Potential Reductions in the Environmental Impacts of Agricultural Production in Hubei Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. N Rate
2.3.2. NUE
2.3.3. N Surplus
2.3.4. N Leaching
2.3.5. GHG Emissions
- (1)
- CH4 emissions
- (2)
- N2O emissions
2.3.6. Scenarios Analysis
3. Results
3.1. Scenario Analysis to Mitigate the Environmental Impact Potential of Rice
3.2. Scenario Analysis to Mitigate the Environmental Impact Potential of Wheat
3.3. Scenario Analysis to Mitigate the Environmental Impact Potential of Maize
3.4. Scenario Analysis to Mitigate the Environmental Impact Potential of Tea
3.5. Scenario Analysis to Mitigate the Environmental Impact Potential of Fruit
3.6. Scenario Analysis to Mitigate the Environmental Impact Potential of Vegetable
3.7. NUE Enhancement Effect
4. Discussion
4.1. Influence Factors of Multi-Crop N Fertilizer Management
4.2. Environmental Impacts of Multiple Crops
4.3. Limitations and Uncertainties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Zhu, D. Urbanization and the growth of the middle class. Urban. Its Impact Contemp. China 2019, 161–186. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Bijay, S.; Takele, R. Improving nitrogen use efficiency and reducing nitrogen surplus through best fertilizer nitrogen management in cereal production: The case of India and China. Adv. Agron. 2023, 178, 233–294. [Google Scholar]
- Cutler, J.; Wittmann, M.K.; Abdurahman, A.; Hargitai, L.D.; Drew, D.; Husain, M.; Lockwood, P.L. Ageing is associated with disrupted reinforcement learning whilst learning to help others is preserved. Nat. Commun 2021, 12, 4440. [Google Scholar] [CrossRef] [PubMed]
- Springmann, M.; Clark, M.; Mason D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; De Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Dise, N.B.; Petrescu, A.M.R.; Leach, A.M.; De Vries, W. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. B 2013, 368, 20130116. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Huang, X.; Chen, H.; Godfray, H.C.J.; Wright, J.S.; Hall, J.W.; Gong, P.; Ni, S.; Qiao, S.; Huang, G.; et al. Managing nitrogen to restore water qiver. Environ. Sci. Technol. 2020, 54, 11929–11939. [Google Scholar]
- Chen, X.; Strokal, M.; Kroeze, C.; Supit, I.; Wang, M.; Ma, L.; Chen, X.; Shi, X. Modeling the contribution of crops to nitrogen pollution in the Yangtze River. Environ. Sci. Technol. 2020, 54, 11929–11939. [Google Scholar] [CrossRef]
- Ju, X.; Gu, B.; Wu, Y.; Galloway, J.N. Reducing China’s fertilizer use by increasing farm size. Glob. Environ. Chang. 2016, 41, 26–32. [Google Scholar] [CrossRef]
- Peng, Z.; Liu, Y.; Li, Y.; Abawi, Y.; Wang, Y.; Men, M.; An-Vo, D.-A. Responses of nitrogen utilization and apparent nitrogen loss to different control measures in the wheat and maize rotation system. Front. Plant. Sci. 2017, 8, 160. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Chen, A.; Liu, H.; Zhai, L.; Lei, B.; Ren, T. An optimal regional nitrogen application threshold for wheat in the north China plain considering yield and environmental effects. Field Crop. Res. 2017, 207, 52–61. [Google Scholar] [CrossRef]
- Yin, Y.; Ying, H.; Xue, Y.; Zheng, H.; Zhang, Q.; Cui, Z. Calculating Socially Optimal nitrogen (N) fertilization rates for sustainable N management in China. Sci. Total Environ. 2019, 688, 1162–1171. [Google Scholar] [CrossRef]
- Min, J.; Zhao, X.; Shi, W.M.; Xing, G.X.; Zhu, Z.L. Nitrogen balance and loss in a greenhouse vegetable system in southeastern China. Pedosphere 2011, 21, 464–472. [Google Scholar] [CrossRef]
- Jiang, R.; He, W.; Zhou, W.; Hou, Y.; Yang, J.Y.; He, P. Exploring management strategies to improve maize yield and nitrogen use efficiency in northeast China using the DNDC and DSSAT models. Comput. Electron. Agric. 2019, 166, 104988. [Google Scholar] [CrossRef]
- Zhang, F.; Cui, Z.; Chen, X.; Ju, X.; Shen, J.; Chen, Q.; Liu, X.; Zhang, W.; Mi, G.; Fan, M. Integrated nutrient management for food security and environmental quality in China. Adv. Agron. 2012, 116, 1–40. [Google Scholar]
