The Effect of Hog Futures in Stabilizing Hog Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction of Hog Futures
2.2. Theoretical Framework
2.3. Variables and Data Sources
2.4. Empirical Research Design
3. Results and Discussion
3.1. Cointegration Test of Panel Data
3.2. Analysis of Benchmark Regression Results
3.3. Endogeneity Discussion and Robustness Testing
3.4. Mechanism Analysis
3.5. Moderating Effects and Heterogeneity Analysis
3.6. Discussion
4. Limitations, Conclusions and Implications
4.1. Limitations of the Study
4.2. Conclusions
4.3. Implications
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zira, S.; Rydhmer, L.; Ivarsson, E.; Hoffmann, R.; Röös, E. A Life Cycle Sustainability Assessment of Organic and Conventional Pork Supply Chains in Sweden. Sustain. Prod. Consum. 2021, 28, 21–38. [Google Scholar] [CrossRef]
- Ndue, K.; Pál, G. Life Cycle Assessment Perspective for Sectoral Adaptation to Climate Change: Environmental Impact Assessment of Pig Production. Land 2022, 11, 827. [Google Scholar] [CrossRef]
- OECD. Food and Agriculture Organization of the United Nations OECD-FAO Agricultural Outlook 2021–2030; OECD-FAO Agricultural Outlook; OECD: Paris, France, 2021; ISBN 978-92-64-43607-7. [Google Scholar]
- Ma, M.; Wang, H.H.; Hua, Y.; Qin, F.; Yang, J. African Swine Fever in China: Impacts, Responses, and Policy Implications. Food Policy 2021, 102, 102065. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Wang, X. COVID-19, Supply Chain Disruption and China’s Hog Market: A Dynamic Analysis. China Agric. Econ. Rev. 2020, 12, 427–443. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Yu, X. Shocks, Cycles and Adjustments: The Case of China’s Hog Market under External Shocks. Agribusiness 2022, 39, 703–726. [Google Scholar] [CrossRef]
- Tan, Y.; Zeng, H. Price Transmission, Reserve Regulation and Price Volatility. China Agric. Econ. Rev. 2019, 11, 355–372. [Google Scholar] [CrossRef]
- Jia, Y.; Sun, W.; Su, G.; Hua, J.; He, Z. The Threshold Effect of Swine Epidemics on the Pig Supply in China. Animals 2022, 12, 2595. [Google Scholar] [CrossRef] [PubMed]
- Harlow, A.A. The Hog Cycle and the Cobweb Theorem. Am. J. Agric. Econ. 1960, 42, 842–853. [Google Scholar] [CrossRef]
- Qiao, F.; Huang, J.; Wang, D.; Liu, H.; Lohmar, B. China’s Hog Production: From Backyard to Large-Scale. China Econ. Rev. 2016, 38, 199–208. [Google Scholar] [CrossRef]
- Cai, J.; Hong, Y.; Zhou, M.; Hu, R.; Ding, F. Farmer Field School Participation and Exit Decisions in Hog Production: A Case Study from Beijing. Agribusiness 2023, 39, 549–563. [Google Scholar] [CrossRef]
- Roe, B.; Sporleder, T.L.; Belleville, B. Hog Producer Preferences for Marketing Contract Attributes. Am. J. Agric. Econ. 2004, 86, 115–123. [Google Scholar] [CrossRef]
- Miele, M. Contracts in Brazilian Pork and Poultry Meat Chains: Implications for Measuring Agricultural Statistics. In Proceedings of the Sixth International Conference on Agricultural Statistics, Rio de Janeiro, Brazil, 23–25 October 2013. [Google Scholar]
- Liang, Q.; Wang, X. Cooperatives as Competitive Yardstick in the Hog Industry?—Evidence from China. Agribusiness 2020, 36, 127–145. [Google Scholar] [CrossRef]
- Ikeda, S.; Natawidjaja, R.S. The Sustainability of Contract Farming with Specialized Suppliers to Modern Retailers: Insights from Vegetable Marketing in Indonesia. Agriculture 2022, 12, 380. [Google Scholar] [CrossRef]
- Cungu, A.; Gow, H.; Swinnen, J.F.M.; Vranken, L. Investment with Weak Contract Enforcement: Evidence from Hungary during Transition. Eur. Rev. Agric. Econ. 2008, 35, 75–91. [Google Scholar] [CrossRef]
