Spatial Variability of Soil Acidity and Lime Requirements for Potato Cultivation in the Huánuco Highlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Analysis
2.3. Estimation of the Liming Requirement for Soils
2.4. Statistical Analysis
2.5. Geostatistical Interpolation
2.6. Model Validation
3. Results
3.1. Descriptive Statistics for Soil Acidity
3.2. Principal Component Analysis of Soil Properties
3.3. Pearson’s Correlation Analysis of Soil Properties and Their Relationship with Soil Acidity
3.4. Spatial Variation in Soil Acidity in the Localities of Plaza Punta and Buenos Aires
3.5. Spatial Variation in Soil Acidity in the Localities of Huarichaca, Chagragoto, and Rumichaca
3.6. Liming Requirement
4. Discussion
4.1. Soil Acidity in Potato Cultivation and Its Relationship with the Soil Physicochemical Properties
4.2. Spatial Variability in Soil Acidity and Liming Requirement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Una Guía Sobre El Día Internacional de La Papa de 2024; FAO: Rome, Italy, 2024. [Google Scholar]
- MIDAGRI Presentó Marco Orientador de Cultivos (MOC) de La Campaña Agrícola 2024/2025—Noticias—Ministerio de Desarrollo Agrario y Riego—Plataforma Del Estado Peruano. Available online: https://www.gob.pe/institucion/midagri/noticias/1010824-midagri-presento-marco-orientador-de-cultivos-moc-de-la-campana-agricola-2024-2025 (accessed on 9 October 2024).
- Velásquez, D. Estrategias Campesinas de Conservación in Situ de Recursos Genéticos En Agroecosistemas Andinos de La Sierra Del Perú: Cajamarca y Huánuco. Master’s Thesis, Universidad Nacional Autónoma de México, Mexico City, Mexico, 2009. [Google Scholar]
- Egúsquiza, B.R. La Papa: Producción, Transformación y Comercialización. Proyecto Papa Andina CIP-COSUDE; International Potato Center: Lima, Perú, 2000; ISBN 978-9972-9347-2-8. [Google Scholar]
- Documento Para Discusión Perú: Evaluación de La Seguridad Alimentaria Ante Emergencias (ESAE), 2021—Midis. Available online: https://evidencia.midis.gob.pe/esae-seguridad-alimentaria-2021-documento-discusion/ (accessed on 10 October 2024).
- Sadeghian, S. La acidez del suelo una limitante común para la producción de café. Av. Técnicos Cenicafé 2016, 466, 1–12. [Google Scholar]
- Sanz, J.; Zeigler, R.; Sarkarung, S.; Molina, D.; Rivera, M. Sistemas Mejorados Arroz-Pasturas Para Sabana Nativa y Pasturas Degradadas En Suelos Ácidos de América Del Sur. In Sistemas Agropastoriles en Sábanas Tropicales de América Latina; CIAT-EMBRAPA: Cali, Colombia, 1999; pp. 234–244. ISBN 958-694-010-1. [Google Scholar]
- Garay Canales, Ó.; Ochoa Acevedo, Á. Primera Aproximación Para La Identificación de Los Diferentes Tipos de Suelo Agrícola En El Valle Del Río Mantaro; Instituto Geofísico del Perú: Lima, Perú, 2010; ISBN 978-612-45795-2-3. [Google Scholar]
- Ayarza, M.A. Efecto de Las Propiedades Químicas de Los Suelos Ácidos En El Establecimiento de Las Especies Forrajeras. In Establecimiento y Renovación de Pasturas: Conceptos, Experiencias y Enfoque de la Investigación; CIAT: Veracruz, México, 1991; pp. 161–185. ISBN 958-9183-26-3. [Google Scholar]
- Conradi, E., Jr.; Gonçalves, A.C., Jr.; Seidel, E.P.; Ziemer, G.L.; Zimmermann, J.; de Oliveira, V.H.D.; Schwantes, D.; Zeni, C.D. Effects of Liming on Soil Physical Attributes: A Review. J. Agric. Sci. 2020, 12, 278. [Google Scholar] [CrossRef]
- Bizarro, H.; Fernando, A. Uso de La Cáscara de Huevo Molida Como Material Encalante En Suelos Ácidos Del Perú. 2018. Available online: https://hdl.handle.net/20.500.12996/3563 (accessed on 16 October 2024).
