Influence of Genotype, Environment, and Crop Management on the Yield and Bread-Making Quality in Spring Wheat Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Methods
2.2.1. Properties of Grain
2.2.2. Grain Grinding
2.2.3. Properties of Flour and Dough
2.2.4. Baking Procedure and Properties of Bread
2.3. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Osman, A.; Almekinders, C.; Struik, P.; van Bueren, E.L. Adapting spring wheat breeding to the needs of the organic sector. NJAS-Wagen. J. Life Sci. 2016, 76, 55–63. [Google Scholar] [CrossRef]
- Mitura, K.; Cacak-Pietrzak, G.; Feledyn-Szewczyk, B.; Szablewski, T.; Studnicki, M. Yield and Grain Quality of Common Wheat (Triticum aestivum L.) Depending on the Different Farming Systems (Organic vs. Integrated vs. Conventional). Plants 2023, 12, 1022. [Google Scholar] [CrossRef] [PubMed]
- Wysocka, K.; Cacak-Pietrzak, G.; Feledyn-Szewczyk, B.; Studnicki, M. The Baking Quality of Wheat Flour (Triticum aestivum L.) Obtained from Wheat Grains Cultivated in Various Farming Systems (Organic vs. Integrated vs. Conventional). Appl. Sci. 2024, 14, 1886. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Mottaleb, K.A.; Sonder, K.; Donovan, J.; Braun, H.-J. Global trends in wheat production, consumption and trade. In Wheat Improvement: Food Security in a Changing Climate; Springer International Publishing: Cham, Switzerland, 2022; pp. 47–66. [Google Scholar]
- Dziki, D.; Cacak-Pietrzak, G.; Gawlik-Dziki, U.; Świeca, M.; Miś, A.; Różyło, R.; Jończyk, K. Physicochemical properties and milling characteristics of spring wheat from different farming systems. J. Agric. Sci.Technol. 2017, 19, 1253–1266. [Google Scholar]
- Sułek, A.; Cacak-Pietrzak, G. The influence of production technology on yield and selected quality parameters of spring wheat cultivars. Res. Rural. Dev. 2018, 2, 42–48. [Google Scholar] [CrossRef]
- Sułek, A.; Cacak-Pietrzak, G.; Różewicz, M.; Nieróbca, A.; Grabiński, J.; Studnicki, M.; Sujka, K.; Dziki, D. Effect of Production Technology Intensity on Grain Yield, Protein Content and Amino Acid Profile in Common and Durum Wheat Grain. Plants 2023, 12, 364. [Google Scholar] [CrossRef]
- Munaro, L.; Hefley, T.; DeWolf, E.; Haley, S.; Fritz, A.; Zhang, G.; Haag, L.; Schlegel, A.; Edwards, J.; Marburger, D. Exploring long-term variety performance trials to improve environment-specific genotype× management recommendations: A case-study for winter wheat. Field Crops Res. 2020, 255, 107848. [Google Scholar] [CrossRef]
- Rozbicki, J.; Ceglińska, A.; Gozdowski, D.; Jakubczak, M.; Cacak-Pietrzak, G.; Mądry, W.; Golba, J.; Piechociński, M.; Sobczyński, G.; Studnicki, M. Influence of the cultivar, environment and management on the grain yield and bread-making quality in winter wheat. J. Cer. Sci. 2015, 61, 126–132. [Google Scholar] [CrossRef]
- Ma, W.; Yu, Z.; She, M.; Zhao, Y.; Islam, S. Wheat gluten protein and its impacts on wheat processing quality. Front. Agric. Sci. Eng. 2019, 6, 279–287. [Google Scholar] [CrossRef]
