Detection and Classification of Agave angustifolia Haw Using Deep Learning Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Colletion and Capture Site
2.2. Image Annotation and Classification
- Sick agave: plants with most of their leaves withered with a brown color, thin, and small in size;
- Yellow agave: plants that have a yellowish color on most of their leaves;
- Healthy agave: plants of normal size compared to the size of the plants present in the plot, with a homogeneous green color on all the leaves;
- Small agave: plants of small size compared to the rest of the plants found in the plot;
- Spotted agave: plants of normal size compared to the size of the plants present in the plot, which have dark-colored spots on some or all of their leaves.
2.3. Training of the Models
2.4. Models Performance Metrics
3. Results
4. Discussion
5. Conclusions
6. Future Works
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palma, F.; Pérez, P.; Vinicio, M. Diagnóstico de la Cadena de Valor Mezcal en las Regiones de Oaxaca. 2016. Available online: https://www.oaxaca.gob.mx/coplade/wp-content/uploads/sites/29/2017/04/Perfiles/AnexosPerfiles/6.%20CV%20MEZCAL.pdf (accessed on 28 November 2024).
- Mariles-Flores, V.; Ortiz-Solorio, C.A. Las clases de tierras productoras de maguey mezcalero en la Soledad Salinas, Oaxaca* Classes maguey mezcal producing land in La Soledad Salinas, Oaxaca. Rev. Mex. De Cienc. Agrícolas 2016, 7, 1199–1210. [Google Scholar] [CrossRef]
- COMERCAM. Informe Estadístico 2023. 2023. Available online: https://comercam-dom.org.mx/wp-content/uploads/2023/05/INFORME-2023_PUBLICO.pdf (accessed on 28 November 2024).
- Aquino-Bolaños, T.; Parraguirre-Cruz, M.A.; Ruiz-Vega, J. Scyphophorus acupunctatus (=interstitialis) Gyllenhal (Coleoptera: Curculionidae). Pest of agave mezcalero: Losses and damage in Oaxaca, Mexico. Rev. Científica UDO Agrícola 2007, 7, 175–180. [Google Scholar]
- Aquino-Bolaños, T.; Aquino-Lopez, T.; Ruiz-Vega, J.; Bautista-Cruz, A. Strategus aloeus (Coleoptera: Scarabaeidae) damage in two agave species and its management based on entomopathogenic fungi in oil suspensions. Rev. Colomb. Entomol. 2024, 50, e12865. [Google Scholar] [CrossRef]
- CESAVEG. Manual de Plagas y Enfermedades. Available online: http://cesaveg.org.mx/divulgacion/agave/manual_agave.pdf (accessed on 11 November 2024).
- Romero-Cortes, T.; Pérez España, V.H.; Pescador-Rojas, J.A.; Rangel-Cortés, E.; Armendaríz-Ontiveros, M.M.; Cuervo-Parra, J.A. First Report of Leaf Spot Disease (“Negrilla”) on Agave salmiana Otto Ex Salm-Dyck (ssp. salmiana) Plants Caused by Bipolaris zeae Zivan in Mexico. Agronomy 2024, 14, 623. [Google Scholar] [CrossRef]
- De Oliveira, R.C.; e Silva, R.D.d.S. Artificial Intelligence in Agriculture: Benefits, Challenges, and Trends. Appl. Sci. 2023, 13, 7405. [Google Scholar] [CrossRef]
- Wakchaure, M.; Patle, B.K.; Mahindrakar, A.K. Application of AI techniques and robotics in agriculture: A review. Artif. Intell. Life Sci. 2023, 3, 100057. [Google Scholar] [CrossRef]
- Ayala-Niño, D.; González-Camacho, J.M. Evaluation of machine learning models to identify peach varieties based on leaf color. Agrociencia 2022, 4, 21–179. [Google Scholar] [CrossRef]
- Agnihotri, V. Machine Learning Based Pest Identification in Paddy Plants. In Proceedings of the 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 12–14 June 2019; pp. 246–250. [Google Scholar] [CrossRef]
- Park, Y.-H.; Choi, S.H.; Kwon, Y.-J.; Kwon, S.-W.; Kang, Y.J.; Jun, T.-H. Detection of Soybean Insect Pest and a Forecasting Platform Using Deep Learning with Unmanned Ground. Veh. Agron. 2023, 13, 477. [Google Scholar] [CrossRef]