- Quinto Carhuancho, C.E. Propiedades Físicas, Químicas y Biológicas Del Suelo Bajo La Influencia de Tres Sistemas de Uso de La Tierra En El Distrito José Crespo y Castillo, Leoncio Prado. Bachelor’s Thesis, Universidad Nacional Agraria de la Selva, Tingo María, Perú, 2016. [Google Scholar]
- Balta-Crisólogo, R.A.; Rodríguez-Del Castillo, Á.M.; Guerrero-Abad, R.; Cachique, D.; Alva-Plasencia, E.; Arévalo-López, L.; Loli, O. Absorción y concentración de nitrógeno, fósforo y potasio en sacha inchi (Plukenetia volubilis L.) en suelos ácidos, San Martín, Perú. Folia Amazónica 2015, 24, 23. [Google Scholar] [CrossRef]
- Cotrina-Cabello, V.R.; Alejos-Patiño, I.W.; Cotrina-Cabello, G.G.; Córdova-Mendoza, P.; Córdova-Barrios, I.C. Efecto de Abonos Orgánicos En Suelo Agrícola de Purupampa Panao, Perú. Centro Agrícola 2020, 47, 31–40. [Google Scholar]
- Arce Zapata, A. Desarrollo Del Mercado de Fertilizantes Compuestos En El Perú y Su Impacto En Cultivos Tradicionales de La Selva Peruana; Universidad Nacional Agraria La Molina: Lima, Perú, 2021. [Google Scholar]
- Chen, S.; Lin, B.; Li, Y.; Zhou, S. Spatial and Temporal Changes of Soil Properties and Soil Fertility Evaluation in a Large Grain-Production Area of Subtropical Plain, China. Geoderma 2020, 357, 113937. [Google Scholar] [CrossRef]
- R Core Team. R A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2018—Vienna—References—Scientific Research Publishing. Available online: https://www.scirp.org/reference/ReferencesPapers?ReferenceID=2342186 (accessed on 10 October 2024).
- Pebesma, E.J.; Bivand, R.S. Classes and Methods for Spatial Data in R. R News 2005, 5, 9–13. [Google Scholar]
- Natural Resources and Environment Secretary. Mexican Official Standard. NOM-021-RECNAT-2000: Especificaciones de Fertilidad, Salinidad y Clasificación de Suelos. Available online: https://www.fao.org/faolex/results/details/es/c/LEX-FAOC050674/ (accessed on 10 October 2024).
- U.S. Environmental Protection Agency Method 9045D: Soil and Waste pH. Revision 4. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/9045d.pdf (accessed on 15 October 2024).
- International Standard ISO 11265:1994. Soil Quality—Determination of the Specific Electrical Conductivity. Available online: https://www.iso.org/standard/19243.html (accessed on 10 November 2024).
- International Standard ISO 11261:1995. Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method. Available online: https://www.iso.org/standard/19239.html (accessed on 12 October 2024).
- Bazán Tapia, R. Manual de Procedimientos de los Análisis de Suelos y Agua con Fines de Riego; Instituto Nacional de Innovación Agraria: La Molina, Peru, 2017. [Google Scholar]
- Hengl, T.; Mendes De Jesus, J.; Heuvelink, G.B.M.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global Gridded Soil Information Based on Machine Learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Havlin, J.L. Soil: Fertility and Nutrient Management. In Landscape and Land Capacity; CRC Press: Boca Raton, FL, USA, 2020; pp. 251–265. ISBN 978-0-429-44555-2. [Google Scholar]
- He, H.; Li, Y.; He, L.F. Aluminum Toxicity and Tolerance in Solanaceae Plants. S. Afr. J. Bot. 2019, 123, 23–29. [Google Scholar] [CrossRef]
- Havlin, J.; Tisdale, S.; Nelson, W.; Beaton, J. Soil Fertility and Fertilizers: An Introduction to Nutrient Management, 8th ed.; Pearson: Upper Saddle River, NJ, USA, 2013; ISBN 978-0-13-503373-9. [Google Scholar]
- Wickham, H. Ggplot2-Elegant Graphics for Data Analysis; Use R! Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-24275-0. [Google Scholar]
- Vu, V.Q.; Friendly, M.; Tavadyan, A. Ggbiplot: A Grammar of Graphics Implementation of Biplots. Available online: https://cran.r-project.org/web/packages/ggbiplot/index.html (accessed on 10 October 2024).
