Gaps between Rice Actual and Potential Yields Based on the VPM and GAEZ Models in Heilongjiang Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Methods
2.3.1. Estimation of Rice Actual Yields
2.3.2. Simulation of Rice Potential Yields
2.3.3. Analysis of Rice Yield Gaps
3. Results
3.1. Rice Actual Yields in Heilongjiang Province for 2000, 2010, and 2020
3.1.1. Rice Actual Yields in 2000
3.1.2. Accuracy Verification of the VPM Model
3.1.3. Spatio-Temporal Evolution Characteristics of Rice Actual Yields during the 2000–2020 Period
3.2. Rice Potential Yields in Heilongjiang Province for 2000, 2010, and 2020
3.2.1. Rice Potential Yields for 2000, 2010, and 2020
3.2.2. Spatio-Temporal Evolution Characteristics of Rice Potential Yields during the 2000–2020 Period
3.3. Rice Yield Gaps in Heilongjiang Province for 2000, 2010, and 2020
3.3.1. Correlation Analysis between Rice Actual and Potential Yields
3.3.2. Analysis of the Rice Yield Gaps
3.3.3. Suggestions for Increasing Rice Yields
4. Discussion
4.1. Limitations of Determining the Rice Reproductive Periods of Heilongjiang Province
4.2. Limitations of Identifying the GPP of Rice Growth
4.3. Limitations of Applying the GAEZ and VPM Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Wu, K.; Li, X.; Li, X. Classification of land types at provincial level based on the goal of black land protection: A case study of Heilongjiang Province. Sci. Geogr. Sin. 2022, 42, 1348–1359. [Google Scholar]
- Wang, L. Research on Potential Production of Cultivated Land in Heilongjiang. Master’s Thesis, Heilongjiang University, Harbin, China, 2022. [Google Scholar]
- Cai, C.; Chen, F.; Xu, J.; Liang, Y. Approaches to enhance crop’s yield potential. Res. Agric. Mod. 2002, 6, 465–468. [Google Scholar]
- Deng, N.; Grassini, P.; Yang, H.; Huang, J.; Cassman, K.; Peng, S. Closing yield gaps for rice self-sufficiency in China. Nat. Commun. 2019, 10, 1725. [Google Scholar] [CrossRef] [PubMed]
- Tseng, M.; Roel, Á.; Macedo, I.; Marella, M.; Terra, J.; Zorrilla, G.; Pittelkow, C. Field-level factors for closing yield gaps in high-yielding rice systems of Uruguay. Field Crops Res. 2021, 264, 108097. [Google Scholar] [CrossRef]
- van Ittersum, M.K.; Cassman, K.G. Yield gap analysis—Rationale, methods and applications—Introduction to the Special Issue. Field Crops Res. 2013, 143, 1–3. [Google Scholar] [CrossRef]
- Ren, J.; Chen, Z.; Liu, X. Models, Methods and Applications of Remote Sensing Estimation of Crop Yields; China Agricultural Science and Technology Press: Beijing, China, 2020. [Google Scholar]
- Wu, B.; Zhang, M.; Zeng, H.; Yan, N.; Zhang, X.; Xing, Q.; Chang, S. Twenty years of CropWatch: Progress and prospect. J. Remote Sens. 2019, 23, 1053–1063. [Google Scholar] [CrossRef]
- Bolton, D.; Friedl, M. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 2013, 173, 74–84. [Google Scholar] [CrossRef]
- An, Q. Research on Methods of Maize Yield Estimation by Remote Sensing in Changchun Region; Jilin University: Changchun, China, 2018. [Google Scholar]
- Potter, C.; Randerson, J.; Field, C.; Matson, P.; Klooster, S. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Prince, S.; Goward, S. Global primary production: A remote sensing approach. J. Biogeogr. 1995, 22, 815–835. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, S.; Zhou, G.; Zhou, G.; Tieszen, L.; Baldocchi, D.; Bernhofer, C.; Gholz, H.; Goldstein, A.; Goulden, M.; et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric. For. Meteorol. 2007, 143, 189–207. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Q.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Moore, B., III; Ojima, D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004, 91, 256–270. [Google Scholar] [CrossRef]
- Brown, S.; Versace, V.; Laurenson, L.; Ierodiaconou, D.; Fawcett, J.; Salzman, S. Assessment of spatiotemporal varying relationships between rainfall, land cover and surface water area using geographically weighted regression. Environ. Model. Assess. 2012, 17, 241–254. [Google Scholar] [CrossRef]
