The Role of Digital Finance in Shaping Agricultural Economic Resilience: Evidence from Machine Learning
Abstract
:1. Introduction
2. Methodology and Data
2.1. Empirical Strategies
2.1.1. Two-Way, Fixed-Effect Model
2.1.2. Machine Learning Methods
- (1)
- Random Forest
- (2)
- GBRT
- (3)
- SHAP Value Method
- (4)
- ALE Plot
2.2. Description of Variables
2.2.1. Explained Variable
2.2.2. Explanatory Variable
2.2.3. Control Variable
2.3. Data Sources
3. Empirical Findings
3.1. Baseline Regression Results
3.2. Robustness Test
3.3. Endogenous Discussion
3.4. Heterogeneity Analysis
4. Results Based on Machine Learning Methods
4.1. Two-Way, Fixed-Effect Model Versus Machine Learning Models
4.2. SHAP Value Method Calculations
4.3. The Moderating Effect of Government Input
4.4. ALE Plot: Predictive Model of Agricultural Economy Resilience by the Main Features
4.4.1. Level of Digital Finance Development
4.4.2. Government Input
4.4.3. Level of Urbanization
4.4.4. Planting Structure
4.5. Social Disparities Faced: Small-Scale Versus Large-Scale Farmers
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, B.; Dong, W.; Yao, J.; Cheng, X. Digital Economy, Factor Allocation Efficiency of Dual-Economy and Urban-Rural Income Gap. Sustainability 2023, 15, 13514. [Google Scholar] [CrossRef]
- De Beckker, K.; De Witte, K.; Van Campenhout, G. Identifying Financially Illiterate Groups: An International Comparison. Int. J. Consum. Stud. 2019, 43, 490–501. [Google Scholar] [CrossRef]
- Hasan, M.M.; Lu, Y.; Khan, S. Promoting China’s Inclusive Finance Through Digital Financial Services. Glob. Bus. Rev. 2022, 23, 984–1006. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, H.; Bai, Q.; Liu, L.; Li, G.; Shen, Q. Can the Integration of Rural Industries Help Strengthen China’s Agricultural Economic Resilience? Agriculture 2023, 13, 1813. [Google Scholar] [CrossRef]
- Singh, N.; Kumar, A.; Dey, K. Unlocking the Potential of Knowledge Economy for Rural Resilience: The Role of Digital Platforms. J. Rural. Stud. 2023, 104, 103164. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Quan, T. Strengthening or Weakening: The Impact of an Aging Rural Workforce on Agricultural Economic Resilience in China. Agriculture 2023, 13, 1436. [Google Scholar] [CrossRef]
- Ciutiene, R.; Railaite, R. A Development of Human Capital in the Context of an Aging Population. In Proceedings of the 20th International Scientific Conference—Economics and Management 2015 (ICEM-2015), Kaunas, Lithuania, 6–8 May 2015; Gimzauskiene, E., Duoba, K., Pavie, X., Pinnington, A., Vilka, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 213, pp. 753–757. [Google Scholar]
- Pant, R.; Barker, K.; Zobel, C.W. Static and Dynamic Metrics of Economic Resilience for Interdependent Infrastructure and Industry Sectors. Reliab. Engin. Sys. Saf. 2014, 125, 92–102. [Google Scholar] [CrossRef]
- Volkov, A.; Žičkienė, A.; Morkunas, M.; Baležentis, T.; Ribašauskienė, E.; Streimikiene, D. A Multi-Criteria Approach for Assessing the Economic Resilience of Agriculture: The Case of Lithuania. Sustainability 2021, 13, 2370. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, P.; Li, Y.; Ning, J.; Chu, N. Does the Policy of Decoupled Subsidies Improve the Agricultural Economic Resilience?-Evidence from China’s Main Corn Producing Regions. Sustainability 2023, 15, 10164. [Google Scholar] [CrossRef]
