Multi-Scenario Simulation of Optimal Landscape Pattern Configuration in Saline Soil Areas of Western Jilin Province, China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Research Framework
2.3.2. NSGA-II Algorithm
Objective Benefit Function Construction
Development Scenario and Constraints
2.3.3. FLUS Model
Calculate Suitability Probability Based on BP-ANN Algorithm
CA Model Based on Adaptive Inertial Competition Mechanism
2.3.4. Precision Evaluation
3. Results and Discussion
3.1. Validation of Land Use Simulation
3.2. Structure Analysis Under Different Scenario Configurations
3.3. Landscape Pattern Analysis Under Four Scenario Configurations
3.4. Comparative Analysis of Benefits
4. Discussion
4.1. Impact of Different Scenarios on Landscape Patterns
4.2. Comparison of Landscape Simulation Models
4.3. Limitations of This Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iqbal, B.; Khan, I.; Anwar, S.; Jalal, A.; Okla, M.K.; Ahmad, N.; Alaraidh, I.A.; Tariq, M.; AbdElgawad, H.; Li, G.L. Biochar and Saline Soil: Mitigation Strategy by Incapacitating the Ecological Threats to Agricultural Land. Int. J. Phytoremediation 2024, 26, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.; Lade, H. Plant-Growth-Promoting Rhizobacteria to Improve Crop Growth in Saline Soils: A Review. Agron. Sustain. Dev. 2014, 34, 737–752. [Google Scholar] [CrossRef]
- Pan, X.X.; Deng, W.; Zhang, D.Y.; Zhang, D.Y.; Li, F.; Wang, Y.J. Sustainable agriculture in the semi-arid agro-pastoral interweaving belt of northern China: A case study of west Jilin Province. Outlook Agric. 2003, 32, 165–172. [Google Scholar]
- Tarolli, P.; Luo, J.; Edward, P.; Gianni, B.; Roberta, M. Soil Salinization in Agriculture: Mitigation and Adaptation Strategies Combining Nature-Based Solutions and Bioengineering. Iscience 2024, 27, 108830. [Google Scholar] [CrossRef]
- Cao, X.X.; Wang, H.J.; Zhang, B.; Liu, J.L.; Yang, J.; Song, Y.C. Land Use Spatial Optimization for City Clusters under Changing Climate and Socioeconomic Conditions: A Perspective on the Land-Water-Energy-Carbon Nexus. J. Environ. Manag. 2024, 394, 119528. [Google Scholar] [CrossRef]
- Shu, J.Y.; Bai, Y.P.; Chen, Q.; Weng, C.Y.; Zhang, F. Dynamic Simulation of the Water-Land-Food Nexus for the Sustainable Agricultural Development in the North China Plain. Sci. Total Environ. 2024, 912, 168771. [Google Scholar] [CrossRef]
- Wang, W.; Hu, Y.C.; Wang, J.H.; Niu, S. Urban Construction Land Allocation Efficiency of Urban Agglomerations in China Based on a Stochastic Frontier Production Function Approach. J. Clean. Prod. 2024, 434, 139965. [Google Scholar] [CrossRef]
- Luan, C.X.; Liu, R.Z.; Zhang, Q.Y.; Sun, J.; Liu, J. Multi-Objective Land Use Optimization Based on Integrated NSGA–II–Plus Model: Comprehensive Consideration of Economic Development and Ecosystem Services Value Enhancement. J. Clean. Prod. 2024, 434, 140306. [Google Scholar] [CrossRef]
- Yang, Y.F.; Xie, B.H.; Lyu, J.J.; Liang, X.; Ding, D.; Zhong, Y.Q.; Song, T.T.; Chen, Q.; Guan, Q.F. Optimizing Urban Functional Land Towards “Dual Carbon” Target: A Coupling Structural and Spatial Scales Approach. Cities 2024, 148, 104860. [Google Scholar] [CrossRef]
- Pan, T.T.; Zhang, Y.; Su, F.Z.; Lyne, V.; Fei, C.; Xiao, H. Practical efficient regional land-use planning using constrained multi-objective genetic algorithm optimization. Practical efficient regional land-use planning using constrained multi-objective genetic algorithm optimization. ISPRS Int. J. Geo-Inf. 2021, 10, 100. [Google Scholar] [CrossRef]