- Lv, S.; Yang, X.; Lin, X.; Liu, Z.; Zhao, J.; Li, K.; Mu, C.; Chen, X.; Chen, F.; Mi, G. Yield gap simulations using ten maize cultivars commonly planted in Northeast China during the past five decades. Agric. For. Meteorol. 2015, 205, 1–10. [Google Scholar] [CrossRef]
- Yoshino, M. Photosynthesis and Maximum Yield of Rice. Agric. Technol. 1966. [Google Scholar]
- Chen, M. Climatic potential production in Qinling Mountains. J. Northwest Univ. 1979, 1, 125–136. [Google Scholar]
- Tanner, C.; Sinclair, T.; Taylor, H.; Jordan, W. Limitations to Efficient Water Use in Crop Production; American Society of Agronomy: Madison, WI, USA, 1983; pp. 1–27. [Google Scholar]
- Liang, R.; Shen, N. Study on estimation method of crop climatic soil productivity potential. J. Northeast Agric. Coll. 1984, 4, 88–96. [Google Scholar]
- Fischer, G.; Shah, M.; van Velthuizen, H.; Nachtergaele, F. Agro-Ecological Zones Assessments; Eolss Publishers: Oxford, UK, 2006. [Google Scholar]
- Fischer, G.; Velthuizen, H.; Hizsnyik, E.; Wiberg, D. Potentially Obtainable Yields in the Semi-Arid Tropics. In Monograph; International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India, 2010. [Google Scholar]
- Pu, L.; Zhang, S.; Yang, J.; Chang, L.; Bai, S. Spatio-Temporal Dynamics of Maize Potential Yield and Yield Gaps in Northeast China from 1990 to 2015. Int. J. Environ. Res. Public Health 2019, 16, 1211. [Google Scholar] [CrossRef]
- Pu, L.; Yang, J.; Yu, L.; Xiong, C.; Yan, F.; Zhang, Y.; Zhang, S. Simulating Land-Use Changes and Predicting Maize Potential Yields in Northeast China for 2050. Int. J. Environ. Res. Public Health 2021, 18, 938. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhou, M.; Hu, M. Climate change in different geographical units and its impact on land production potential: A case study of Shaanxi Province, China. Environ. Sci. Pollut. Res. Int. 2019, 26, 22273–22283. [Google Scholar]
- Liao, M.; Wei, F. Analysis of grain production and development potentialityin Central Asia based on GAEZ method. J. Nat. Resour. 2021, 36, 582–593. [Google Scholar]
- Wang, X.; Qi, H.; Han, X. Study on food production potential of countries along the “Belt and Road”: Based on FAO-GAEZ Model. J. Northwestern Polytech. Univ. 2017, 37, 51–56. [Google Scholar]
- Zhong, X.; Liu, L.; Xu, X.; You, S. Characteristics of spatial-temporal variation of maize climate productivity during last 30 years in China. Trans. Chin. Soc. Agric. Eng. 2012, 28, 94–101. [Google Scholar]
- Xu, X.; Wang, L.; Cai, H.; Wang, L.; Liu, L.; Wang, H. The influences of spatio-temporal change of cultivated land on food crop production potential in China. Food Secur. 2017, 9, 485–495. [Google Scholar] [CrossRef]
- Aggarwal, P.; Kropff, M.; Cassman, K.; Ten, B. Simulating genotypic strategies for increasing rice yield potential in irrigated, tropical environments. Field Crops Res. 1997, 51, 5–17. [Google Scholar] [CrossRef]
- Li, B. Studies on Correlation Between the Main Agronomic Characters and Yield of Early Maturing Maize in Northen Spring Maize Region. Heilongjiang Agric. Sci. 2005, 1, 29–31. [Google Scholar]
- Chen, C.; Ma, Z. Cultivation techniques of wheat drip irrigation in Heshuo County. Xinjiang Agric. Sci. Technol. 2010, 1, 11. [Google Scholar]
- Chen, L. Analyze in Agricultural Mechanization and Economic Growth of Our Country. Trans. Chin. Soc. Agric. Mach. 2006, 11, 74–79. [Google Scholar]
- Denison, R. Evolutionary tradeoffs as opportunities to improve yield potential. Field Crops Res. 2015, 182, 3–8. [Google Scholar] [CrossRef]
- Fischer, R.; Connor, D. Issues for cropping and agricultural science in the next 20 years. Field Crops Res. 2018, 222, 121–142. [Google Scholar] [CrossRef]
- Zhao, N.; Zhao, Y.; Zou, H.; Bai, X.; Zhen, Z. Spatial and temporal trends and drivers of fractional vegetation cover in Heilongjiang Province, China during 1990–2020. Chin. J. Appl. Ecol. 2023, 34, 1320–1330. [Google Scholar]
- Luo, Y.; Zhang, Z.; Chen, Y.; Li, Z.; Tao, F. ChinaCropPhen1km: A high-resolution crop phenological dataset for three staple crops in China during 2000–2015 based on leaf area index (LAI) products. Earth Syst. Sci. Data 2020, 12, 197–214. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.; Wu, X.; Zhou, S.; Zhang, G.; Qin, Y.; Dong, J. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data 2017, 4, 170165. [Google Scholar] [CrossRef]