- Žičkienė, A.; Melnikienė, R.; Morkūnas, M.; Volkov, A. CAP Direct Payments and Economic Resilience of Agriculture: Impact Assessment. Sustainability 2022, 14, 10546. [Google Scholar] [CrossRef]
- Berry, R.; Vigani, M.; Urquhart, J. Economic Resilience of Agriculture in England and Wales: A Spatial Analysis. J. Maps 2022, 18, 70–78. [Google Scholar] [CrossRef]
- Li, C.; Yu, G.; Deng, H.; Liu, J.; Li, D. Spatio-Temporal Pattern and the Evolution of the Distributional Dynamics of County-Level Agricultural Economic Resilience in China. PLoS ONE 2024, 19, e0300601. [Google Scholar] [CrossRef] [PubMed]
- Quan, T.; Zhang, H.; Quan, T.; Yu, Y. Unveiling the Impact and Mechanism of Digital Technology on Agricultural Economic Resilience. Chin. J. Popul. Resour. Environ. 2024, 22, 136–145. [Google Scholar] [CrossRef]
- Charatsari, C.; Lioutas, E.D.; De Rosa, M.; Vecchio, Y. Technological Innovation and Agrifood Systems Resilience: The Potential and Perils of Three Different Strategies. Front. Sustain. Food Syst. 2022, 6, 872706. [Google Scholar] [CrossRef]
- Tay, L.Y.; Tai, H.T.; Tan, G.S. Digital Financial Inclusion: A Gateway to Sustainable Development. Heliyon 2022, 8, e09766. [Google Scholar] [CrossRef]
- Fang, D.; Zhang, X. The Protective Effect of Digital Financial Inclusion on Agricultural Supply Chain during the COVID-19 Pandemic: Evidence from China. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 3202–3217. [Google Scholar] [CrossRef]
- Yang, B.; Wang, X.; Wu, T.; Deng, W. Reducing Farmers’ Poverty Vulnerability in China: The Role of Digital Financial Inclusion. Rev. Dev. Econ. 2023, 27, 1445–1480. [Google Scholar] [CrossRef]
- Ma, J.; Li, Z. Does Digital Financial Inclusion Affect Agricultural Eco-Efficiency? A Case Study on China. Agronomy 2021, 11, 1949. [Google Scholar] [CrossRef]
- Banna, H.; Alam, M.R. Impact of digital financial inclusion on ASEAN banking stability: Implications for the post-COVID-19 era. Stud. Econ. Financ. 2021, 38, 504–523. [Google Scholar] [CrossRef]
- Buera, F.J.; Kaboski, J.P.; Shin, Y. Finance and development: A tale of two sectors. Am. Econ. Rev. 2011, 101, 1964–2002. [Google Scholar] [CrossRef]
- Hao, Y.; Zhang, B.; Yin, H. Can digital finance drive urban–rural integration? Econ. Res. Ekon. Istraživanja 2023, 36, 2169736. [Google Scholar] [CrossRef]
- Li, M.; Shan, Q. Synergistic development study of urban-rural integration and ecosystem resilience. Int. J. New Dev. Eng. Soc. 2023, 7, 1–8. [Google Scholar]
- Kayongo, S.; Mathiassen, L. Improving agricultural relations and innovation: Financial inclusion through microfinancing. J. Bus. Ind. Mark. 2023, 38, 2460–2470. [Google Scholar] [CrossRef]
- Bozkurt, İ.; Karakuş, R.; Yildiz, M. Spatial determinants of financial inclusion over time. J. Int. Dev. 2018, 30, 1474–1504. [Google Scholar] [CrossRef]
- Sainani, K.L. Explanatory versus predictive modeling. PM&R 2014, 6, 841–844. [Google Scholar] [CrossRef]
- Agrawal, A.; Gans, J.; Goldfarb, A. (Eds.) The Economics of Artificial Intelligence: An Agenda; University of Chicago Press: Chicago, IL, USA, 2019; pp. 507–547. [Google Scholar]
- Chen, Q. Machine Learning and Python Applications; Higher Education Press: Beijing, China, 2021; pp. 343+455. (In Chinese) [Google Scholar]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Lundberg, S. A unified approach to interpreting model predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar]