- Ambrosio, J.P.A.; Camacho, J.M.G.; Aguilar, A.R.; Paniagua, D.H.d.V. Identification of disease in tomato leaves using machine learning classifiers and digital images. Agrociencia 2023, 8, 2462. [Google Scholar] [CrossRef]
- Joseph, D.S.; Pawar, P.M.; Pramanik, R. Intelligent plant disease diagnosis using convolutional neural network: A review. Multimed. Tools Appl. 2022, 82, 21415–21481. [Google Scholar] [CrossRef]
- Ribera, J.; Chen, Y.; Boomsma, C.; Delp, E.J. Counting plants using deep learning. In Proceedings of the 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, QC, Canada, 14–16 November 2017; pp. 1344–1348. [Google Scholar] [CrossRef]
- Omar, H.C.; Florián, F.; Sánchez, M.G.; Guadalupe, S.M.; Ávila-George, H.; Departamento de Ciencias Computacionales e Ingenierías. Conteo de plantas de agave usando redes neuronales convolucionales e imágenes adquiridas desde un vehículo aéreo no tripulado. RISTI—Rev. Ibérica De Sist. E Tecnol. De Informação 2022, 1, 64–76. [Google Scholar] [CrossRef]
- Gündüz, M.; Işik, G. A new YOLO-based method for real-time crowd detection from video and performance analysis of YOLO models. J. Real-Time Image Process. 2023, 20, 5. [Google Scholar] [CrossRef] [PubMed]
- Shahi, T.B.; Xu, C.Y.; Neupane, A.; Guo, W. Recent Advances in Crop Disease Detection Using UAV and Deep Learning Techniques. Remote Sens. 2023, 15, 2450. [Google Scholar] [CrossRef]
- Toda, Y.; Okura, F. How Convolutional Neural Networks Diagnose Plant Disease. Plant Phenomics 2019, 2019, 9237136. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.H.; Potgieter, J.; Arif, K.M. Plant Disease Detection and Classification by Deep Learning. Plants 2019, 8, 468. [Google Scholar] [CrossRef]
- Rahnemoonfar, M.; Sheppard, C. Deep Count: Fruit Counting Based on Deep Simulated Learning. Sensors 2017, 17, 905. [Google Scholar] [CrossRef]
- Ubbens, J.; Cieslak, M.; Prusinkiewicz, P.; Stavness, I. The use of plant models in deep learning: An application to leaf counting in rosette plants. Plant Methods 2018, 14, 6. [Google Scholar] [CrossRef]
- Mota-Delfin, C.; López-Canteñs, G.d.J.; López-Cruz, I.L.; Romantchik-Kriuchkova, E.; Olguín-Rojas, J.C. Detection and Counting of Corn Plants in the Presence of Weeds with Convolutional Neural Networks. Remote Sens. 2022, 14, 4892. [Google Scholar] [CrossRef]
- Flores, D.; González-Hernández, I.; Lozano, R.; Vazquez-Nicolas, J.M.; Hernandez Toral, J.L. Automated Agave Detection and Counting Using a Convolutional Neural Network and Unmanned Aerial Systems. Drones 2021, 5, 4. [Google Scholar] [CrossRef]
- Calvario, G.; Alarcón, T.E.; Dalmau, O.; Sierra, B.; Hernandez, C. An Agave Counting Methodology Based on Mathematical Morphology and Images Acquired through Unmanned Aerial Vehicles. Sensors 2020, 20, 6247. [Google Scholar] [CrossRef]
- Sánchez, A.; Nanclares, R.; Quevedo, A.; Pelagio, U.; Aguilar, A.; Calvario, G.; Moya-Sánchez, E.U. Agave crop segmentation and maturity classification with deep learning data-centric strategies using very high-resolution satellite imagery. arXiv 2023, arXiv:2303.11564. [Google Scholar] [CrossRef]
- Wang, M.; Yang, B.; Wang, X.; Yang, C.; Jie, X.; Mu, B.; Xiong, K.; Li, Y. YOLO-T: Multitarget Intelligent Recognition Method for X-ray Images Based on the YOLO and Transformer Models. Appl. Sci. 2022, 12, 11848. [Google Scholar] [CrossRef]
- Dutta, A.; Zisserman, A. The VIA Annotation Software for Images, Audio and Video. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 2276–2279. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Shinde, S.; Kothari, A.; Gupta, V. YOLO based Human Action Recognition and Localization. Procedia Comput. Sci. 2018, 133, 831–838. [Google Scholar] [CrossRef]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Rani, A.; Ortiz-Arroyo, D.; Durdevic, P. Defect Detection in Synthetic Fibre Ropes Using Detectron2 Framework. Appl. Ocean Res. 2024, 150, 104109. [Google Scholar] [CrossRef]