- Gifford, R. Whole plant respiration and photosynthesis of wheat under increased CO2 concentration and temperature: Long-term vs. short-term distinctions for modelling. Glob. Chang. Biol. 1995, 1, 385–396. [Google Scholar] [CrossRef]
- Lobell, D.; Hicke, J.; Asner, G. Satellite estimates of productivity and light use efficiency in United States agriculture. Glob. Chang. Biol. 2002, 8, 722–735. [Google Scholar] [CrossRef]
- Pu, L. Crop Potential Yields in Northeast China under the Background of Climate and Cropland Changes; Jilin University: Changchun, China, 2020. [Google Scholar]
- Shan, X.; Lei, J. Discussion on influencing factors of rice yield increase in Heilongjiang Province. Agric. Tech. Serv. 2016, 33, 77. [Google Scholar]
- Chen, D.; Zhang, C.; Wang, Q.; Meng, F.; Wu, L. The Status and Countermeasures of the Major Soil Resources Utilization in Sanjiang Plain. J. Agric. 2012, 2, 21–24. [Google Scholar]
- Yang, F.; Ren, M.; Liu, Z. Research on the status quo and sustainable utilization of cultivated land resources in Heilongjiang Province. Agric. Technol. 2016, 36, 136–163. [Google Scholar]
- Jin, C.; Xiao, X.; Merbold, L.; Arneth, A.; Veenendaal, E.; Kutsch, W. Phenology and gross primary production of two dominant savanna woodland ecosystems in Southern Africa. Remote Sens. Environ. 2013, 135, 189–201. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Wagle, P.; Ma, S.; Baldocchi, D.; Carrara, A.; Zhang, Y.; Dong, J.; Qin, Y. Canopy and climate controls of gross primary production of Mediterranean-type deciduous and evergreen oak savannas. Agric. For. Meteorol. 2016, 226–227, 132–147. [Google Scholar] [CrossRef]
- Huang, D.; Yan, H.; Chi, H.; Geng, X.; Shao, Q. Research on spatiotemporal characteristics of farmland ecosystem NPP in Jianghan Plain from 2000 to 2015. J. Nat. Resour. 2020, 35, 845–856. [Google Scholar]
Dataset | Derived Variable | Year | Original Spatial Resolution | Final Spatial Resolution | Reference URL |
---|---|---|---|---|---|
Rice reproductive period data | Rice_TR and Rice_MA | 2000, 2010, and 2019 | 1 km | 1 km | https://doi.org/10.6084/m9.figshare.8313530.v7 (accessed on 1 June 2023) |
Land use remote sensing monitoring data | Paddy field | 2000, 2010, and 2020 | 30 m | 500 m | https://www.resdc.cn/ (accessed on 1 June 2023) |
Cumulative GPP data | GPP | 2000, 2010, and 2020 | 0.05° | 500 m | https://data.casearth.cn/sdo/detail/5c19a5660600cf2a3c557ad3 (accessed on 1 June 2023) |
Climate data | Mean maximum temperature, Mean minimum temperature, etc. | 2000, 2010, and 2020 | —— | 10 km | http://www.nmic.cn/ (accessed on 1 June 2023) |
Rice production statistics | Rice production for each prefecture-level city | 2000, 2010, and 2020 | —— | —— | —— |
Soil data | Soil classes, Soil attributes, etc. | —— | —— | 1 km | http://vdb3.soil.csdb.cn/extend/jsp/introduction (accessed on 1 June 2023) |
Terrain data | Elevation, Slope, and Aspect | —— | 90 m | 1 km | https://www.resdc.cn/ (accessed on 1 June 2023) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, L.; Jiang, J.; Ma, M.; Huang, D. Gaps between Rice Actual and Potential Yields Based on the VPM and GAEZ Models in Heilongjiang Province, China. Agriculture 2024, 14, 277. https://doi.org/10.3390/agriculture14020277
Pu L, Jiang J, Ma M, Huang D. Gaps between Rice Actual and Potential Yields Based on the VPM and GAEZ Models in Heilongjiang Province, China. Agriculture. 2024; 14(2):277. https://doi.org/10.3390/agriculture14020277
Chicago/Turabian StylePu, Luoman, Junnan Jiang, Menglu Ma, and Duan Huang. 2024. "Gaps between Rice Actual and Potential Yields Based on the VPM and GAEZ Models in Heilongjiang Province, China" Agriculture 14, no. 2: 277. https://doi.org/10.3390/agriculture14020277
APA StylePu, L., Jiang, J., Ma, M., & Huang, D. (2024). Gaps between Rice Actual and Potential Yields Based on the VPM and GAEZ Models in Heilongjiang Province, China. Agriculture, 14(2), 277. https://doi.org/10.3390/agriculture14020277