- Ju, X.T.; Gu, B.J. Status-Quo, Problem and trend of nitrogen fertilization in China. J. Plant Nutr. Fertil. 2014, 20, 783–795. [Google Scholar]
- Xing, L.; Hu, M.; Wang, Y. Integrating ecosystem services value and uncertainty into regional ecological risk assessment: A case study of Hubei Province, Central China. Sci. Total Environ. 2020, 740, 140126. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Zhang, Z.; Song, X.; Peng, D.; Zhao, C.; Chen, C.; Wu, Y.; Zhao, Z.; Shen, P.; Xie, M. Nitrogen-derived environmental behavior, economic performance, and regulation potential by human production and consumption in a mega river basin. J. Clean. Prod. 2024, 434, 140279. [Google Scholar] [CrossRef]
- Miao, J.; Xie, T.; Han, S.; Zhang, H.; He, X.; Ren, W.; Song, M.; He, L. Characteristics of Soil Organic Carbon in Croplands and Affecting Factors in Hubei Province. Agronomy 2022, 12, 12123025. [Google Scholar] [CrossRef]
- Hubei Provincial Bureau of Statistics. 2021. Available online: https://tjj.hubei.gov.cn/tjsj/sjkscx/tjnj/qstjnj/ (accessed on 13 June 2023).
- National Bureau of Statistics. 2021. Available online: http://www.stats.gov.cn/ (accessed on 13 June 2023).
- Jia, Y.; Wang, Q.; Zhu, J.; Chen, Z.; He, N.; Yu, G. A spatial and temporal dataset of atmospheric inorganic nitrogen wet deposition in China (1996–2015). China Sci. Data 2019, 4, 1–10. [Google Scholar]
- Zuo, L.; Zhang, Z.; Carlson, K.M.; MacDonald, G.K.; Brauman, K.A.; Liu, Y.; Zhang, W.; Zhang, H.; Wu, W.; Zhao, X.; et al. Progress towards sustainable intensification in China challenged by land-use change. Nat. Sustain. 2018, 1, 304–313. [Google Scholar] [CrossRef]
- Liang, L.; Ridoutt, B.G.; Wang, L.; Xie, B.; Li, M.; Li, Z. China’s tea industry: Net greenhouse gas emissions and mitigation potential. Agriculture 2021, 11, 363. [Google Scholar] [CrossRef]
- Price Department, NDRC. National Compilation of Agricultural Cost-Benefit Information; China Statistics Press: Beijing, China, 2019. [Google Scholar]
- Li, H.; Qin, L.; He, H. Characteristics of the water footprint of rice production under different rainfall years in Jilin Province, China. J. Sci. Food Agric. 2018, 98, 3001–3013. [Google Scholar] [CrossRef]
- Smil, V. Nitrogen in crop production: An account of global flows. Glob. Biogeochem. Cycles 1999, 13, 647–662. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Wang, M.; Wang, K.; Meng, F.; Liu, L.; Zhao, Y.; Ma, L.; Zhu, Q.; Xu, W.; et al. Atmospheric nitrogen deposition: A review of quantification methods and its spatial pattern derived from the global monitoring networks. Ecotoxicol. Environ. Saf. 2021, 216, 112180. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xu, W.; Lu, X.; Zhong, B.; Guo, Y.; Lu, X.; Zhao, Y.; He, W.; Wang, S.; Zhang, X.; et al. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proc. Natl. Acad. Sci. USA 2022, 119, 2121998119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Mei, B.; Zheng, X.; Xie, B.; Dong, H.; Yao, Z.; Liu, C.; Zhou, Z.; Wang, R.; Deng, J.; Zhu, J. Characteristics of multiple-year nitrous oxide emissions from conventional vegetable fields in southeastern China. J. Geophys. Res. Atmos. 2011, 116, D12316. [Google Scholar] [CrossRef]
- Wang, F.; Chen, Y.; Wu, Z.D.; Jiang, F.Y.; Zhang, W.J.; Weng, B.Q.; You, Z.M. Estimation of greenhouse gas emissions from fertilization, production and transportation of synthetic nitrogen for tea garden in typical region of China. J. Tea Sci. 2020, 40, 205–214. [Google Scholar]
- Zhang, W.; Dou, Z.; He, P.; Ju, X.T.; Powlson, D.; Chadwick, D.; Norse, D.; Lu, Y.L.; Zhang, Y.; Wu, L.; et al. New Technologies Reduce Greenhouse Gas Emissions from Nitrogenous Fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Fifth Assessment Report—Climate Change. 2013. Available online: https://archive.ipcc.ch/report/ar5/wg1/ (accessed on 23 February 2024).