- Ruisi, P.; Ingraffia, R.; Urso, V.; Giambalvo, D.; Alfonzo, A.; Corona, O.; Settanni, L.; Frenda, A.S. Influence of grain quality, semolinas and baker’s yeast on bread made from old landraces and modern genotypes of Sicilian durum wheat. Food Res. Int. 2021, 140, 110029. [Google Scholar] [CrossRef]
- Kaya, Y.; Akcura, M. Effects of genotype and environment on grain yield and quality traits in bread wheat (T. aestivum L.). Food Sci. Technol. 2014, 34, 386–393. [Google Scholar] [CrossRef]
- Nehe, A.; Akin, B.; Sanal, T.; Evlice, A.K.; Ünsal, R.; Dinçer, N.; Demir, L.; Geren, H.; Sevim, I.; Orhan, Ş. Genotype x environment interaction and genetic gain for grain yield and grain quality traits in Turkish spring wheat released between 1964 and 2010. PLoS ONE 2019, 14, e0219432. [Google Scholar] [CrossRef] [PubMed]
- Moore, V.M.; Peters, T.; Schlautman, B.; Brummer, E.C. Toward plant breeding for multicrop systems. Proc. Natl. Acad. Sci. USA 2023, 120, e2205792119. [Google Scholar] [CrossRef] [PubMed]
- Studnicki, M.; Wijata, M.; Sobczyński, G.; Samborski, S.; Gozdowski, D.; Rozbicki, J. Effect of genotype, environment and crop management on yield and quality traits in spring wheat. J. Cer. Sci. 2016, 72, 3037. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B.; Cacak-Pietrzak, G.; Lenc, L.; Stalenga, J. Rating of Spring Wheat Varieties (Triticum aestivum L.) According to Their Sustability for Organic Agriculture. Agronomy 2020, 10, 1900. [Google Scholar] [CrossRef]
- Gagliardi, A.; Carucci, F.; Masci, S.; Flagella, Z.; Gatta, G.; Giuliani, M.M. Effects of genotype, growing season and nitrogen level on gluten protein assembly of durum wheat grown under mediterranean conditions. Agronomy 2020, 10, 755. [Google Scholar] [CrossRef]
- Ben Mariem, S.J.; González-Torralba, C.; Collar, I.; Aranjuelo, I.; Morales, I. 2020. Durum wheat grain yield and quality under low and high nitrogen conditions: Insights into natural variation in low-and high-yielding genotypes. Plants 2020, 9, 1636. [Google Scholar] [CrossRef]
- Spanic, V.; Cosic, J.; Zdunic, Z.; Drezner, G. Characterization of agronomical and quality traits of winter wheat (triticum aestivum L.) for fusarium head blight pressure in different environments. Agronomy 2021, 11, 213. [Google Scholar] [CrossRef]
- Mohammadi, R.; Armion, M.; Zadhasan, E.; Ahmadi, M.M.; Amri, A. The use of AMMI model for interpreting genotype x environment interaction in durum wheat. Exp. Agric. 2017, 54, 670–683. [Google Scholar] [CrossRef]
- Olivoto, T.; Lúcio, A.D.; da Silva, J.A.; Sari, B.G.; Diel, M.I. Mean performance and stability in multi-environment trials II: Selection based on multiple traits. Agron. J. 2019, 111, 2961–2969. [Google Scholar] [CrossRef]
- Gajula, H.; Liu, S.; Alavi, S.; Herald, T.; Madl, R.; Bean, S.R.; Tilley, M. Pre-cooked fiber-enriched wheat flour obtained by extrusion: Rheological and functional properties. Int. J. Food Prop. 2009, 12, 27–44. [Google Scholar] [CrossRef]