- Wu, W.J.; Qiu, X.Y.; Ou, M.H.; Guo, J. Optimization of Land Use Planning under Multi-Objective Demand—The Case of Changchun City, China. Environ. Sci. Pollut. Res. 2024, 31, 9512–9534. [Google Scholar] [CrossRef] [PubMed]
- Makowski, D.; Hendrix, E.M.T.; van Ittersum, M.K.; Rossing, W.A.H. A Framework to Study Nearly Optimal Solutions of Linear Programming Models Developed for Agricultural Land Use Exploration. Ecol. Model. 2000, 131, 65–77. [Google Scholar] [CrossRef]
- Huo, J.G.; Shi, Z.Q.; Zhu, W.B.; Xue, H.; Chen, X. A Multi-Scenario Simulation and Optimization of Land Use with a Markov–Flus Coupling Model: A Case Study in Xiong’an New Area, China. Sustainability 2022, 14, 2425. [Google Scholar] [CrossRef]
- Han, J.; Yoshitsugu, H.; Cao, X.; Hidefumi, I. Application of an Integrated System Dynamics and Cellular Automata Model for Urban Growth Assessment: A Case Study of Shanghai, China. Landsc. Urban Plan. 2009, 91, 133–141. [Google Scholar] [CrossRef]
- Mohammadyari, F.; Tavakoli, M.; Zarandian, A.; Abdollahi, S. Optimization Land Use Based on Multi-Scenario Simulation of Ecosystem Service for Sustainable Landscape Planning in a Mixed Urban-Forest Watershed. Ecol. Model. 2023, 483, 110440. [Google Scholar] [CrossRef]
- Li, W.; Chen, Z.J.; Li, M.C.; Zhang, H.; Li, M.Y.; Qiu, X.Q.; Zhou, C. Carbon Emission and Economic Development Trade-Offs for Optimizing Land-Use Allocation in the Yangtze River Delta, China. Ecol. Indic. 2023, 147, 109950. [Google Scholar] [CrossRef]
- De Jong, K. Learning with Genetic Algorithms: An Overview. Mach. Learn. 1988, 3, 121–138. [Google Scholar] [CrossRef]
- Cao, K.; Michael, B.; Huang, B.; Liu, Y.; Yu, L.; Chen, J.F. Spatial Multi-Objective Land Use Optimization: Extensions to the Non-Dominated Sorting Genetic Algorithm-II. Int. J. Geogr. Inf. Sci. 2011, 25, 1949–1969. [Google Scholar] [CrossRef]
- Xie, X.H.; Deng, H.F.; Li, S.Y.; Gou, Z.H. Optimizing Land Use for Carbon Neutrality: Integrating Photovoltaic Development in Lingbao, Henan Province. Land 2024, 13, 97. [Google Scholar] [CrossRef]
- Ma, S.H.; Wen, Z.Z. Optimization of Land Use Structure to Balance Economic Benefits and Ecosystem Services under Uncertainties: A Case Study in Wuhan, China. J. Clean. Prod. 2021, 311, 127537. [Google Scholar] [CrossRef]
- Veldkamp, A.; Fresco, L. Clue: A Conceptual Model to Study the Conversion of Land Use and Its Effects. Ecol. Model. 1996, 85, 253–270. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.P.; Li, X.; Chen, Y.M.; Tian, H.; Yao, Y. Delineating Multi-Scenario Urban Growth Boundaries with a Ca-Based Flus Model and Morphological Method. Landsc. Urban Plan. 2018, 177, 47–63. [Google Scholar] [CrossRef]
- Yang, R.J.; Chen, S.; Ye, Y.M. Toward potential area identification for land consolidation and ecological restoration: An integrated framework via land use optimization. Environ. Dev. Sustain. 2024, 26, 3127–3146. [Google Scholar] [CrossRef]
- Liu, X.P.; Liang, X.; Li, X.; Xu, X.C.; Ou, J.P.; Chen, Y.M.; Li, S.Y.; Wang, S.J.; Pei, F.S. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Lin, W.B.; Sun, Y.M.; Nijhuis, S.; Wang, Z.L. Scenario-Based Flood Risk Assessment for Urbanizing Deltas Using Future Land-Use Simulation (Flus): Guangzhou Metropolitan Area as a Case Study. Sci. Total Environ. 2020, 739, 139899. [Google Scholar] [CrossRef]