- Guo, H.; Jolly, R.W. Contractual Arrangements and Enforcement in Transition Agriculture: Theory and Evidence from China. Food Policy 2008, 33, 570–575. [Google Scholar] [CrossRef]
- Klein, B. Why hold-ups occur: The self-enforcing range of contractual relationships. Econ. Inq. 1996, 34, 444–463. [Google Scholar] [CrossRef]
- Dutkiewicz, J. Uncertain Hog Futures: Life, Death, and Arbitrage on the Factory Farm. J. Cult. Econ. 2020, 13, 278–289. [Google Scholar] [CrossRef]
- Hu, Y.; Yu, Y. Scale Difference from the Impact of Disease Control on Pig Production Efficiency. Animals 2022, 12, 2647. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, K.J.; Ding, S.J. A Study of the Stabilizing Effect of Large-Scale Breeding on Pig Production Fluctuation in China: An Empirical Analysis Based on Provincial Panel Data. J. Jiangxi Univ. Financ. Econ. 2015, 1, 84–94. [Google Scholar] [CrossRef]
- Yang, S.H.; Wang, K. Study on Stabilization Effect of Scale Management on Fluctuation of Hog Production in China: Double Test Based on Moderating Effect and Threshold Effect Models. Issues Agric. Econ. 2022, 7, 81–96. [Google Scholar] [CrossRef]
- Wang, G.Y.; Wang, X.H.; Li, C.X. The Stabilization Effect of Farming Capitalization on Hog Price Fluctuation: An Empirical Analysis Based on China Panel Data. Chin. Rural Econ. 2018, 6, 55–66. [Google Scholar]
- Pan, D.; Tang, J.; Zhang, L.; He, M.; Kung, C.-C. The Impact of Farm Scale and Technology Characteristics on the Adoption of Sustainable Manure Management Technologies: Evidence from Hog Production in China. J. Clean. Prod. 2021, 280, 124340. [Google Scholar] [CrossRef]
- Kuhn, L.; Balezentis, T.; Hou, L.; Wang, D. Technical and Environmental Efficiency of Livestock Farms in China: A Slacks-Based DEA Approach. China Econ. Rev. 2020, 62, 101213. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, L.; Geng, X. Ecological Efficiency of Hog Scale Production under Environmental Regulation in China: Based on an Optimal Super Efficiency SBM-Malmquist–Tobit Model. Environ. Sci. Pollut. Res. 2022, 29, 53088–53106. [Google Scholar] [CrossRef]
- Wallace, R.; Bergmann, L.; Hogerwerf, L.; Kock, R.; Wallace, R.G. Ebola in the Hog Sector: Modeling Pandemic Emergence in Commodity Livestock. In Neoliberal Ebola; Springer: Cham, Switzerland, 2016; pp. 13–53. ISBN 978-3-319-40940-5. [Google Scholar]
- Carter, C.A.; Mohapatra, S. How Reliable Are Hog Futures as Forecasts? Am. J. Agric. Econ. 2008, 90, 367–378. [Google Scholar] [CrossRef]
- Kawai, M. Price Volatility of Storable Commodities under Rational Expectations in Spot and Futures Markets. Int. Econ. Rev. 1983, 24, 435–459. [Google Scholar] [CrossRef]
- Irwin, S.H.; Sanders, D.R.; Merrin, R.P. Devil or Angel? The Role of Speculation in the Recent Commodity Price Boom (and Bust). J. Agric. Appl. Econ. 2009, 41, 377–391. [Google Scholar] [CrossRef]
- Turnovsky, S.J.; Campbell, R.B. The Stabilizing and Welfare Properties of Futures Markets: A Simulation Approach. Int. Econ. Rev. 1985, 26, 277. [Google Scholar] [CrossRef]
- Miljkovic, D.; Goetz, C. Destabilizing Role of Futures Markets on North American Hard Red Spring Wheat Spot Prices. Agric. Econ. 2020, 51, 887–897. [Google Scholar] [CrossRef]
- Yan, Y.; Guiyu, Z. The Empirical Study on Price Discovery of Cornstarch Futures Market in China. Appl. Econ. Lett. 2019, 26, 1100–1103. [Google Scholar] [CrossRef]