- Aas, K.; Jullum, M.; Løland, A. Explaining individual predictions when features are dependent: More accurate approximations to Shapley values. Artif. Intell. 2021, 298, 103502. [Google Scholar] [CrossRef]
- Boschma, R. Towards an evolutionary perspective on regional resilience. Reg. Stud. 2015, 49, 733–751. [Google Scholar] [CrossRef]
- Lin, G.; Xu, X.; Yang, F. Research on the relationship between industrial specialization, diversification and economic resilience in Foshan City. Sci. Geol. Sin. 2020, 40, 1493–1504. (In Chinese) [Google Scholar]
- Ye, Y.; Zou, P.; Zhang, W.; Liu, X.; Liu, B.; Kang, X. Spatial-Temporal Evolution Characteristics of Agricultural Economic Resilience: Evidence from Jiangxi Province, China. Agronomy 2022, 12, 3144. [Google Scholar] [CrossRef]
- Guo, F.; Wang, J.; Wang, F.; Cheng, Z.; Kong, T.; Zhang, X. Measuring China’s Digital Financial Inclusion: Index Compilation and Spatial Characteristics. China Econ. Q. 2020, 19, 1401–1418. (In Chinese) [Google Scholar]
- Zhang, L.; Wen, T. How Does Digital Inclusive Finance Affect the Integrated Development of Rural Industries? Chin. Rural Econ. 2022, 7, 59–80. (In Chinese) [Google Scholar]
- Zhang, X.; Yang, T.; Wang, C.; Wan, G. Digital Finance and Household Consumption Theory and Evidence from China. J. Manag. World 2020, 36, 48–63. (In Chinese) [Google Scholar]
- Fan, G.; Wang, X.; Ma, G. The contribution of marketization to China’s economic growth. China Econ. 2012, 7, 4. [Google Scholar]
Tier 1 Indicator | Tier 2 Indicator | Tier 3 Indicator | Direction |
---|---|---|---|
Resistance Capacity | Percentage of primary sector Gross power of agricultural machinery | Primary output/regional GDP (%) Kilowatt (unit of electric power) | + + |
Agricultural fertilizer applications | Application of agricultural fertilizers (10 thousand tons) | + | |
Food per capita | Food production/area population (kg/person) | + | |
Effective irrigation ratio | Cropland irrigated/cropland area (%) | + | |
Engel’s coefficient for rural households | Share of food consumption per rural inhabitant (%) | - | |
Disaster-stricken condition | Crop damage/area affected (%) | - | |
Expenditure on rural minimum subsistence security | Hundred million yuan (RMB) | + | |
Agro-meteorological observatory | pcs | + | |
Adaptive Capacity | Growth rate of value added of primary-sector output | Growth rate of value added of primary production (%) | + |
Percentage of rural retail sales of consumer goods | Rural retail sales/total retail sales (%) | + | |
Rural disposable income per capita | Per capita disposable income of rural residents (yuan RMB) | + | |
Soil erosion control area | Thousands of hectares | + | |
Level of rural labor force | Number of rural population aged 15–64 (person) | + | |
Innovative Capacity | Advanced industrial structure | Share of primary sector x1 + share of secondary sector x2 + share of tertiary sector x3 (%) | + |
Rural electricity consumption | Rural electricity consumption (kWh) | + | |
Investment in fixed assets of rural households in agriculture, forestry, and fisheries | In billions of yuan (RMB) | + | |
Expenditures on education for rural residents | Expenditure on education/total consumption expenditure of rural residents (%) | + | |