- Li, J.; Xing, J.; Ding, R.; Shi, W.; Shi, X.; Wang, X. Systematic Evaluation of Nitrogen Application in the Production of Multiple Crops and Its Environmental Impacts in Fujian Province, China. Agriculture 2023, 13, 13030694. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J. Producing More Grain with Lower Environmental Costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Ti, C.; Luo, Y.; Yan, X. Characteristics of Nitrogen Balance in Open-Air and Greenhouse Vegetable Cropping Systems of China. Environ. Sci. Pollut. Res. 2015, 22, 18508–18518. [Google Scholar] [CrossRef]
- Hobbie, E.A.; Macko, S.A.; Shugart, H.H. Interpretation of Nitrogen Isotope Signatures Using the NIFTE Model. Oecologia 1999, 120, 405–415. [Google Scholar] [CrossRef]
- Coskun, D.; Britto, D.T.; Shi, W.; Kronzucker, H.J. Nitrogen Transformations in Modern Agriculture and the Role of Biological Nitrification Inhibition. Nat. Plants 2017, 3, 17074. [Google Scholar] [CrossRef] [PubMed]
- A Credit System to Solve Agricultural Nitrogen Pollution: The Innovation. Available online: https://www.cell.com/the-innovation/fulltext/S2666-6758(21)00004-7 (accessed on 26 February 2024).
- Jordan, M.L.; Rubæk, G.H.; Ehlert, P.A.I.; Genot, V.; Hofman, G.; Goulding, K.; Recknagel, J.; Provolo, G.; Barraclough, P. An overview of fertilizer-P recommendations in Europe: Soil testing, calibration and fertilizer recommendations. Soil Use Manag. 2012, 28, 419–435. [Google Scholar] [CrossRef]
- Geraldson, C.M.; Tyler, K.B. Plant Analysis as an Aid in Fertilizing Vegetable Crops. Soil Test. Plant Anal. 1990, 3, 549–562. [Google Scholar]
- Gu, B.J.; Zhang, X.; Lam, S.K.; Yu, Y.; van Grinsven, H.J.M.; Zhang, S.; Wang, X.; Bodirsky, B.L.; Wang, S.; Duan, J.; et al. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 2023, 613, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Mabee, W.; Zhang, H. Conserving fertilizer in China’s rural-agricultural development: The reversal shifts and the county-specific EKC evidence from Hubei. Clean. Environ. Syst. 2021, 3, 100050. [Google Scholar] [CrossRef]
- Zhang, Z.; Hou, L.; Qian, Y.; Wan, X. Effect of Zero Growth of Fertilizer Action on Ecological Efficiency of Grain Production in China under the Background of Carbon Emission Reduction. Sustainability 2022, 14, 15362. [Google Scholar] [CrossRef]
- Wang, G.; Yang, Y. Exploration of practice and optimization of strategies for conservation of cultivated land resources in contemporary China’s rural areas—Centering on black soil conservation and others. Nat. Resour. Conserv. Res. 2022, 5, 86–99. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, Y.; Searchinger, T.D.; Zhou, M.; Pan, D.; Yang, J.; Wu, L.; Cui, Z.; Zhang, W.; Zhang, F.; et al. Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management. Nat. Food 2020, 1, 648–658. [Google Scholar] [CrossRef]
- Baylis, K.; Peplow, S.; Rausser, G.; Simon, L. Agri-environmental policies in the EU and United States: A comparison. Ecol. Econ. 2008, 65, 753–764. [Google Scholar] [CrossRef]
- Cui, Z.L.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X.; et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef]