- Tunçay, T. Comparison Quality of Interpolation Methods to Estimate Spatial Distribution of Soil Moisture Content. Commun. Soil. Sci. Plant Anal. 2021, 52, 353–374. [Google Scholar] [CrossRef]
- Bock, M.; Böhner, J.; Köthe, R.; Conrad, O.; Köthe, R.; Ringeler, A. Methods for Creating Functional Soil Databases and Applying Digital Soil Mapping with SAGA GIS. In RC Scientific and Technical Reports; Office for Official Publications of the European Communities: Luxembourg, 2007; Volume 1, pp. 31–37. [Google Scholar]
- Martínez, C.R. Modelado Geoestadístico de Fertilidad de Un Terreno Agrícola Mediante Mapas de Kriging Que Interpolan Los Datos de Análisis Químico de Suelos. Prod. Agropecu. Desarro. Sosten. 2021, 9, 63–84. [Google Scholar] [CrossRef]
- Gallardo Correa, A. Geostadística. Ecosistemas 2006, 15, 48–58. [Google Scholar]
- Fu, Y.; Song, J.; Guo, J.; Fu, Y.; Cai, Y. Prediction and Analysis of Sea Surface Temperature Based on LSTM-Transformer Model. Reg. Stud. Mar. Sci. 2024, 78, 103726. [Google Scholar] [CrossRef]
- Fernández Villafañez, S. Métodos de Regresión y Clasificación Basados en Árboles. Master’s Thesis, Universidad de Valladolid, Valladolid, España, 2022. [Google Scholar]
- Burton, A. Influence of Solution Management Techniques on Nutrient Use Efficiency in Hydroponically Grown Salad-type Plants-ProQuest. Master’s Thesis, North Carolina A&T State University, Greensboro, NC, USA, 2018. [Google Scholar]
- Mugo, J.N.; Karanja, N.N.; Gachene, C.K.; Dittert, K.; Nyawade, S.O.; Schulte-Geldermann, E. Assessment of Soil Fertility and Potato Crop Nutrient Status in Central and Eastern Highlands of Kenya. Sci. Rep. 2020, 10, 7779. [Google Scholar] [CrossRef] [PubMed]
- George, E.; Horst, W.J.; Neumann, E. Adaptation of Plants to Adverse Chemical Soil Conditions. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 409–472. [Google Scholar] [CrossRef]
- Cakmak, I.; Brown, P.; Colmenero-Flores, J.M.; Husted, S.; Kutman, B.Y.; Nikolic, M.; Rengel, Z.; Schmidt, S.B.; Zhao, F.-J. Micronutrients. In Marschner’s Mineral Nutrition of Plants; Elsevier: Amsterdam, The Netherlands, 2023; pp. 283–385. ISBN 978-0-12-819773-8. [Google Scholar]
- Rout, G.R.; Samantaray, S.; Das, P. Aluminium Toxicity in Plants: A Review. Agronomie 2001, 21, 3–21. [Google Scholar] [CrossRef]
- Jovovic, Z.; Dolijanovic, Z.; Spalevic, V.; Dudic, B.; Przulj, N.; Velimirovic, A.; Popovic, V. Effects of Liming and Nutrient Management on Yield and Other Parameters of Potato Productivity on Acid Soils in Montenegro. Agronomy 2021, 11, 980. [Google Scholar] [CrossRef]
- Du, L.; Zhang, Z.; Chen, Y.; Wang, Y.; Zhou, C.; Yang, H.; Zhang, W. Heterogeneous impact of soil acidification on crop yield reduction and its regulatory variables: A global meta-analysis. Field Crops Res. 2024, 319, 109643. [Google Scholar] [CrossRef]