Financial expenditure on agriculture, forestry, and water | In billions of yuan (RMB) | + | |
Number of R&D staff | R&D staff full-time equivalent (person) | + |
Variable | Definition | Obs | Avg | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|
RL | Resilience of agricultural economy | 372 | 0.258 | 0.111 | 0.0752 | 0.517 |
DIF | Digital finance index | 372 | 2.429 | 1.076 | 0.162 | 4.607 |
WID | Breadth of digital financial coverage | 372 | 2.260 | 1.107 | 0.0196 | 4.559 |
DEP | Depth of use of digital finance | 372 | 2.356 | 1.074 | 0.0676 | 5.107 |
DIG | Degree of digital finance digitization | 372 | 3.118 | 1.178 | 0.0758 | 4.672 |
URB | Urbanization level | 372 | 0.592 | 0.130 | 0.228 | 0.896 |
lnGDP | Level of economic development | 372 | 10.900 | 0.455 | 9.706 | 12.16 |
INFR | Transportation infrastructure | 372 | 2.955 | 1.257 | 0.685 | 7.092 |
GOV | Government inputs | 372 | 0.280 | 0.205 | 0.107 | 1.379 |
PS | Planting structure | 372 | 0.655 | 0.144 | 0.355 | 0.971 |
IV | Spherical distance from provincial capitals to Hangzhou City | 372 | 16.04 | 7.775 | 0.000 | 32.010 |
DIF × GOV | Digital finance index ×government input | 372 | −0.0223 | 0.219 | −2.201 | 0.859 |
Variable | (1) | (2) | (3) |
---|---|---|---|
RL | RL | RL | |
DIF | 0.021 *** | 0.021 *** | 0.024 *** |
(0.005) | (0.001) | (4.65) | |
URB | −0.980 *** | ||
(−14.09) | |||
lnGDP | 1.668 *** | ||
(6.70) | |||
INFR | 0.012 *** | ||
(2.78) | |||
GOV | −0.418 *** | ||
(−18.88) | |||
PS | 0.158 *** | ||
(5.54) | |||
Constant | 0.207 *** | 0.208 *** | −3.223 *** |
(0.014) | (0.002) | (−5.77) | |
Observations | 372 | 372 | 372 |
R-squared | 0.039 | 0.589 | 0.571 |
Province/year FE | NO | YES | YES |
Variable | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
Replacing Explanatory Variables | Replacing Explanatory Variables | Replacing Explanatory Variables | Excluding Municipalities | Instrumental Variable Method | |
IV | 0.001 ** | ||||
(2.24) | |||||
DIF | 0.022 *** | ||||
(4.20) | |||||
WID | 0.022 *** | ||||
(0.005) | |||||
DEP | 0.028 *** | ||||
(0.005) | |||||
DIG | 0.015 *** | ||||
(0.004) | |||||
URB | −0.992 *** | −0.968 *** | −0.993 *** | −1.010 *** | −1.039 *** |
(0.070) | (0.070) | (0.071) | (−10.39) | (−14.75) | |
lnGDP | 0.156 *** | 0.137 *** | 0.172 *** | 0.160 *** | 0.192 *** |
(0.023) | (0.023) | (0.022) | (7.35) | (9.18) | |
INFR | 0.012 *** | 0.013 *** | 0.013 *** | 0.025 *** | 0.013 *** |
(0.004) | (0.004) | (0.004) | (4.51) | (2.92) | |
GOV | −0.419 *** | −0.416 *** | −0.418 *** | −0.421 *** | −0.420 *** |
(0.022) | (0.022) | (0.022) | (−16.60) | (−18.17) | |
PS | 0.161 *** | 0.161 *** | 0.151 *** | 0.184 *** | 0.155 *** |
(0.029) | (0.028) | (0.029) | (6.91) | (5.29) | |
_cons | −0.927 *** | −0.759 *** | −1.097 *** | −1.006 *** | −1.262 *** |
(0.213) | (0.216) | (0.203) | (−4.83) | (−6.40) | |
N | 372 | 372 | 372 | 372 | 372 |
Adj. R2 | 0.559 | 0.571 | 0.552 | 0.608 | 0.549 |
Province/year FE | YES | YES | YES | YES | YES |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Major Grain-Producing Region | Non-Major Grain-Producing Region | High Marketization Level | Low Marketization Level | |
DIF | −0.120 *** | 0.038 * | 0.036 | −0.074 *** |
(0.029) | (0.020) | (0.030) | (0.027) | |
URB | −0.414 ** | 0.257 *** | 0.377 *** | −0.398 *** |
(0.194) | (0.084) | (0.114) | (0.130) | |