- Ren, C.; Zhou, X.; Wang, C.; Guo, Y.; Diao, Y.; Shen, S.; Reis, S.; Li, W.; Xu, J.; Gu, B. Ageing threatens sustainability of smallholder farming in China. Nature 2023, 616, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Ti, C.; Li, B.; Xia, Y.; Yan, X. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Sci. Total Environ. 2016, 556, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, D.; Zhang, Y.; Zhai, L.; Yin, B.; Zhou, F.; Geng, Y.; Pan, J.; Luo, J.; Gu, B.; et al. Ammonia emissions from paddy fields are underestimated in China. Environ. Pollut. 2018, 235, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dou, Z.; Shi, X.; Zou, C.; Liu, D.; Wang, Z.; Guan, X.; Sun, Y.; Wu, G.; Zhang, B.; et al. Innovative management programme reduces environmental impacts in Chinese vegetable production. Nat. Food 2021, 2, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wang, X.; Sun, B.; Zhao, H.; Lu, F.; Zhang, L. Status of mineral nitrogen fertilization and net mitigation potential of the state fertilization recommendation in Chinese cropland. Agric. Syst. 2016, 146, 1–10. [Google Scholar] [CrossRef]
- Ren, K.; Xu, M.; Li, R.; Zheng, L.; Liu, S.; Reis, S.; Wang, H.; Lu, C.; Zhang, W.; Gao, H.; et al. Optimizing nitrogen fertilizer use for more grain and less pollution. J. Clean. Prod. 2022, 360, 132180. [Google Scholar] [CrossRef]
- Inselsbacher, E.; Wanek, W.; Ripka, K.; Hackl, E.; Sessitsch, A.; Strauss, J.; Zechmeister Boltenstern, S. Greenhouse gas fluxes respond to different N fertilizer types due to altered plant-soil-microbe interactions. Plant Soil 2011, 343, 17–35. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Q. Evaluation of Development of Agricultural Modernization in Central China. IERI Procedia 2013, 4, 417–424. [Google Scholar] [CrossRef]
- Vaziritabar, Y.; Frei, M.; Yan, F.; Vaziritabar, Y.; Honermeier, B. Enhancing nitrogen use efficiency and plant productivity in long-term precrop/crop rotation and fertilization management. Field Crops Res. 2024, 306, 109210. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Y.; Zhang, K.; Jeong, J.; Zeng, Z.; Zang, H. Does crop rotation yield more in China? A meta-analysis. Field Crops Res. 2020, 245, 107659. [Google Scholar] [CrossRef]
Crop | Scenario | Range of Improvements | NUE Enhancement Magnitude |
---|---|---|---|
Rice | S1 | Cities in the bottom 20% | 15% |
S2 | Cities in the bottom 30% | 10% | |
S3 | Cities in the bottom 40% | 8% | |
S4 | Cities below the average NUE in Hubei Province | The average NUE of Hubei Province | |
Wheat | S1 | Cities in the bottom 30% | 15% |
S2 | Cities in the bottom 40% | 12% | |
S3 | Cities in the bottom 50% | 11% | |
S4 | Cities below the average NUE in Hubei Province | The average NUE of Hubei Province | |
Maize | S1 | Cities in the bottom 20% | 10% |
S2 | Cities in the bottom 30% | 8% | |
S3 | Cities below the average NUE in Hubei Province | The average NUE of Hubei Province | |
Tea | S1 | Cities in the bottom 40% | 2% |
S2 | Cities in the bottom 50% | 1% | |
S3 | Cities below the average NUE in Hubei Province | The average NUE of Hubei Province | |
Fruit | S1 | Cities in the bottom 40% | 2% |
S2 | Cities in the bottom 50% | 1% | |
S3 | Cities below the average NUE in Hubei Province | The average NUE of Hubei Province | |
Vegetable | S1 | Cities in the bottom 20% | 5% |
S2 | Cities in the bottom 30% | 4% | |
S3 | Cities below the average NUE in Hubei Province | The average NUE of Hubei Province |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Ding, R.; Shi, W.; Li, J. Potential Reductions in the Environmental Impacts of Agricultural Production in Hubei Province, China. Agriculture 2024, 14, 439. https://doi.org/10.3390/agriculture14030439
Wang P, Ding R, Shi W, Li J. Potential Reductions in the Environmental Impacts of Agricultural Production in Hubei Province, China. Agriculture. 2024; 14(3):439. https://doi.org/10.3390/agriculture14030439
Chicago/Turabian StyleWang, Penghui, Rui Ding, Wenjiao Shi, and Jun Li. 2024. "Potential Reductions in the Environmental Impacts of Agricultural Production in Hubei Province, China" Agriculture 14, no. 3: 439. https://doi.org/10.3390/agriculture14030439