- McGahan, D.G.; Southard, R.J.; Zasoski, R.J. Mineralogical Comparison of Agriculturally Acidified and Naturally Acidic Soils. Geoderma 2023, 114, 355–368. [Google Scholar] [CrossRef]
- Kome, G.K.; Enang, R.K.; Tabi, F.O.; Yerima, B.P.K.; Kome, G.K.; Enang, R.K.; Tabi, F.O.; Yerima, B.P.K. Influence of Clay Minerals on Some Soil Fertility Attributes: A Review. Open J. Soil Sci. 2019, 9, 155–188. [Google Scholar] [CrossRef]
- Bhattacharyya, T.; Pal, D.K.; Srivastava, P. Formation of Gibbsite in the Presence of 2:1 Minerals: An Example from Ultisols of Northeast India. Clay Miner. 2000, 35, 827–840. [Google Scholar] [CrossRef]
- Guo, C.; Shabala, S.; Chen, Z.H.; Zhou, M.; Zhao, C. Aluminium tolerance and stomata operation: Towards optimising crop performance in acid soil. Plant Physiol. Biochem. 2024, 210, 108626. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, Q.; de Vries, W.; Ros, G.H.; Chen, X.; Muneer, M.A.; Zhang, F.; Wu, L. Effects of soil amendments on soil acidity and crop yields in acidic soils: A world-wide meta-analysis. J. Environ. Manag. 2023, 345, 118531. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.R.; MacDonald, M.L. Influence of Soil Amendments on Potato Growth, Mineral Nutrition, and Tuber Yield and Quality on Very Strongly Acid Soils. Soil Sci. Soc. Am. J. 1977, 38, 573–577. [Google Scholar] [CrossRef]
- Bordoloi, P. Lime application for higher productivity of potato (Solanum tuberosum L.) and managing soil acidity in Ri-Bhoi District of Meghalaya. Indian Res. J. Ext. Educ. 2021, 21, 201. [Google Scholar]
- Wang, Y.; Liu, G.; Zhao, Z. Spatial Heterogeneity of Soil Fertility in Coastal Zones: A Case Study of the Yellow River Delta, China. J. Soils Sediments 2021, 21, 1826–1839. [Google Scholar] [CrossRef]
- Campisi, N.; Kulu, H.; Mikolai, J.; Klüsener, S.; Myrskylä, M. Spatial Variation in Fertility across Europe: Patterns and Determinants. Popul. Space Place 2020, 26, e2308. [Google Scholar] [CrossRef]
- Trujillo-González, J.M.; Torres-Mora, M.A.; Ballesta, R.J.; Brevik, E.C. Spatial Variability of the Physicochemical Properties of Acidic Soils along an Altitudinal Gradient in Colombia. Environ. Earth Sci. 2022, 81, 108. [Google Scholar] [CrossRef]
- Erraez, R.M.M.; Vásquez, E. Enmienda de Cal En Suelos Degradados Por La Ganadería En La Parroquia Panguintza, Cantón Zumbi, Provincia de Zamora Chinchipe. Bosques Latid. Cero 2023, 13, 49–67. [Google Scholar] [CrossRef]
Parameter | Min | Max | Mean | Median | Var | Sd |
---|---|---|---|---|---|---|
Sand (%) | 42.00 | 94.00 | 70.75 | 70.00 | 157.06 | 12.53 |
Silt (%) | 1.00 | 37.00 | 15.52 | 15.42 | 43.38 | 6.59 |
Clay (%) | 0.27 | 35.00 | 13.77 | 11.00 | 80.11 | 8.95 |
pH | 3.90 | 5.80 | 4.69 | 4.60 | 0.16 | 0.39 |
OM (%) | 1.00 | 32.90 | 9.16 | 7.40 | 47.32 | 6.88 |
