns | ns |
Treatment | N (mg kg−1) | P (mg kg−1) | K (mg kg−1) | |||||
---|---|---|---|---|---|---|---|---|
1st | 2nd | 1st | 2nd | 1st | 2nd | |||
Biochar A | BC0 | 28.91C | 30.79C | 4.96C | 5.03C | 190.02C | 191.04C | |
BC1 | 57.37B | 60.21B | 7.21B | 7.26B | 287.17B | 289.75B | ||
BC2 | 69.93A | 71.31A | 8.83A | 8.93A | 310.25A | 312.75A | ||
Bio-fertilizer B | C | 36.28B | 37.12C | 6.06B | 6.12B | 237.33C | 237.89C | |
AMF | 54.59A | 55.15B | 7.31A | 7.38A | 260.97B | 263.23B | ||
PGRP | 58.20A | 61.00A | 7.24A | 7.28A | 272.41A | 275.32A | ||
AMF + PGRP | 59.21A | 63.16A | 7.39A | 7.50A | 279.20A | 281.61A | ||
Interaction | BC0 | C | 28.29e | 28.19g | 4.89c | 4.88c | 186.00e | 184.00e |
AMF | 28.37e | 28.57g | 4.99c | 5.08c | 189.90e | 190.70e | ||
PGRP | 29.48e | 33.08fg | 4.96c | 5.04c | 191.90e | 194.30e | ||
AMF + PGRP | 29.51e | 33.31fg | 5.00c | 5.10c | 192.27e | 195.17e | ||
BC1 | C | 39.29d | 39.36ef | 6.53b | 6.65b | 261.00de | 261.67d | |
AMF | 57.80c | 59.19d | 7.42b | 7.44b | 282.33c | 286.00c | ||
PGRP | 65.33bc | 68.54c | 7.37b | 7.39b | 296.67bc | 301.00b | ||
AMF + PGRP | 67.07b | 73.76bc | 7.53b | 7.55b | 308.67b | 310.33b | ||
BC2 | C | 41.27d | 43.80e | 6.78b | 6.82b | 265.00d | 268.00d | |
AMF | 77.60a | 77.68ab | 9.52a | 9.61a | 310.67b | 313.00b | ||
PGRP | 79.80a | 81.37a | 9.38a | 9.41a | 328.67a | 330.67a | ||
AMF + PGRP | 81.07a | 82.40a | 9.64a | 9.86a | 336.67a | 339.33a |
Treatment | Fresh Weight Plant−1 (g) | Dry Weight Plant−1 (g) | Plant Height Plant−1 (cm) | |||||
---|---|---|---|---|---|---|---|---|
1st | 2nd | 1st | 2nd | 1st | 2nd | |||
Biochar A | BC0 | 54.28C | 54.10C | 26.41C | 26.42C | 61.24C | 61.25C | |
BC1 | 70.48B | 71.79B | 50.54B | 50.63B | 87.69B | 87.80B | ||
BC2 | 83.35A | 84.07A | 74.01A | 74.16A | 109.01A | 109.28A | ||
Bio-fertilizer B | C | 64.04C | 64.27C | 44.54D | 44.58D | 68.28D | 68.33D | |
AMF | 68.44 B | 69.65B | 48.08C | 48.17C | 81.91C | 82.02C | ||
PGRP | 71.03AB | 71.50AB | 51.93B | 52.02B | 93.07B | 93.22B | ||
AMF + PGRP | 73.79A | 74.53A | 56.73A | 56.84A | 100.65A | 100.88A | ||
Interaction | BC0 | C | 52.54f | 51.83e | 25.33g | 25.31g | 58.88f | 58.85f |
AMF | 53.56f | 53.57e | 26.36g | 26.37g | 59.90f | 59.92f | ||
PGRP | 54.54f | 54.55e | 26.91g | 26.93g | 62.61f | 62.64f | ||
AMF + PGRP | 56.47f | 56.48e | 27.02g | 27.05g | 63.55ef | 63.60f | ||
BC1 | C | 63.64e | 64.84d | 40.33f | 40.34f | 70.75def | 70.82def | |
AMF | 68.39de | 71.13cd | 45.96f | 46.06f | 81.70cd | 81.80cd | ||
PGRP | 72.62cd | 73.13c | 53.07e | 53.18e | 93.11bc | 93.25bc | ||
AMF+PGRP | 77.27bc | 78.07bc | 62.79d | 62.92d | 105.18b | 105.34b | ||
BC2 | C | 75.95c | 76.15c | 67.95cd | 68.07cd | 75.20de | 75.31de | |
AMF | 83.35ab | 84.25ab | 71.93bc | 72.08bc | 104.13b | 104.33b | ||
PGRP | 85.94a | 86.84a | 75.81ab | 75.96ab | 123.48a | 123.78a | ||
AMF + PGRP | 88.14a | 89.04a | 80.38a | 80.53a | 133.20a | 133.71a |
Treatment | Capsule Numbers Plant−1 | Capsule Fresh Weight Plant−1 | Capsule Dry Weight Plant−1 | |||||
---|---|---|---|---|---|---|---|---|