- Dimpfl, T.; Flad, M.; Jung, R.C. Price Discovery in Agricultural Commodity Markets in the Presence of Futures Speculation. J. Commod. Mark. 2017, 5, 50–62. [Google Scholar] [CrossRef]
- Mao, Q.; Ren, Y.; Loy, J.-P. Price Bubbles in Agricultural Commodity Markets and Contributing Factors: Evidence for Corn and Soybeans in China. China Agric. Econ. Rev. 2021, 13, 91–122. [Google Scholar] [CrossRef]
- Xiong, T.; Li, M.; Cao, J. Do Futures Prices Help Forecast Spot Prices? Evidence from China’s New Live Hog Futures. Agriculture 2023, 13, 1663. [Google Scholar] [CrossRef]
- Malak-Rawlikowska, A.; Gebska, M.; Hoste, R.; Leeb, C.; Montanari, C.; Wallace, M.; de Roest, K. Developing a Methodology for Aggregated Assessment of the Economic Sustainability of Pig Farms. Energies 2021, 14, 1760. [Google Scholar] [CrossRef]
- Zhong, S.; Li, J.; Guo, X. Analysis on the Green Total Factor Productivity of Pig Breeding in China: Evidence from a Meta-Frontier Approach. PLoS ONE 2022, 17, e0270549. [Google Scholar] [CrossRef]
- Bina, J.D.; Schroeder, T.C.; Tonsor, G.T. Conditional Feeder Cattle Hedge Ratios: Cross Hedging with Fluctuating Corn Prices. J. Commod. Mark. 2022, 26, 100193. [Google Scholar] [CrossRef]
- Pang, J.; Deng, L.; Wang, G. An Evolutionarily Stable Strategy and the Critical Point of Hog Futures Trading Entities Based on Replicator Dynamic Theory: 2006–2015 Data for China’s 22 Provinces. PLoS ONE 2017, 12, e0172009. [Google Scholar] [CrossRef]
- Velandia, M.; Rejesus, R.M.; Knight, T.O.; Sherrick, B.J. Factors Affecting Farmers’ Utilization of Agricultural Risk Management Tools: The Case of Crop Insurance, Forward Contracting, and Spreading Sales. J. Agric. Appl. Econ. 2009, 41, 107–123. [Google Scholar] [CrossRef]
- Chen, R.; Wei, B.; Jin, C.; Liu, J. Returns and Volatilities of Energy Futures Markets: Roles of Speculative and Hedging Sentiments. Int. Rev. Financ. Anal. 2021, 76, 101748. [Google Scholar] [CrossRef]
- Acharya, V.V.; Lochstoer, L.A.; Ramadorai, T. Limits to Arbitrage and Hedging: Evidence from Commodity Markets. J. Financ. Econ. 2013, 109, 441–465. [Google Scholar] [CrossRef]
- Huang, J.; Serra, T.; Garcia, P. Are Futures Prices Good Price Forecasts? Underestimation of Price Reversion in the Soybean Complex. Eur. Rev. Agric. Econ. 2020, 47, 178–199. [Google Scholar] [CrossRef]
- Hao, M.; Chen, R.; Fu, X. Effect of Pig Price Volatility on Sichuan Pig Farmers’ Behavioral Response in China. J. Agric. Sci. 2014, 6, 55. [Google Scholar] [CrossRef]
- Hodrick, R.J.; Prescott, E.C.; Ravn, M.O.; Zimmermann, C. Postwar U.S. Business Cycles: An Empirical Investigation. J. Money Credit. Bank. 1997, 29, 1–16. [Google Scholar] [CrossRef]
- Ravn, M.O.; Uhlig, H. On Adjusting the Hodrick-Prescott Filter for the Frequency of Observations. Rev. Econ. Stat. 2002, 84, 371–376. [Google Scholar] [CrossRef]
- Yu, Q.; Wu, Y.; Chen, X.; Zhang, L.; Liang, Y. Do China’s National Agricultural Science and Technology Parks Promote County Economic Development? An Empirical Examination Based on Multi-Period DID Methods. Agriculture 2023, 13, 213. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.; Cui, Y.; Zhang, J. How Does Imported Pork Regulate the Supply and Demand of China’s Pig Market during the Epidemic?-Based on the Analysis of African Swine Fever and COVID-19. Front. Vet. Sci. 2022, 9, 1028460. [Google Scholar] [CrossRef]
