Meteorological and Agricultural Drought Risk Assessment via Kaplan–Meier Survivability Estimator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Selection
2.2. SPI/SPEI Calculations
2.3. Adaption and Adoption of Kaplan–Meier Estimator for Drought Risk Assessment
3. Results and Discussion
3.1. Drought Risk Map Results
3.2. Drought Risk Curve Results
3.3. Discussion
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hao, Z.; Singh, V.P. Drought characterization from a multivariate perspective: A review. J. Hydrol. 2015, 527, 668–678. [Google Scholar] [CrossRef]
- Ojha, S.S.; Singh, V.; Roshni, T. Comparison of meteorological drought using SPI and SPEI. Civ. Eng. J. 2021, 7, 2130–2149. [Google Scholar] [CrossRef]
- Blauhut, V.; Gudmundsson, L.; Stahl, K. Towards pan-European drought risk maps: Quantifying the link between drought indices and reported drought impacts. Environ. Res. Lett. 2015, 10, 014008. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. Wiley Interdisciplin. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Lu, J.; Carbone, G.J.; Huang, X.; Lackstrom, K.; Gao, P. Mapping the sensitivity of agriculture to drought and estimating the effect of irrigation in the United States, 1950–2016. Agric. For. Meteorol. 2020, 292–293, 108124. [Google Scholar] [CrossRef]
- Dai, M.; Huang, S.; Huang, Q.; Leng, G.; Guo, Y.; Wang, L.; Fang, W.; Li, P.; Zheng, X. Assessing agricultural drought risk and its dynamic evolution characteristics. Agric. Water Manag. 2020, 231, 106003. [Google Scholar] [CrossRef]
- Haile, G.G.; Tang, Q.; Li, W.; Liu, X.; Zhang, X. Drought: Progress in broadening its understanding. Wiley Interdisciplin. Rev. Water 2020, 7, e1407. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Mirchi, A.; Madani, K.; Baldassarre, G.D.; Nazemi, A.; Alborzi, A.; Anjileli, H.; Azarderakhsh, M.; Chiang, F.; Hassanzadeh, E.; et al. Anthropogenic Drought: Definition, Challenges, and Opportunities. Rev. Geophys. 2021, 59, e2019RG000683. [Google Scholar] [CrossRef]
- Feng, P.; Wang, B.; Li Liu, D.; Yu, Q. Machine learning-based integration of remotely-sensed drought factors can im-prove the estimation of agricultural drought in South-Eastern Australia. Agric. Syst. 2019, 173, 303–316. [Google Scholar] [CrossRef]
- Meza, I.; Siebert, S.; Döll, P.; Kusche, J.; Herbert, C.; Eyshi Rezaei, E.; Nouri, H.; Gerdener, H.; Popat, E.; Frischen, J.; et al. Global-scale drought risk assessment for agricultural systems. Nat. Hazards Earth Syst. Sci. 2020, 20, 695–712. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, American Meteorological Society Anaheim, Boston, MA, USA, 12–17 January 1993. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Pei, Z.; Fang, S.; Wang, L.; Yang, W. Comparative Analysis of Drought Indicated by the SPI and SPEI at Various Timescales in Inner Mongolia, China. Water 2020, 12, 1925. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Almazroui, M.; Salam, M.A.; Mondol, A.H.; Rahman, M.; Deb, L.; Kundu, P.K.; Zaman, A.U.; Islam, A.R.M.T. Spatiotemporal drought analysis in Bangladesh using the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI). Sci. Rep. 2022, 12, 20694. [Google Scholar] [CrossRef]
- Liu, C.; Yang, C.; Yang, Q.; Wang, J. Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China. Sci. Rep. 2021, 11, 1280. [Google Scholar] [CrossRef]
- Tirivarombo, S.; Osupile, D.; Eliasson, P. Drought monitoring and analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys. Chem. Earth Parts A/B/C 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Fuchs, B.A.; Svoboda, M.D.; Wilhite, D.A.; Hayes, H.J. Drought indices for drought risk assessment in a changing climate. In Handbook of Engineering Hydrology; Eslamian, S., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 217–231. [Google Scholar]
- Mens, M.J.P.; van Rhee, G.; Schasfoort, F.; Kielen, N. Integrated drought risk assessment to support adaptive policymaking in the Netherlands. Nat. Hazards Earth Syst. Sci. 2022, 22, 1763–1776. [Google Scholar] [CrossRef]
- Goodwin, D.; Holman, I.; Sutcliffe, C.; Salmoral, G.; Pardthaisong, L.; Visessri, S.; Ekkawatpanit, C.; Rey, D. The contribution of a catchment-scale advice network to successful agricultural drought adaptation in Northern Thailand. Phil. Trans. R. Soc. A 2022, 380, 2021029320210293. [Google Scholar] [CrossRef]