- de Almeida, G.P.S.; dos Santos, L.N.S.; da Silva Souza, L.R.; da Costa Gontijo, P.; de Oliveira, R.; Teixeira, M.C.; De Oliveira, M.; Teixeira, M.B.; do Carmo França, H.F. Performance Analysis of YOLO and Detectron2 Models for Detecting Corn and Soybean Pests Employing Customized Dataset. Agronomy 2024, 14, 2194. [Google Scholar] [CrossRef]
- Butt, M.; Glas, N.; Monsuur, J.; Stoop, R.; de Keijzer, A. Application of YOLOv8 and Detectron2 for Bullet Hole Detection and Score Calculation from Shooting Cards. AI 2024, 5, 72–90. [Google Scholar] [CrossRef]
- Liu, K.; Sun, Q.; Sun, D.; Yang, M.; Wang, N.; Peng, L. Underwater target detection based on improved YOLOv7. J. Mar. Sci. Eng. 2023, 11, 77. [Google Scholar] [CrossRef]
- Ferreira, U.E.C.; Camacho, J.M.G. Clasificador de red neuronal convolucional para identificar enfermedades del fruto de aguacate (Persea americana Mill.) a partir de imágenes digitales. Agrociencia 2021, 55, 695–709. [Google Scholar] [CrossRef]
- Kumar, N.; Nagarathna; Flammini, F. YOLO-Based Light-Weight Deep Learning Models for Insect Detection System with Field Adaption. Agriculture 2023, 13, 741. [Google Scholar] [CrossRef]
- Sohan, M.; Sai Ram, T.; Rami Reddy, C.V. A Review on YOLOv8 and Its Advancements. In Data Intelligence and Cognitive Informatics; ICDICI 2023. Algorithms for Intelligent Systems; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
Set | Sick | Yellow | Healthy | Small | Spotted | Total |
---|---|---|---|---|---|---|
Training | 109 | 213 | 345 | 173 | 100 | 940 |
Test | 34 | 60 | 77 | 55 | 35 | 261 |
Validation | 7 | 24 | 43 | 27 | 15 | 116 |
Total | 150 | 297 | 465 | 255 | 150 | 1317 |
Item/Element | Model/Version |
---|---|
CPU | AMD Ryzen 5 3600 G |
GPU | NVIDIA GeForce RTX 3050 |
RAM | Adata Xpg Spectrix D50 8 GB 3200 Mhz (2) 1 |
OS | Ubuntu Linux 22.04.2 LTS |
Programming Language | Python 3.10.9 |
CUDA Toolkit | 12.1 |
NVIDIA Driver | 530.30.02 |
Epochs | 1000 |
AP | |||||
---|---|---|---|---|---|
Class/Model | YOLOv7 | YOLOv7-Tiny | YOLOv8 | Faster-RCNN | RetinaNet |
Sick | 0.714 | 0.678 | 0.791 | 0.287 | 0.246 |
Yellow | 0.554 | 0.56 | 0.671 | 0 | 0.404 |
Healthy | 0.552 | 0.573 | 0.61 | 0.063 | 0.327 |
Small | 0.397 | 0.577 | 0.577 | 0.043 | 0.216 |
Spotted | 0.546 | 0.542 | 0.567 | 0 | 0.316 |
AP | |||||
---|---|---|---|---|---|
Class/Model | YOLOv7 | YOLOv7-Tiny | YOLOv8 | Faster-RCNN | RetinaNet |
Sick | 0.799 | 0.892 | 0.833 | 0.342 | 0.421 |
Yellow | 0.630 | 0.583 | 0.568 | 0 | 0.301 |
Healthy | 0.574 | 0.585 | 0.558 | 0.013 | 0.259 |
Small | 0.474 | 0.404 | 0.474 | 0.026 | 0.170 |
Spotted | 0.602 | 0.567 | 0.596 | 0 | 0.294 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matadamas, I.; Zamora, E.; Aquino-Bolaños, T. Detection and Classification of Agave angustifolia Haw Using Deep Learning Models. Agriculture 2024, 14, 2199. https://doi.org/10.3390/agriculture14122199
Matadamas I, Zamora E, Aquino-Bolaños T. Detection and Classification of Agave angustifolia Haw Using Deep Learning Models. Agriculture. 2024; 14(12):2199. https://doi.org/10.3390/agriculture14122199
Chicago/Turabian StyleMatadamas, Idarh, Erik Zamora, and Teodulfo Aquino-Bolaños. 2024. "Detection and Classification of Agave angustifolia Haw Using Deep Learning Models" Agriculture 14, no. 12: 2199. https://doi.org/10.3390/agriculture14122199
APA StyleMatadamas, I., Zamora, E., & Aquino-Bolaños, T. (2024). Detection and Classification of Agave angustifolia Haw Using Deep Learning Models. Agriculture, 14(12), 2199. https://doi.org/10.3390/agriculture14122199