- Qiao, X.R.; Li, Z.J.; Lin, J.K.; Wang, H.J.; Zheng, S.W.; Yang, S.Y. Assessing Current and Future Soil Erosion under Changing Land Use Based on Invest and Flus Models in the Yihe River Basin, North China. Int. Soil Water Conserv. Res. 2024, 12, 298–312. [Google Scholar] [CrossRef]
- WU, X.W.; Guo, F.C. Analysis and Prediction of Carbon Storage Changes in Jiangsu Province Based on the Invest Model and Flus Model. Chin. J. Eco-Agric. 2024, 32, 230–239. [Google Scholar]
- Xiang, S.J.; Wang, Y.; Deng, H.; Yang, C.M.; Wang, Z.F.; Gao, M. Response and Multi-Scenario Prediction of Carbon Storage to Land Use/Cover Change in the Main Urban Area of Chongqing, China. Ecol. Indic. 2022, 142, 109205. [Google Scholar] [CrossRef]
- Yang, X.D.; Chen, X.P.; Qiao, F.W.; Che, L.; Pu, L.L. Layout Optimization and Multi-Scenarios for Land Use: An Empirical Study of Production-Living-Ecological Space in the Lanzhou-Xining City Cluster, China. Ecol. Indic. 2022, 145, 109577. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wei, M.; Li, Z.G.; Zeng, J. Multi-Scenario Simulation of Urban Growth Boundaries with an ESP-FLUS Model: A Case Study of the Min Delta Region, China. Ecol. Indic. 2022, 135, 108538. [Google Scholar] [CrossRef]
- Xia, C.Y.; Zhang, J.; Zhao, J.; Xue, F.; Li, Q.; Fang, K.; Shao, Z.; Li, S.; Zhou, J. Exploring Potential of Urban Land-Use Management on Carbon Emissions—A Case of Hangzhou, China. Ecol. Indic. 2023, 146, 109902. [Google Scholar] [CrossRef]
- Liu, G.H.; Cui, F.L.; Wang, Y. Spatial Effects of Urbanization, Ecological Construction and Their Interaction on Land Use Carbon Emissions/Absorption: Evidence from China. Ecol. Indic. 2024, 160, 111817. [Google Scholar] [CrossRef]
- Xie, G.D.; Lu, C.X.; Leng, Y.F.; Zheng, D.; Li, S.C. Evaluation of ecological assets in Qinghai-Tibet Plateau. J. Nat. Resour. 2003, 2, 189–196. (In Chinese) [Google Scholar]
- Li, F.; Zhang, S.W.; Xu, X.L.; Yang, J.C.; Wang, Q.; Bu, K.; Chang, L.P. The Response of Grain Potential Productivity to Land Use Change: A Case Study in Western Jilin, China. Sustainability 2015, 11, 14729–14744. [Google Scholar] [CrossRef]
- Li, W.J.; Guo, J.Y.; Tang, Y.H.; Zhang, P.C. Resilience of Agricultural Development in China’s Major Grain-Producing Areas under the Double Security Goals of “Grain Ecology”. Environ. Sci. Pollut. Res. 2024, 31, 5881–5895. [Google Scholar] [CrossRef]
- Wen, S.B.; Wang, Y.Z.; Song, H.H.; Liu, H.X.; Sun, Z.L.; Bilal, M.A. Integrated Predictive Modeling and Policy Factor Analysis for the Land Use Dynamics of the Western Jilin. Atmosphere 2024, 3, 288. [Google Scholar] [CrossRef]
- Gao, H.Y.; Qin, T.L.; Luan, Q.H.; Feng, J.M.; Zhang, X.Y.; Yang, Y.H.; Xu, S.; Lu, J. Characteristics Analysis and Prediction of Land Use Evolution in the Source Region of the Yangtze River and Yellow River Based on Improved Flus Model. Land 2024, 13, 393. [Google Scholar] [CrossRef]
- Liu, J.P.; Chen, B.L.; Zhang, M.; Wan, D.J.; Liu, X. Construction and Optimization of Ecological Security Patterns in the Songnen Plain. Front. Environ. Sci. 2024, 12, 1302896. [Google Scholar] [CrossRef]
- Sun, M.Y.; Li, X.H.; Yang, R.J.; Zhang, Y.; Zhang, L.; Song, Z.W.; Liu, Q.; Zhao, D. Comprehensive Partitions and Different Strategies Based on Ecological Security and Economic Development in Guizhou Province, China. J. Clean. Prod. 2020, 274, 122794. [Google Scholar] [CrossRef]