- Gao, G.Y.; Pan, Y.; Lu, J.; Tao, Z. Performance of Multinational Firms’ Subsidiaries: Influences of Cumulative Experience. Manag. Int. Rev. 2008, 48, 749–767. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, C. Economic Policy Uncertainty and Firms’ Investment and Financing Decisions in China. China Econ. Rev. 2020, 63, 101279. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuo, C.; Deng, F. Policy Uncertainty, Financialization and Enterprise Technological Innovation: A Way Forward towards Economic Development. Front. Environ. Sci. 2022, 10, 905505. [Google Scholar] [CrossRef]
Variable Type | Variable | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Explained variables | Production fluctuations | 0.284 | 0.226 | 0.001 | 1.212 |
Hog production | 3.157 | 1.482 | −1.833 | 6.449 | |
explanatory variables | Future listing | 0.440 | 0.497 | 0.000 | 1.000 |
Adjustment variables | Business weight | 0.142 | 0.084 | 0.023 | 0.470 |
Control variables | Hog price | 3.561 | 0.346 | 3.084 | 4.060 |
Corn price | 0.884 | 0.149 | 0.678 | 1.068 | |
Chicken price | 3.047 | 0.048 | 2.975 | 3.193 | |
CPI | 4.607 | 0.006 | 4.593 | 4.619 | |
Hog epidemic | −1.875 | 0.561 | −2.526 | −0.301 | |
Income | 2.112 | 0.109 | 1.917 | 2.337 | |
Interest rate | 2.825 | 0.368 | 1.684 | 3.527 |
Method | Statistic | p-Value |
---|---|---|
Kao test | −6.257 *** | 0.000 |
Pedroni test | −5.685 *** | 0.000 |
Westerlund test | −3.341 *** | 0.000 |
Model 1 | Model 2 | |
---|---|---|
Variable | Production Fluctuations | Production Fluctuations |
Future listing | −0.061 ** | −0.219 *** |
(0.027) | (0.076) | |
Hog price | −0.419 *** | |
(0.156) | ||
Corn price | 1.278* | |
(0.732) | ||
Chicken price | 4.344 *** | |
(1.162) | ||
CPI | 6.155* | |
(3.193) | ||
Hog epidemic | 0.057 | |
(0.080) | ||
Income | −0.102 | |
(0.192) | ||
Interest rate | −0.102 | |
(0.088) | ||
Enterprise size | −0.125 * | |
(0.074) | ||
Constant | 0.299 *** | −39.694 ** |
(0.014) | (15.915) | |
Fluctuation term | No | Yes |
Seasonal effect | No | Yes |
Year effect | No | Yes |
Individual effect | No | Yes |
R-squared | 0.014 | 0.371 |
Model 3 | Model 4 | Model 5 | Model 6 | |
---|---|---|---|---|
Excluding the Impact of the ASF | Excluding the Impact of the COVID-19 | Excluding the Impact of Policy Interventions | Replacing the Core Explanatory Variable | |
Variable | Production Fluctuations | Production Fluctuations | Production Fluctuations | Production Fluctuations |
Future listing | −0.293 *** | −0.290 ** | −0.223 *** | |
(0.112) | (0.112) | (0.079) | ||
Future trading | −0.143 *** | |||
(0.048) | ||||
Hog price | −0.479 *** | −0.491 *** | −0.318 * | −0.542 *** |
(0.154) | (0.155) | (0.166) | (0.140) | |
Corn price | 0.862 | 0.663 | 1.210 | 0.856 |
(0.760) | (0.788) | (0.779) | (0.656) | |
Chicken price | 4.042 *** | 3.990 *** | 4.043 *** | 3.173 *** |
(1.111) | (1.113) | (1.184) | (0.977) | |
CPI | 10.033 *** | 11.362 *** | 6.311 * | 8.376 *** |
(3.196) | (3.481) | (3.500) | (2.824) | |
Hog epidemic | 0.138 | 0.116 | 0.033 | 0.10 1* |
(0.086) | (0.089) | (0.089) | (0.055) | |
Income | −0.158 | −0.131 | −0.084 | −0.009 |
(0.189) | (0.191) | (0.200) | (0.165) | |
Interest rate | −0.114 | −0.086 | −0.111 | −0.033 |
(0.089) | (0.094) | (0.096) | (0.078) | |
Enterprise size | −0.146 ** | −0.147 ** | −0.134 * | −0.152 ** |
(0.071) | (0.071) | (0.074) | (0.059) | |
Constant | −55.569 *** | −61.559 *** | −39.772 ** | −45.739 *** |
(15.935) | (17.107) | (17.089) | (13.975) | |
Fluctuation term | Yes | Yes | Yes | Yes |
Seasonal effect | Yes | Yes | Yes | Yes |
Year effect | Yes | Yes | Yes | Yes |
Individual effect | Yes | Yes | Yes | Yes |
R-squared | 0.365 | 0.366 | 0.377 | 0.344 |
Model 7 | Model 8 | |
---|---|---|