EC (dS∙m−1) | 0.01 | 0.80 | 0.09 | 0.06 | 0.01 | 0.11 |
P (mg∙kg−1) | 0.00 | 478.98 | 41.60 | 26.30 | 3494.27 | 59.11 |
K (mg∙kg−1) | 29.99 | 616.00 | 183.70 | 169.80 | 12,267.40 | 110.76 |
CEC (cmol+ Kg−1) | 2.85 | 22.33 | 7.96 | 7.30 | 14.72 | 3.84 |
H+ (cmol+ Kg−1) | 0.00 | 4.90 | 1.49 | 1.40 | 1.23 | 1.11 |
Al+3 (cmol+ Kg−1) | 0.00 | 3.40 | 0.55 | 0.30 | 0.55 | 0.74 |
Acidity (cmol+ Kg−1) | 0.00 | 7.80 | 2.04 | 1.80 | 3.25 | 1.80 |
Ca+2 (cmol+ Kg−1) | 0.62 | 16.56 | 3.91 | 3.10 | 10.49 | 3.24 |
Mg+2 (cmol+ Kg−1) | 0.17 | 4.23 | 1.27 | 0.85 | 1.15 | 1.07 |
K+ (cmol+ Kg−1) | 0.04 | 1.65 | 0.58 | 0.51 | 0.11 | 0.33 |
Na+ (cmol+ Kg−1) | 0.00 | 1.80 | 0.16 | 0.10 | 0.06 | 0.25 |
ECP (%) | 11.63 | 78.99 | 44.57 | 45.95 | 364.56 | 19.09 |
EMP (%) | 3.40 | 31.41 | 14.12 | 12.74 | 58.35 | 7.64 |
EPP (%) | 0.36 | 21.68 | 8.15 | 6.61 | 22.10 | 4.70 |
ESP (%) | 0.00 | 21.49 | 2.22 | 2.01 | 8.07 | 2.84 |
EAP (%) | 0.00 | 72.75 | 30.94 | 27.82 | 618.73 | 24.87 |
Soil Property | Model | Nugget (C0) | Sill (C0 + C) | Range (m) | PSV (C/C0 + C) | Cross-Validation | |
---|---|---|---|---|---|---|---|
1 R2 | 2 RMSE | ||||||
pH | Exponential | 0.0045 | 0.0387 | 7155.83 | 0.1161 | 0.20 | 0.1582 |
P (mg∙kg−1) | Gaussian | 1.3691 | 2.3057 | 7155.83 | 0.5938 | 0.11 | 1.2467 |
K (mg∙kg−1) | Gaussian | 1.7494 | 0.1700 | 7155.83 | 10.2925 | 0.26 | 1.1112 |
EC (dS∙m−1) | Linear | 0.0000 | 0.0000 | 7155.83 | 0.0000 | 0.36 | 0.0388 |
OM (%) | Cubic | 0.3263 | 0.5905 | 7155.83 | 0.5526 | 0.31 | 0.6909 |
H+ (cmol+ Kg−1) | Gaussian | 0.2938 | 2.0557 | 7155.83 | 0.1429 | 0.43 | 0.6984 |
Al+3 (cmol+ Kg−1) | Linear | 0.0000 | 0.0000 | 7155.83 | 0.0000 | 0.60 * | 0.2301 |
Acidity (cmol+ Kg−1) | Linear | 0.0000 | 0.0000 | 7155.83 | 0.0000 | 0.46 | 0.4068 |
CIC (cmol+ Kg−1) | Linear | 0.0000 | 0.0000 | 7155.83 | 0.0000 | 0.51 | 0.4446 |
Ca+2 (cmol+ Kg−1) | Gaussian | 0.0343 | 0.1405 | 7155.83 | 0.2442 | 0.76 * | 0.2280 |
Mg+2 (cmol+ Kg−1) | Linear | 0.0000 | 0.0000 | 7155.83 | 0.0000 | 0.87 * | 0.1170 |
K+ (cmol+ Kg−1) | Linear | 0.0234 | 0.0000 | 7155.83 | 0.0000 | 0.38 | 0.2630 |
Na+ (cmol+ Kg−1) | Linear | 0.0000 | 0.0000 | 7155.83 | 0.0000 | 0.69 | 0.0411 |
BD (g∙cm−3) | Linear | 0.0008 | 0.0000 | 7155.83 | 0.0000 | 0.44 | 0.0416 |
EAP (%) | Linear | 0.0000 | 0.0000 | 7155.83 | 0.0000 | 0.53 * | 0.6665 |
ECP (%) | Linear | 0.0000 | 0.0000 | 7155.83 | 0.0000 | 0.57 * | 0.5826 |
EMP (%) | Linear | 0.1844 | 0.0000 | 7155.83 | 0.0000 | 0.44 | 0.5295 |
EPP (%) | Linear | 0.1844 | 0.0000 | 7155.83 | 0.0000 | 0.44 | 0.5295 |
ESP (%) | Linear | 0.0000 | 0.0000 | 7155.83 | 0.0000 | 0.42 | 0.3157 |
Liming (t∙ha−1) | Linear | 0.0975 | 0.0000 | 7155.83 | 0.0000 | 0.52 * | 0.5972 |
Soil Property | Model | Nugget (C0) | Sill (C0 + C) | Range (m) | PSV (C/C0 + C) | Cross-Validation | |