- Chen, X.; He, X.Y.; Wang, S.Y. Simulated Validation and Prediction of Land Use under Multiple Scenarios in Daxing District, Beijing, China, Based on GeoSOS-FLUS Model. Sustainability 2022, 18, 11428. [Google Scholar] [CrossRef]
- Arunrat, N.; Sukanya, S.; Praeploy, K.; Ryusuke, H. Soil Organic Carbon and Soil Erodibility Response to Various Land-Use Changes in Northern Thailand. Catena 2022, 219, 106595. [Google Scholar] [CrossRef]
- Huang, W.; Mao, J.; Zhu, D.; Lin, C. Impacts of Land Use and Land Cover on Water Quality at Multiple Buffer-Zone Scales in a Lakeside City. Water 2020, 12, 47. [Google Scholar] [CrossRef]
- Hou, M.Z.; Li, L.; Yu, H.N.; Jin, R.; Zhu, W.H. Ecological Security Evaluation of Wetlands in Changbai Mountain Area Based on DPSIRM Model. Ecol. Indic. 2024, 160, 111773. [Google Scholar] [CrossRef]
- Yang, J.X.; Tang, W.W.; Gong, J.; Shi, R.; Zheng, M.R.; Dai, Y.Z. Simulating Urban Expansion Using Cellular Automata Model with Spatiotemporally Explicit Representation of Urban Demand. Landsc. Urban Plan. 2023, 231, 104640. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, J.M.; Zhang, M.; Li, S.J. Measurement and Prediction of Land Use Conflict in an Opencast Mining Area. Resour. Policy 2021, 71, 101999. [Google Scholar] [CrossRef]
- Wei, Q.; Abudureheman, M.; Halike, A.; Yao, K.X.; Yao, L.; Tang, H.; Tuheti, B. Temporal and Spatial Variation Analysis of Habitat Quality on the Plus-Invest Model for Ebinur Lake Basin, China. Ecol. Indic. 2022, 145, 109632. [Google Scholar] [CrossRef]
- Hou, H.Y.; Zhou, B.B.; Pei, F.S.; Hu, G.H.; Su, Z.B.; Zeng, Y.J.; Zhang, H.; Gao, Y.K.; Luo, M.; Li, X. Future Land Use/Land Cover Change Has Nontrivial and Potentially Dominant Impact on Global Gross Primary Productivity. Earth’s Future 2022, 10, e2021EF002628. [Google Scholar] [CrossRef]
Data Type | Data Content | Data Source | |
---|---|---|---|
Land Use Data | Land use data of Jilin Province from 1990 to 2020 | Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn/) (accessed on 26 November 2024) | |
Satellite Image Data | Landsat-5 TM, Landsat-8 OLI | NASA (https://earthexplorer.usgs.gov/) (accessed on 26 November 2024) | |
Statistical Almanac Data | Industrial output value by administrative region from 1990 to 2020 | Jilin bureau of Jilin statistics yearbook (http://tjj.jl.gov.cn/tjsj/tjnj/) (accessed on 26 November 2024) | |
Planning Text Data | Master Plan of Baicheng Land Space (2021–2035), Master Plan of Songyuan City (2021–2035) | Baicheng City People’s Government (http://www.jlbc.gov.cn/) (accessed on 26 November 2024) Songyuan Municipal People’s Government (https://www.jlsy.gov.cn/) (accessed on 26 November 2024) | |
Driving Force Factor Data | Natural factors | DEM | NASA (https://earthexplorer.usgs.gov/) |
Temperature, precipitation | Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn/) (accessed on 26 November 2024) | ||
Transport accessibility factor | Distance to rail, road | OSM (https://www.openstreetmap.org/) (accessed on 26 November 2024) | |
Socio-economic factors | Population density per unit area | World pop (https://www.worldpop.org/) (accessed on 26 November 2024) | |
GDP data of China’s kilometer grid | National Earth System Science Data Center (http://www.geodata.cn/) (accessed on 26 November 2024) |
Land Use Type Classification System | Land Use Type |
---|---|