- AACC International. Approved Methods of Analysis—Method 54-21.02. Method 54-21.02 Rheological Behavior of Flour by Farinograph: Constant Flour Weight Procedure; American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar] [CrossRef]
- Romankiewicz, D.; Hassoon, W.H.; Cacak-Pietrzak, G.; Sobczyk, M.; Wirkowska-Wojdyła, M.; Ceglińska, A.; Dziki, D. The effect of chia seeds (Salvia hispanica L.) addition on quality and nutritional value of wheat bread. J. Food Qual. 2017, 2017, 7352631. [Google Scholar] [CrossRef]
- Johansson, E.; Branlard, G.; Cuniberti, M.; Flagella, Z.; Hüsken, A.; Nurit, E.; Peña, R.J.; Sissons, M.; Vazquez, D. Genotypic and environmental effects on wheat technological and nutritional quality. In Wheat Quality for Improving Processing and Human Health; Springer International Publishing: Cham, Switzerland, 2020; pp. 171–204. [Google Scholar] [CrossRef]
- Srivastav, A.L.; Dhyani, R.; Ranjan, M.; Madhav, S.; Sillanpää, M. Climate-resilient strategies for sustainable management of water resources and agriculture. Environ. Sci. Pollut. Res. 2021, 28, 41576–41595. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hasegawa, T.; Li, L.; Lam, S.K.; Zhang, X.; Liu, X.; Pan, G. Changes in grain protein and amino acids composition of wheat and rice under short-term increased [CO2] and temperature of canopy air in a paddy from East China. New Phytol. 2019, 222, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Khan, K. Wheat: Chemistry and Technology; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Feledyn-Szewczyk, B.; Cacak-Pietrzak, G.; Lenc, L.; Gromadzka, K.; Dziki, D. Milling and baking quality of spring wheat (Triticum aestivum L.) from organic farming. Agriculture 2021, 11, 765. [Google Scholar] [CrossRef]
- Ma, M.; Li, Y.; Xue, C.; Xiong, W.; Peng, Z.; Han, X.; Ju, H.; He, Y. Current situation and key parameters for improving wheat quality in China. Front. Plant Sci. 2021, 12, 638525. [Google Scholar] [CrossRef]
- Farhad, M.; Tripathi, S.B.; Singh, R.P.; Joshi, A.K.; Bhati, P.K.; Vishwakarma, M.K.; Mondal, S.; Malik, A.A.; Kumar, U. Multi-trait selection of bread wheat ideotypes for adaptation to early sown condition. Crop. Sci. 2022, 62, 67–82. [Google Scholar] [CrossRef]
- Ficco, D.B.; Beleggia, R.; Pecorella, I.; Giovanniello, V.; Frenda, A.S.; Vita, P.D. Relationship between seed morphological traits and ash and mineral distribution along the kernel using debranning in durum wheats from different geographic sites. Foods 2020, 9, 1523. [Google Scholar] [CrossRef]
- Indrani, D.; Manohar, R.S.; Rajiv, J.; Rao, G.V. Alveograph as a tool to assess the quality characteristics of wheat flour for parotta making. J. Food Eng. 2007, 78, 1202–1206. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, D.; Ma, G.; Wang, C.; Xie, X.; Kang, G. Responses of glutamine synthetase activity and gene expression to nitrogen levels in winter wheat cultivars with different grain protein content. J. Cer. Sci. 2017, 74, 187–193. [Google Scholar] [CrossRef]