---|---|---|---|---|---|---|---|
1 R2 | 2 RMSE | ||||||
pH | Exponential | 0.0307 | 0.0505 | 11,349.19 | 0.6075 | 0.11 | 0.2096 |
P (mg∙kg−1) | Linear | 0.0000 | 0.0000 | 11,349.19 | 0.0000 | 0.27 | 1.3337 |
K (mg∙kg−1) | Linear | 0.0000 | 0.0000 | 11,349.19 | 0.0000 | 0.22 | 1.4363 |
EC (dS∙m−1) | Linear | 0.0000 | 0.0000 | 11,349.19 | 0.0000 | 0.51 | 0.0669 |
OM (%) | Linear | 0.0000 | 0.0000 | 11,349.19 | 0.0000 | 0.45 | 0.5599 |
H+ (cmol+ Kg−1) | Linear | 0.1870 | 0.0000 | 11,349.19 | 0.0000 | 0.37 | 0.5132 |
Al+3 (cmol+ Kg−1) | Linear | 0.0000 | 0.0000 | 11,349.19 | 0.0000 | 0.32 | 0.4610 |
Acidity (cmol+ Kg−1) | Linear | 0.0000 | 0.0000 | 11,349.19 | 0.0000 | 0.36 | 0.6046 |
CIC (cmol+ Kg−1) | Linear | 0.0000 | 0.0000 | 11,349.19 | 0.0000 | 0.43 | 0.6176 |
Ca+2 (cmol+ Kg−1) | Gaussian | 0.4994 | 0.3408 | 11,349.19 | 1.4656 | 0.39 | 0.7875 |
Mg+2(cmol+ Kg−1) | Power | 0.0883 | 0.0000 | 11,349.19 | 0.0000 | 0.18 | 0.3680 |
K+ (cmol+ Kg−1) | Linear | 0.0558 | 0.0000 | 11,349.19 | 0.0000 | 0.39 | 0.4773 |
Na+ (cmol+ Kg−1) | Linear | 0.0000 | 0.0000 | 11,349.19 | 0.0000 | 0.28 | 0.2053 |
BD (g∙cm−3) | Gaussian | 0.0009 | 0.0042 | 11,349.19 | 0.2180 | 0.79 * | 0.0267 |
EAP (%) | Linear | 2.1710 | 0.0000 | 11,349.19 | 0.0000 | 0.16 | 1.7022 |
ECP (%) | Linear | 1.1814 | 0.0000 | 11,349.19 | 0.0000 | 0.28 | 1.1638 |
EMP (%) | Linear | 0.0000 | 0.0000 | 11,349.19 | 0.0000 | 0.54 * | 0.4758 |
EPP (%) | Linear | 0.0000 | 0.0000 | 11,349.19 | 0.0000 | 0.54 * | 0.4758 |
ESP (%) | Spherical | 0.0684 | 0.6601 | 11,349.19 | 0.1036 | 0.22 | 0.7406 |
Liming (t∙ha−1) | linear | 0.7501 | 0.0000 | 11,349.19 | 0.0000 | 0.30 | 1.0868 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quispe, K.; Mejía, S.; Carbajal, C.; Alejandro, L.; Verástegui, P.; Solórzano, R. Spatial Variability of Soil Acidity and Lime Requirements for Potato Cultivation in the Huánuco Highlands. Agriculture 2024, 14, 2286. https://doi.org/10.3390/agriculture14122286
Quispe K, Mejía S, Carbajal C, Alejandro L, Verástegui P, Solórzano R. Spatial Variability of Soil Acidity and Lime Requirements for Potato Cultivation in the Huánuco Highlands. Agriculture. 2024; 14(12):2286. https://doi.org/10.3390/agriculture14122286
Chicago/Turabian StyleQuispe, Kenyi, Sharon Mejía, Carlos Carbajal, Lidiana Alejandro, Patricia Verástegui, and Richard Solórzano. 2024. "Spatial Variability of Soil Acidity and Lime Requirements for Potato Cultivation in the Huánuco Highlands" Agriculture 14, no. 12: 2286. https://doi.org/10.3390/agriculture14122286
APA StyleQuispe, K., Mejía, S., Carbajal, C., Alejandro, L., Verástegui, P., & Solórzano, R. (2024). Spatial Variability of Soil Acidity and Lime Requirements for Potato Cultivation in the Huánuco Highlands. Agriculture, 14(12), 2286. https://doi.org/10.3390/agriculture14122286