CNLUCC Classification System | Cropland, forest, grassland, waters, built-up land, unused land |
Spatial classification system of “Three life” | Production space land (cropland, industrial, and mining construction land), Ecological space land (forest, waters, unused land), Living space land (urban and rural living land) |
The classification system of this study | Cropland, forest, grassland, waters, built-up land, unused land, Saline cropland *, saline forest *, saline grassland * |
Function | C | F | G | W | B | U | S–C | S–F | S–G |
---|---|---|---|---|---|---|---|---|---|
Coefficient Ai | 411.33 | 52.56 | 563.85 | 111.27 | 21,095.87 | 0 | 176.86 | 4.39 | 247.26 |
Coefficient Bi | 295.35 | 1391.75 | 901.99 | 6640.84 | 0 | 48.60 | 169.73 | 72.02 | 47.53 |
Scenario Setting | Scenario Description | Land Class Conversion Requirements |
---|---|---|
ND | Follow the natural evolution law of land use type | There are no restrictions on the conversion between land types |
PFP | Grain production is fundamentally in cropland, and the red line of cropland should be strictly observed The target weights of economic and ecological benefits are 0.8 and 0.2, respectively | Conversion of arable land and construction land to other land types is prohibited |
ESP | Strengthen the protection of ecological land for waters’ environment, simulate the land structure with the highest ecological benefits, and ensure ecological development. The target weights of economic benefit and ecological benefit are 0.2 and 0.8, respectively | The conversion of forest land and waters’ area to other land types is prohibited. Arable land and grassland can be converted to geographical areas of higher ecological value |
SSI | Steadily accelerate saline soil to improve soil with normal salt content and increase its agricultural utilizable value. The target weights of economic benefit and ecological benefit are 0.5 and 0.5, respectively | The conversion of other land types into unused land shall be prohibited, and the conversion of unused land into economic and ecological land shall be vigorously developed |
Constraint Type | Constraints/km2 | Instructions |
---|---|---|
Total land area constraint C | The sum of the planned area (xi) of each land use type shall be equal to the total area C of the study area | |
Cropland area constraint (x1) | 24,851.08 ≤ x1 ≤ 25,219.62 | The minimum size of cropland shall not be lower than the current status of cropland in 2020, and the maximum size shall be set with the growth rate of cropland from 1990 to 2020 |
Forest area constraint (x2) | 2796.09 ≤ x2 ≤ 3142.98 | The minimum size of the forest land should not be lower than the current situation of the forest land area in 2020, and the maximum size should be set up by 10% according to the development trend of 1990–2020 |
Grassland area constraint (x3) | 4531.99 ≤ x3 ≤ 4812.31 | The change in the grassland area is not only affected by human activities, but also greatly affected by rainfall. The change range of the grassland area is set as the base ±3% of the grassland area under the ND scenario |
Waters’ area constraint (x4) | 1966.33 ≤ x4 ≤ 2162.96 | The minimum size of the waters’ area is not lower than the 2020 status quo. And the maximum is set to increase the waters’ area by 10% in 2020 |
Built-up land area constraint (x5) | 1815.43 ≤ x5 ≤ 1967.57 | The minimum scale of construction land shall not be lower than the controlled amount of the construction land scale in 2020. The maximum scale is set with the growth rate of construction land from 1990 to 2020 |