- Warechowska, M.; Markowska, A.; Warechowski, J.; Miś, A.; Nawrocka, A. Effect of tempering moisture of wheat on grinding energy, middlings and flour size distribution, and gluten and dough mixing properties. J. Cer. Sci. 2016, 69, 306–312. [Google Scholar] [CrossRef]
- Miś, A.; Nawrocka, A.; Dziki, D. Behaviour of dietary fibre supplements during bread dough development evaluated using novel farinograph curve analysis. Food Bioprocess Technol. 2017, 10, 1031–1041. [Google Scholar] [CrossRef]
(a) Genotype | |||||
---|---|---|---|---|---|
Mean | Minimum | Maximum | Standard Deviation | Coefficient of Variation | |
GY (t ha−1) | 6.20 | 5.66 | 6.40 | 0.26 | 4.20 |
TGW (g) | 42.21 | 38.7 | 45.26 | 2.26 | 5.35 |
TW (kg hL−1) | 76.77 | 73.7 | 78.88 | 1.91 | 2.49 |
AC (% d.m.) | 1.76 | 1.67 | 1.82 | 0.05 | 2.67 |
PC (% d.m.) | 12.88 | 11.82 | 14.00 | 0.67 | 5.23 |
SV (cm3) | 33.79 | 29.42 | 41.80 | 4.39 | 13.00 |
WG (%) | 22.78 | 19.49 | 27.23 | 2.95 | 12.95 |
GI (-) | 83.36 | 57.64 | 91.27 | 12.32 | 14.78 |
FN (s) | 338.76 | 281.96 | 375.15 | 32.15 | 9.49 |
FY (%) | 77.88 | 77.24 | 79.15 | 0.65 | 0.84 |
WA (%) | 58.28 | 57.02 | 59.48 | 1.01 | 1.73 |
DD (min) | 2.35 | 2.06 | 3.49 | 0.49 | 20.75 |
DS (min) | 2.65 | 1.63 | 5.59 | 1.36 | 51.34 |
DSF (FU) | 71.54 | 39.13 | 85.69 | 17.82 | 24.92 |
QN (-) | 51.51 | 39.13 | 84.88 | 16.54 | 32.12 |
LV (cm3 100 g−1) | 380.34 | 366.34 | 398.33 | 10.22 | 2.65 |
CH (N) | 7.43 | 5.69 | 9.21 | 1.24 | 16.71 |
(b) Environmental | |||||
Mean | Minimum | Maximum | Standard Deviation | Coefficient of Variation | |
GY (t ha−1) | 6.20 | 5.50 | 6.63 | 0.49 | 7.92 |
TGW (g) | 42.21 | 39.32 | 44.56 | 2.42 | 5.74 |
TW (kg hL−1) | 76.77 | 73.19 | 81.17 | 3.41 | 4.45 |
AC (% d.m.) | 1.76 | 1.70 | 1.82 | 0.05 | 2.63 |
PC (% d.m.) | 12.88 | 11.58 | 13.78 | 1.02 | 7.93 |
SV (cm3) | 33.79 | 30.35 | 38.54 | 3.88 | 11.50 |
WG (%) | 22.78 | 20.72 | 24.96 | 2.18 | 9.57 |
GI (-) | 83.36 | 76.29 | 92.05 | 7.45 | 8.94 |
FN (s) | 338.76 | 300.40 | 377.18 | 35.47 | 10.47 |
FY (%) | 77.88 | 77.29 | 78.69 | 0.59 | 0.76 |
WA (%) | 58.28 | 56.54 | 60.86 | 1.88 | 3.22 |
DD (min) | 2.35 | 1.79 | 3.12 | 0.58 | 24.68 |
DS (min) | 2.65 | 1.50 | 4.38 | 1.23 | 46.41 |
DSF (FU) | 71.54 | 52.79 | 89.79 | 15.12 | 21.13 |
QN (-) | 51.51 | 39.29 | 68.82 | 12.53 | 24.33 |
LV (cm3 100 g−1) | 380.34 | 370.67 | 392.48 | 9.02 | 2.37 |
CH (N) | 7.43 | 6.86 | 8.62 | 0.80 | 10.81 |
Mean | Minimum | Maximum | Standard Deviation | Coefficient of Variation | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MIM | HIM | MIM | HIM | MIM | HIM | MIM | HIM | MIM | HIM | |
GY (t ha−1) | 5.83 | 6.57 | 4.83 | 5.42 | 6.84 | 7.46 | 0.56 | 0.55 | 9.61 | 8.41 |
TGW (g) | 40.70 | 43.72 | 31.87 | 37.50 | 46.70 | 50.64 | 3.47 | 2.91 | 8.53 | 6.66 |
TW (kg hL−1) | 75.84 | 77.71 | 69.10 | 68.82 | 81.87 | 82.97 | 3.60 | 3.70 | 4.75 | 4.76 |
AC (% d.m.) | 1.76 | 1.76 | 1.61 | 1.63 | 1.88 | 1.87 | 0.07 | 0.06 | 4.06 | 3.63 |
PC (% d.m.) | 12.29 | 13.46 | 10.60 | 10.58 | 13.86 | 16.99 | 0.98 | 1.55 | 7.98 | 11.49 |