Variable | Hog Production | Production Fluctuations |
Future listing | 0.291 ** | −0.242 *** |
(0.115) | (0.076) | |
Future Listing × Hog price fluctuations | −0.642 ** | |
(0.288) | ||
Hog price fluctuations | 0.370 * | |
(0.190) | ||
Hog price | 0.111 | −0.413 *** |
(0.181) | (0.155) | |
Corn price | 1.670 * | 0.960 |
(0.986) | (0.741) | |
Chicken price | −4.050 *** | 3.643 *** |
(1.147) | (1.197) | |
CPI | 4.381 | 5.373 * |
(4.124) | (3.192) | |
Hog epidemic | −0.002 | 0.044 |
(0.092) | (0.080) | |
Income | 0.503* | −0.058 |
(0.285) | (0.191) | |
Interest rate | 0.084 | −0.060 |
(0.108) | (0.090) | |
Enterprise size | 0.660 *** | −0.117 |
(0.107) | (0.073) | |
Constant | −11.446 | −34.011 ** |
(19.662) | (16.020) | |
Fluctuation term | No | Yes |
Seasonal effect | Yes | Yes |
Year effect | Yes | Yes |
Individual effect | Yes | Yes |
R-squared | 0.951 | 0.380 |
Model 9 | Model 10 | |
---|---|---|
Variable | Hog Price Fluctuations | Hog Price Fluctuations |
Future listing | −0.170 *** | −0.290 *** |
(0.059) | (0.046) | |
Corn price | −0.055 | |
(0.420) | ||
Chicken price | −0.713 | |
(0.568) | ||
Hog epidemic | 0.249 ** | |
(0.120) | ||
CPI | −2.294 | |
(2.476) | ||
Constant | 0.260 *** | 12.953 |
(0.017) | (11.097) | |
Fluctuation term | No | Yes |
Seasonal effect | No | Yes |
Year effect | No | Yes |
R-squared | 0.051 | 0.734 |
Model 11 | Model 12 | Model 13 | |
---|---|---|---|
The Moderating Effect of Business Weight | Negative Hog Price Fluctuations | Positive Hog Price Fluctuations | |
Variable | Production Fluctuations | Production Fluctuations | Production Fluctuations |
Future listing | −0.327 *** | −0.416 ** | −0.581 |
(0.115) | (0.183) | (0.445) | |
Future Listing × Business weight | −1.182 *** | ||
(0.430) | |||
Business weight | 1.373 *** | ||
(0.277) | |||
Hog price | −0.403 *** | −2.420 *** | −0.002 |
(0.152) | (0.800) | (0.481) | |
Corn price | 0.228 | 2.647 ** | −1.560 * |
(0.782) | (1.148) | (0.807) | |
Chicken price | 4.361 *** | 8.660 *** | 1.550 |
(1.082) | (3.314) | (1.408) | |
CPI | 7.701 ** | 8.470 | 5.511 |
(3.238) | (7.230) | (4.419) | |
Hog epidemic | 0.123 | 0.429 *** | −0.071 |
(0.084) | (0.145) | (0.099) | |
Income | −0.117 | −0.695 ** | 0.600 |
(0.186) | (0.309) | (0.438) | |
Interest rate | −0.105 | −0.469 * | 0.062 |
(0.085) | (0.254) | (0.126) | |
Enterprise size | −0.117 | −0.067 | −0.266 ** |
(0.072) | (0.078) | (0.113) | |
Constant | −45.970 *** | 400.557 | −1112.185 *** |
(16.020) | (326.009) | (407.781) | |
Fluctuation term | Yes | Yes | Yes |
Seasonal effect | Yes | Yes | Yes |
Year effect | Yes | Yes | Yes |
Individual effect | Yes | Yes | Yes |
R-squared | 0.365 | 0.367 | 0.375 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wang, G.; Shen, Y.; Amètépé Nathanaël Beauclair, A. The Effect of Hog Futures in Stabilizing Hog Production. Agriculture 2024, 14, 335. https://doi.org/10.3390/agriculture14030335
Li C, Wang G, Shen Y, Amètépé Nathanaël Beauclair A. The Effect of Hog Futures in Stabilizing Hog Production. Agriculture. 2024; 14(3):335. https://doi.org/10.3390/agriculture14030335
Chicago/Turabian StyleLi, Chunlei, Gangyi Wang, Yuzhuo Shen, and Anani Amètépé Nathanaël Beauclair. 2024. "The Effect of Hog Futures in Stabilizing Hog Production" Agriculture 14, no. 3: 335. https://doi.org/10.3390/agriculture14030335
APA StyleLi, C., Wang, G., Shen, Y., & Amètépé Nathanaël Beauclair, A. (2024). The Effect of Hog Futures in Stabilizing Hog Production. Agriculture, 14(3), 335. https://doi.org/10.3390/agriculture14030335