lnGDP | 0.091 *** | 0.012 | 0.029 | 0.034 ** |
(0.025) | (0.019) | (0.027) | (0.017) | |
INFR | −0.001 | −0.004 | 0.002 | −0.002 |
(0.007) | (0.004) | (0.006) | (0.004) | |
GOV | −0.165 | 0.042 | 0.191 | 0.038 |
(0.105) | (0.044) | (0.119) | (0.037) | |
PS | −0.215 *** | −0.014 | −0.068 | −0.156 *** |
(0.074) | (0.045) | (0.055) | (0.051) | |
_cons | −0.220 | −0.114 | −0.308 | 0.136 |
(0.260) | (0.205) | (0.290) | (0.174) | |
N | 156 | 216 | 186 | 186 |
Adj. R2 | 0.700 | 0.644 | 0.527 | 0.733 |
Province/year FE | YES | YES | YES | YES |
Model | Goodness of Fit |
---|---|
Two-way, fixed-effect model | 0.571 |
RF | 0.819 |
GBRT | 0.806 |
Ranking | RF | GBRT | ||
---|---|---|---|---|
Variable | |SHAP| | Variable | |SHAP| | |
1 | GOV | 0.04388410 | GOV | 0.04557499 |
2 | URB | 0.02452443 | URB | 0.03869038 |
3 | PS | 0.01143754 | PS | 0.01822471 |
4 | DEP | 0.00794909 | DEP | 0.01261587 |
5 | INFR | 0.00761693 | INFR | 0.00971452 |
6 | DIG | 0.00456230 | DIG | 0.00850498 |
7 | DIF | 0.00198884 | WID | 0.00482080 |
8 | lnGDP | 0.00193550 | lnGDP | 0.00283562 |
9 | WID | 0.00173762 | DIF | 0.00274505 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variable | Baseline Regression | Excluding PS | Excluding URB | Excluding GOV |
DIF | 0.024 *** | 0.024 *** | 0.039 *** | 0.015 ** |
(4.78) | (4.66) | (6.48) | (2.16) | |
URB | −0.979 *** | −0.943 *** | −0.454 *** | |
(−13.94) | (−12.97) | (−5.01) | ||
lnGDP | 0.150 *** | 0.118 *** | −0.091 *** | 0.113 *** |
(6.58) | (5.16) | (−4.93) | (3.54) | |
INFR | 0.013 *** | 0.020 *** | 0.006 | 0.006 |
(2.89) | (4.79) | (1.17) | (0.98) | |
GOV | −0.419 *** | −0.425 *** | −0.297 *** | |
(−18.90) | (−18.44) | (−11.79) | ||
PS | 0.158 *** | 0.121 *** | 0.182 *** | |
(5.53) | (3.44) | (4.55) | ||
Constant | −0.876 *** | −0.472 ** | 1.135 *** | −0.877 *** |
(−4.11) | (−2.26) | (5.84) | (−2.93) | |
Observations | 372 | 372 | 372 | 372 |
R-squared | 0.570 | 0.534 | 0.340 | 0.149 |
Province/year FE | YES | YES | YES | YES |
Variable | (1) | (2) |
---|---|---|
RL | RL | |
DIF | 0.015 ** | 0.009 *** |
(2.16) | (2.84) | |
GOV | −0.034 | |
(−1.00) | ||
−0.014 *** | ||
(−2.92) | ||
URB | −0.454 *** | 0.115 ** |
(−5.01) | (2.01) | |
lnGDP | 0.113 *** | 0.017 |
(3.54) | (1.33) | |
INFR | 0.006 | 0.005 * |
(0.98) | (1.94) | |
PS | 0.182 *** | −0.047 |
(4.55) | (−1.42) | |
_cons | −0.877 *** | 0.003 |
(−2.93) | (0.02) | |
N | 372 | 372 |
Adj. R2 | 0.149 | 0.663 |
Province/year FE | YES | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Liu, W.; Zhou, J. The Role of Digital Finance in Shaping Agricultural Economic Resilience: Evidence from Machine Learning. Agriculture 2024, 14, 1834. https://doi.org/10.3390/agriculture14101834
Yang C, Liu W, Zhou J. The Role of Digital Finance in Shaping Agricultural Economic Resilience: Evidence from Machine Learning. Agriculture. 2024; 14(10):1834. https://doi.org/10.3390/agriculture14101834
Chicago/Turabian StyleYang, Chun, Wangping Liu, and Jiahao Zhou. 2024. "The Role of Digital Finance in Shaping Agricultural Economic Resilience: Evidence from Machine Learning" Agriculture 14, no. 10: 1834. https://doi.org/10.3390/agriculture14101834
APA StyleYang, C., Liu, W., & Zhou, J. (2024). The Role of Digital Finance in Shaping Agricultural Economic Resilience: Evidence from Machine Learning. Agriculture, 14(10), 1834. https://doi.org/10.3390/agriculture14101834