SV (cm3) | 31.08 | 36.50 | 25.47 | 25.98 | 42.17 | 51.39 | 4.45 | 6.78 | 14.33 | 18.59 |
WG (%) | 21.33 | 24.22 | 14.85 | 18.11 | 26.11 | 37.98 | 2.96 | 4.65 | 13.86 | 19.19 |
GI (-) | 85.82 | 80.90 | 38.31 | 44.36 | 99.75 | 98.70 | 13.95 | 16.36 | 16.26 | 20.22 |
FN (s) | 338.02 | 339.51 | 239.61 | 233.14 | 394.18 | 422.71 | 44.69 | 49.66 | 13.22 | 14.63 |
FY (%) | 77.59 | 78.16 | 75.20 | 76.55 | 79.40 | 80.35 | 1.18 | 0.93 | 1.53 | 1.19 |
WA (%) | 57.88 | 58.29 | 54.30 | 55.40 | 62.25 | 63.35 | 2.11 | 2.29 | 3.65 | 3.92 |
DD (min) | 2.06 | 2.56 | 1.20 | 1.35 | 2.65 | 7.70 | 0.33 | 1.28 | 15.82 | 49.84 |
DS (min) | 2.14 | 3.02 | 0.90 | 0.95 | 6.55 | 10.00 | 1.36 | 2.25 | 63.54 | 74.51 |
DSF (FU) | 73.96 | 68.05 | 31.00 | 7.50 | 110.50 | 107.50 | 20.51 | 24.09 | 27.74 | 35.39 |
QN (-) | 47.13 | 54.68 | 26.50 | 27.50 | 125.50 | 123.00 | 22.56 | 25.29 | 47.86 | 46.26 |
LV (cm3 100 g−1) | 386.55 | 374.13 | 371.98 | 369.35 | 410.48 | 377.14 | 14.68 | 2.97 | 3.80 | 0.79 |
CH (N) | 7.35 | 7.52 | 4.60 | 4.33 | 12.04 | 12.79 | 1.48 | 1.91 | 20.14 | 25.39 |
Effect | Degrees of Freedom | GY | TGW | TW | AC | PC | SV | WG | GI | FN | FY | WA | DD | DS | DSF | QN | LV | CH | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(t ha-1) | (g) | (kg hL-1) | (% d.m.) | (% d.m.) | (cm3) | (%) | (-) | (s) | (%) | (%) | (min) | (min) | (FU) | (-) | (cm3 100 g-1) | (N) | |||||||||||||||||||
Year (Y) | 1 | 0.01 | * | 0.01 | * | 8.21 | ** | 11 | ** | 9.21 | ** | 10.59 | * | 0.01 | 22.3 | ** | 0.01 | 65.21 | ** | 21.39 | ** | 51.23 | ** | 5.62 | * | 83.49 | ** | 71.96 | ** | 0.01 | 41.34 | ** | |||
Menagment (M) | 1 | 26.4 | ** | 20.67 | ** | 4.79 | * | 0 | 12.77 | ** | 15.74 | ** | 11.83 | ** | 1.9 | * | 0.01 | * | 1.01 | * | 19.98 | ** | 2.14 | * | 44.92 | ** | 15.21 | ** | 27.26 | ** | 13.77 | ** | 0.01 | * | |
Location (L) | 3 | 1.01 | * | 25.12 | ** | 13.2 | ** | 17 | ** | 20.93 | ** | 4.88 | * | 0.01 | 5.23 | * | 0.01 | 8.12 | ** | 0.08 | * | 39.45 | ** | 4.21 | * | 0.05 | * | 0.11 | * | 6.21 | * | 0.01 | |||
YxM | 1 | 0.95 | * | 2.99 | * | 0.73 | * | 3.8 | * | 5.96 | * | 0.01 | 0.01 | 0.01 | 0.01 | 1.11 | * | 0.05 | * | 0.05 | * | 3.15 | * | 0.05 | * | 0.11 | * | 0.01 | * | 0.01 | |||||
Genotype (G) | 6 | 5.23 | ** | 21.38 | ** | 11.99 | ** | 24 | ** | 10.93 | ** | 25.85 | ** | 24.64 | ** | 27.72 | ** | 16.4 | ** | 8.1 | ** | 1.33 | 6.1 | * | 23.51 | ** | 0.01 | * | 0.01 | 0.01 | 7.69 | ** | |||
YxL | 3 | 42.81 | ** | 3.14 | * | 51.7 | ** | 9.1 | * | 3.23 | * | 16.73 | ** | 28.24 | ** | 9.14 | * | 64.2 | ** | 2.13 | * | 17.05 | ** | 0.78 | * | 2.34 | * | 0.96 | * | 0.13 | * | 0.01 | 34.87 | ** | |
LxM | 3 | 3.27 | * | 8.13 | ** | 3.9 | * | 0 | 8.8 | * | 5.64 | * | 3.39 | 1.28 | * | 0.01 | * | 0.01 | 0.05 | * | 0.05 | * | 8.57 | * | 0.01 | 0.01 | 79.86 | ** | 0.01 | ||||||
YxG | 6 | 0.01 | 9.68 | ** | 0.58 | * | 0 | 0.01 | 0.01 | 0.01 | 4.63 | * | 0.01 | 4.75 | * | 19.98 | ** | 0.01 | 1.23 | * | 0.01 | 0.08 | * | 0.01 | 0.01 | ||||||||||