1st | 2nd | 1st | 2nd | 1st | 2nd | |||
Biochar A | BC0 | 52.67C | 53.75C | 21.38C | 20.80C | 17.22C | 17.23C | |
BC1 | 73.08B | 74.25B | 32.46B | 32.48B | 24.52B | 24.64B | ||
BC2 | 82.33A | 83.83A | 40.38A | 40.45A | 28.02A | 28.15A | ||
Bio-fertilizer B | C | 57.78C | 58.00C | 25.41C | 23.63C | 21.07B | 21.14B | |
AMF | 72.11B | 73.66B | 33.47AB | 33.66AB | 24.12A | 24.22A | ||
PGRP | 67.78B | 68.66B | 31.05B | 31.50B | 22.90AB | 22.97AB | ||
AMF + PGRP | 79.78A | 82.11A | 35.70A | 36.17A | 24.92A | 25.02A | ||
Interaction | BC0 | C | 51.00f | 48.33h | 20.90f | 15.52g | 15.97d | 15.96d |
AMF | 53.33ef | 55.67gh | 21.68ef | 22.14fg | 18.34d | 18.36d | ||
PGRP | 52.67f | 54.00gh | 21.08f | 22.35fg | 16.80d | 16.81d | ||
AMF + PGRP | 53.67ef | 57.00g | 21.88ef | 23.17efg | 17.79d | 17.80d | ||
BC1 | C | 58.00ef | 59.33fg | 25.90def | 25.91ef | 21.00cd | 21.10cd | |
AMF | 77.33bc | 78.33cd | 35.91bc | 35.94bcd | 25.85abc | 25.98abc | ||
PGRP | 70.67cd | 70.67de | 30.63cd | 30.65cde | 24.60bc | 24.71bc | ||
AMF + PGRP | 86.33b | 88.67b | 37.38bc | 37.42bc | 26.62ab | 26.76ab | ||
BC2 | C | 64.33de | 66.33ef | 29.42cde | 29.47def | 26.24ab | 26.36ab | |
AMF | 85.67b | 87.00b | 42.82ab | 42.89ab | 28.18ab | 28.33ab | ||
PGRP | 80.00bc | 81.33bc | 41.44ab | 41.50ab | 27.30ab | 27.38ab | ||
AMF + PGRP | 99.33a | 100.66a | 47.86a | 47.93a | 30.35a | 30.51a |
ANOVA | ||||||||
---|---|---|---|---|---|---|---|---|
Fresh Weight Plant−1 (g) | Dry Weight Plant−1 (g) | Plant Height Plant−1 (cm) | Capsule Numbers Plant−1 | Capsule Fresh Weight Plant−1 | Capsule Dry Weight Plant−1 | SPAD | RWC | |
A | *** | ns | ns | ns | ns | ns | ns | ns |
B | *** | *** | *** | *** | *** | *** | *** | *** |
C | *** | *** | *** | *** | *** | *** | *** | *** |
A × B | *** | ns | ns | ns | ns | ns | ns | ns |
A × C | ns | ns | ns | ns | ns | ns | ns | ns |
B × C | ** | *** | *** | *** | ** | ns | ** | ns |
A × B × C | ns | ns | ns | ns | ns | ns | ns | ns |
Treatment | SPAD | RWC | ||||
---|---|---|---|---|---|---|
1st | 2nd | 1st | 2nd | |||
Biochar A | BC0 | 31.67C | 31.74C | 66.53C | 66.68C | |
BC1 | 39.67B | 39.82B | 73.13B | 73.28B | ||
BC2 | 44.47A | 44.68A | 75.96A | 76.16A | ||
Bio-fertilizer B | C | 34.29B | 34.40B | 68.60B | 68.72B | |
AMF | 38.62A | 38.77A | 72.81A | 72.99A | ||
PGRP | 40.40A | 40.55A | 71.81A | 71.95A | ||
AMF + PGRP | 41.11A | 41.26A | 74.29A | 74.49A | ||
Interaction | BC0 | C | 30.41e | 30.40f | 61.67f | 61.74f |
AMF | 31.50e | 31.59ef | 67.84de | 68.00de | ||
PGRP | 32.11e | 32.20ef | 66.79e | 66.93e | ||
AMF + PGRP | 32.67e | 32.76ef | 69.83cde | 70.04cde | ||
BC1 | C | 36.12de | 36.27de | 70.97bcde | 71.09bcde | |
AMF | 38.43cd | 38.58cd | 73.74abc | 73.89abc | ||
PGRP | 41.44bcd | 41.59bcd | 72.89abcd | 73.00abcd | ||
AMF + PGRP | 42.70abc | 42.85abc | 74.93abc | 75.13abc | ||
BC2 | C | 36.33de | 36.54de | 73.16abc | 73.32abc | |
AMF | 45.92ab | 46.13ab | 76.85a | 77.06a | ||
PGRP | 47.67a | 47.88a | 75.74b | 75.93ab | ||
AMF + PGRP | 47.96a | 48.17a | 78.10a | 78.31a |
Treatment | Seed Yield kg ha−1 | Fixed Oil % | Volatile Oil % | |||||