Unused land area constraint (x6) | 8734.51 ≤ x6 ≤ 9653.93 | Set the unused land area change range as the base ± 5% of the unused land area under the ND scenario |
Saline cropland land area constraint (x7) | 578.51 ≤ x7 ≤ 737.01 | The minimum scale of saline cropland is the current situation of saline cropland in 2020, and the maximum scale is set by the improvement rate of saline cropland from 1990 to 2020 |
Saline forest area constraint (x8) | 56.90 ≤ x8 ≤ 88.56 | The minimum scale of saline forest land is the current situation of the saline forest land area in 2020, and the maximum scale is set as the improvement speed of saline forest land |
Saline grassland area constraint (x9) | 418.36 ≤ x9 ≤ 426.82 | The change range of the saline grassland area is set to be ± 1% of the area at the rate of improvement of the saline grassland |
Non-negative constraint of decision quantity (xi) | xi ≥ 0, i = 1, 2, 3, 4, 5, 6, 7, 8, 9 | In the model, each constraint variable is required to be non-negative |
Land Class | 2020/km2 | 2030/km2 | |||||||
---|---|---|---|---|---|---|---|---|---|
ND | PFP | ESP | SSI | ||||||
S | △S | S | △S | S | △S | S | △S | ||
Cropland | 24,851.08 | 25,868.81 | 1017.73 | 25,215.5 | 364.42 | 24,920.79 | 69.71 | 25,045.01 | 193.93 |
Forest | 2796.09 | 2600.10 | −195.99 | 2893.34 | 97.25 | 3138.43 | 342.34 | 3063.34 | 267.25 |
Grassland | 4437.86 | 4672.15 | 234.29 | 4777.14 | 339.28 | 4802.99 | 365.13 | 4808.33 | 370.47 |
Waters | 1966.33 | 1555.24 | −411.09 | 2008.57 | 42.24 | 2162.96 | 196.63 | 2113.78 | 147.45 |
Built-up land | 1815.43 | 1675.31 | −140.12 | 1967.57 | 152.14 | 1893.81 | 78.38 | 1952.55 | 137.12 |
Unused land | 10,096.31 | 9494.22 | −602.09 | 9053.87 | −1042.44 | 9005.99 | −1090.32 | 8873.46 | −1222.85 |
Saline cropland | 578.51 | 626.32 | 47.81 | 682.55 | 104.04 | 660.44 | 81.93 | 728.34 | 149.83 |
Saline forest | 56.90 | 54.65 | −2.25 | 56.90 | 0 | 65.73 | 8.83 | 68.05 | 11.15 |
Saline grassland | 478.50 | 530.21 | 51.71 | 421.57 | −56.93 | 425.87 | −52.63 | 424.15 | −54.35 |
2030 | ND | PFP | ESP | SSI |
---|---|---|---|---|
Economic benefits | 4916.90 | 5517.39 | 5353.84 | 5483.39 |
Ecological benefits | 2639.82 | 2970.17 | 3099.91 | 3061.47 |
Total benefits | 7556.72 | 8487.56 | 8453.76 | 8544.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Wang, W.; Li, X.; Ren, J. Multi-Scenario Simulation of Optimal Landscape Pattern Configuration in Saline Soil Areas of Western Jilin Province, China. Agriculture 2024, 14, 2181. https://doi.org/10.3390/agriculture14122181
Ma C, Wang W, Li X, Ren J. Multi-Scenario Simulation of Optimal Landscape Pattern Configuration in Saline Soil Areas of Western Jilin Province, China. Agriculture. 2024; 14(12):2181. https://doi.org/10.3390/agriculture14122181
Chicago/Turabian StyleMa, Chunlei, Wenjuan Wang, Xiaojie Li, and Jianhua Ren. 2024. "Multi-Scenario Simulation of Optimal Landscape Pattern Configuration in Saline Soil Areas of Western Jilin Province, China" Agriculture 14, no. 12: 2181. https://doi.org/10.3390/agriculture14122181
APA StyleMa, C., Wang, W., Li, X., & Ren, J. (2024). Multi-Scenario Simulation of Optimal Landscape Pattern Configuration in Saline Soil Areas of Western Jilin Province, China. Agriculture, 14(12), 2181. https://doi.org/10.3390/agriculture14122181