GxM | 6 | 0.01 | * | 0.01 | 0.26 | 0 | 0.78 | 1.44 | 1.72 | 0.24 | 0.01 | 4.51 | * | 0.05 | * | 0.05 | * | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | |||||||||||||
YxLxM | 3 | 0.01 | 0.04 | 0.74 | * | 12 | ** | 5.44 | * | 17.63 | ** | 0.35 | 0.01 | 1.46 | ** | 0.1 | 0.01 | 0.01 | 4.25 | * | 0.01 | 0.11 | * | 0.01 | 0.01 | ||||||||||
LxG | 18 | 0.51 | * | 1.46 | * | 2.14 | * | 0 | 0.37 | 0.01 | 0.01 | 6.15 | * | 0.01 | 2.78 | * | 0.01 | 0.01 | 2.15 | * | 0.05 | * | 0.01 | 0.04 | * | 0.33 | * | ||||||||
YxGxM | 6 | 3.57 | * | 0.53 | * | 0.13 | 3.6 | * | 0.01 | 0.01 | 2.53 | 0.01 | 0.01 | 0.01 | 19.98 | ** | 0.01 | 0.01 | 0.05 | * | 0.09 | * | 0.01 | 0.62 | * | ||||||||||
YxLxG | 6 | 9.03 | ** | 3.61 | * | 0.32 | * | 5.8 | * | 1.61 | 1.45 | 7.32 | * | 0.01 | 11.04 | ** | 2.14 | * | 0.01 | 0.05 | * | 0.01 | 0.01 | 0.01 | 0.01 | 0.54 | * | ||||||||
LxGxM | 18 | 7.18 | * | 0.01 | 0.01 | 5.2 | * | 0.01 | 0.01 | 1.22 | 0.01 | 0.63 | * | 0.01 | 0.01 | 0.05 | * | 0.01 | 0.01 | * | 0.01 | 0.01 | 0.01 | ||||||||||||
YxMxLxG | 18 | 0.01 | 3.21 | * | 1.3 | * | 9.1 | * | 19.95 | ** | 0.01 | 18.72 | ** | 21.37 | ** | 6.17 | ** | 0.01 | 0.01 | 0.01 | 0.01 | 0.05 | * | 0.11 | 0.01 | 14.52 | ** |
Multi Trait Stability Index (MTSI) | ||||
---|---|---|---|---|
Cultivars | MIM | Stability Ranking MIM | HIM | Stability Ranking HIM |
Bombona | 2.45 | 1 | 3.04 | 2 |
Izera | 3.71 | 4 | 2.73 | 1 |
Ostka Smolicka | 4.10 | 6 | 3.79 | 3 |
Radocha | 3.39 | 2 | 3.99 | 4 |
Torridon | 3.52 | 3 | 4.75 | 7 |
Trappe | 5.15 | 7 | 4.74 | 6 |
Tybalt | 4.04 | 5 | 4.44 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghafoor, A.Z.; Ceglińska, A.; Karim, H.; Wijata, M.; Sobczyński, G.; Derejko, A.; Studnicki, M.; Rozbicki, J.; Cacak-Pietrzak, G. Influence of Genotype, Environment, and Crop Management on the Yield and Bread-Making Quality in Spring Wheat Cultivars. Agriculture 2024, 14, 2131. https://doi.org/10.3390/agriculture14122131
Ghafoor AZ, Ceglińska A, Karim H, Wijata M, Sobczyński G, Derejko A, Studnicki M, Rozbicki J, Cacak-Pietrzak G. Influence of Genotype, Environment, and Crop Management on the Yield and Bread-Making Quality in Spring Wheat Cultivars. Agriculture. 2024; 14(12):2131. https://doi.org/10.3390/agriculture14122131
Chicago/Turabian StyleGhafoor, Abu Zar, Alicja Ceglińska, Hassan Karim, Magdalena Wijata, Grzegorz Sobczyński, Adriana Derejko, Marcin Studnicki, Jan Rozbicki, and Grażyna Cacak-Pietrzak. 2024. "Influence of Genotype, Environment, and Crop Management on the Yield and Bread-Making Quality in Spring Wheat Cultivars" Agriculture 14, no. 12: 2131. https://doi.org/10.3390/agriculture14122131
APA StyleGhafoor, A. Z., Ceglińska, A., Karim, H., Wijata, M., Sobczyński, G., Derejko, A., Studnicki, M., Rozbicki, J., & Cacak-Pietrzak, G. (2024). Influence of Genotype, Environment, and Crop Management on the Yield and Bread-Making Quality in Spring Wheat Cultivars. Agriculture, 14(12), 2131. https://doi.org/10.3390/agriculture14122131