---|---|---|---|---|---|---|---|---|
1st | 2nd | 1st | 2nd | 1st | 2nd | |||
Biochar A | BC0 | 713.21C | 724.63C | 19.93C | 21.71C | 0.75C | 0.78C | |
BC1 | 1287.26B | 1309.87B | 22.61B | 23.97B | 0.89B | 0.93B | ||
BC2 | 1796.82A | 1807.53A | 23.89A | 25.39A | 1.21A | 1.25A | ||
Bio-fertilizer B | C | 1066.77C | 1080.73C | 19.62D | 20.51D | 0.79D | 0.83D | |
AMF | 1327.62AB | 1350.78AB | 22.93B | 24.52B | 0.98B | 1.00C | ||
PGRP | 1259.60B | 1261.51B | 22.03C | 23.74C | 0.95C | 0.97B | ||
AMF + PGRP | 1409.07A | 1429.69A | 23.98A | 25.98A | 1.08A | 1.14A | ||
Interaction | BC0 | C | 604.84g | 601.98g | 17.87g | 19.10h | 0.69i | 0.97d |
AMF | 755.57g | 772.71g | 20.60ef | 22.37e | 0.76gh | 1.28b | ||
PGRP | 714.95g | 726.38g | 19.67f | 21.57f | 0.74h | 1.25b | ||
AMF + PGRP | 777.47g | 797.46g | 21.57e | 23.80d | 0.79g | 1.49a | ||
BC1 | C | 1014.20f | 601.98g | 19.63f | 20.23g | 0.74h | 0.79g | |
AMF | 1386.75de | 772.71g | 23.33d | 24.93c | 0.92ef | 0.94de | ||
PGRP | 1320.11e | 726.38g | 22.87d | 24.67c | 0.89f | 0.92e | ||
AMF + PGRP | 1428.00de | 797.46g | 24.60bc | 26.03b | 1.01d | 1.08c | ||
BC2 | C | 1581.27cd | 1606.02cd | 21.37e | 22.20ef | 0.94e | 0.97d | |
AMF | 1840.53ab | 1870.05ab | 24.87ab | 26.27b | 1.25b | 1.28b | ||
PGRP | 1743.75bc | 1716.14bc | 23.57cd | 25.00c | 1.21c | 1.25b | ||
AMF + PGRP | 2021.73a | 2037.91a | 25.77a | 28.10a | 1.44a | 1.49a |
ANOVA | |||
---|---|---|---|
Seed Yield | Fixed Oil | Volatile Oil | |
A | ns | *** | *** |
B | *** | *** | *** |
C | *** | *** | *** |
A × B | ns | ns | ns |
A × C | ns | ns | ns |
B × C | ns | * | *** |
A × B × C | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayed, Y.A.; Ali, A.M.; Ibrahim, M.F.; Fadl, M.E.; Casucci, C.; Drosos, M.; Scopa, A.; Al-Sayed, H.M. Impact of Poultry Manure-Derived Biochar and Bio-Fertilizer Application to Boost Production of Black Cumin Plants (Nigella sativa L.) Grown on Sandy Loam Soil. Agriculture 2024, 14, 1801. https://doi.org/10.3390/agriculture14101801
Sayed YA, Ali AM, Ibrahim MF, Fadl ME, Casucci C, Drosos M, Scopa A, Al-Sayed HM. Impact of Poultry Manure-Derived Biochar and Bio-Fertilizer Application to Boost Production of Black Cumin Plants (Nigella sativa L.) Grown on Sandy Loam Soil. Agriculture. 2024; 14(10):1801. https://doi.org/10.3390/agriculture14101801
Chicago/Turabian StyleSayed, Yasser A., Ahmed M. Ali, Mostafa F. Ibrahim, Mohamed E. Fadl, Cristiano Casucci, Marios Drosos, Antonio Scopa, and Hassan M. Al-Sayed. 2024. "Impact of Poultry Manure-Derived Biochar and Bio-Fertilizer Application to Boost Production of Black Cumin Plants (Nigella sativa L.) Grown on Sandy Loam Soil" Agriculture 14, no. 10: 1801. https://doi.org/10.3390/agriculture14101801
APA StyleSayed, Y. A., Ali, A. M., Ibrahim, M. F., Fadl, M. E., Casucci, C., Drosos, M., Scopa, A., & Al-Sayed, H. M. (2024). Impact of Poultry Manure-Derived Biochar and Bio-Fertilizer Application to Boost Production of Black Cumin Plants (Nigella sativa L.) Grown on Sandy Loam Soil. Agriculture, 14(10), 1801. https://doi.org/10.3390/agriculture14101801