- Solh, M.; van Ginkel, M. Drought preparedness and drought mitigation in the developing world’s drylands. Weather Clim. Extrem. 2014, 3, 62–66. [Google Scholar] [CrossRef]
- Smith, S.M.; Edwards, E.C. Water storage and agricultural resilience to drought: Historical evidence of the capacity and institutional limits in the United States. Environ. Res. Lett. 2021, 16, 124020. [Google Scholar] [CrossRef]
- Mutenje, M.J.; Farnworth, C.R.; Stirling, C.; Thierfelder, C.; Mupangwa, W.; Nyagumbo, I. A cost-benefit analysis of cli-mate-smart agriculture options in Southern Africa: Balancing gender and technology. Ecol. Econ. 2019, 163, 126–137. [Google Scholar] [CrossRef]
- Nhemachena, C.; Nhamo, L.; Matchaya, G.; Nhemachena, C.R.; Muchara, B.; Karuaihe, S.T.; Mpandeli, S. Climate Change Impacts on Water and Agriculture Sectors in Southern Africa: Threats and Opportunities for Sustainable Development. Water 2020, 12, 2673. [Google Scholar] [CrossRef]
- Cavus, Y.; Aksoy, H. Critical drought severity/intensity-duration-frequency curves based on precipitation deficit. J. Hydrol. 2020, 584, 124312. [Google Scholar] [CrossRef]
- Kaplan, E.L.; Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Chakraborty, A.; Tsokos, C.P. Parametric and Non-Parametric Survival Analysis of Patients with Acute Myeloid Leukemia (AML). Open J. Appl. Sci. 2021, 11, 126–148. [Google Scholar] [CrossRef]
- Vogt, J.V.; Naumann, G.; Masante, D.; Spinoni, J.; Cammalleri, C.; Erian, W.; Pischke, F.; Pulwarty, R.; Barbosa, P. Drought Risk Assessment. A Conceptual Framework; EUR 29464 EN; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-97469-4. [Google Scholar] [CrossRef]
- Nasrollahi, M.; Khosravi, H.; Moghaddamnia, A.; Malekian, A.; Shahid, S. Assessment of drought risk index using drought hazard and vulnerability indices. Arab. J. Geosci. 2018, 11, 606. [Google Scholar] [CrossRef]
- Nikolova, N.; Micu, D.M.; Dumitrescu, A.; Radeva, K.; Paraschiv, M.; Cheval, S.; Todorov, L. A SPEI-Based Approach to Drought Hazard, Vulnerability and Risk Analysis in the Lower Danube River Region. In Lower Danube River; Negm, A., Zaharia, L., Ioana-Toroimac, G., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Li, Q.; Chen, L.; Xu, Y. Drought risk and water resources assessment in the Beijing-Tianjin-Hebei region, China. Sci. Total Environ. 2022, 832, 154915. [Google Scholar] [CrossRef]
- Danandeh Mehr, A.; Sorman, A.U.; Kahya, E.; Afshar, M.H. Climate change impacts on meteorological drought using SPI and SPEI: Case study of Ankara, Turkey. Hydrol. Sci. J. 2020, 65, 254–268. [Google Scholar] [CrossRef]
- Dikici, M.; Aksel, M. Comparison of SPI, SPEI and SRI drought indices for Seyhan Basin. Int. J. Electron. Mech. Mechatron. Eng. 2019, 9, 1751–1762. [Google Scholar]
- Dikici, M. Drought analysis with different indices for the Asi Basin (Turkey). Sci. Rep. 2020, 10, 20739. [Google Scholar] [CrossRef]
- Soydan Oksal, N.G. Comparative analysis of the influence of temperature and precipitation on drought assessment in the Marmara region of Turkey: An examination of SPI and SPEI indices. J. Water Clim. Chang. 2023, 14, 3096–3111. [Google Scholar] [CrossRef]
- Tsakiris, G.; Vangelis, H.J.E.W. Establishing a drought index incorporating evapotranspiration. Eur. Water 2005, 9, 3–11. [Google Scholar]
- Nalbantis, I.; Tsakiris, G. Assessment of hydrological drought revisited. Water Resour Manag. 2009, 23, 881–897. [Google Scholar] [CrossRef]
- Gibbs, W.J.; Maher, J.V. Rainfall deciles as drought indicators. Melb. Aust. Bur. Meteorol. 1967, 48, 1–84. [Google Scholar]
- Kukul, Y.S.; Anaç, S.; Yesilirmak, E.; Moraes, J.M. Trends of precipitation and stream-flow in Gediz river basin, Western Turkey. Fresenius Environ. Bull. 2007, 16, 477–488. [Google Scholar]
- Turkes, M. Climate and Drought in Turkey. In Water Resources of Turkey, 1st ed.; Harmancioglu, N.B., Altinbilek, D., Eds.; Springer Nature: Cham, Switzerland, 2020; Volume 2, pp. 85–125. [Google Scholar]
- Harmancioglu, N.B.; Cetinkaya, C.P. Resource management in water short basins. In Water Resources Development and Management, 1st ed.; Al-Rashed, M., Singh, V.P., Sherif, M.M., Eds.; Swets & Zeitlinger: Lisse, The Netherlands, 2002; Volume 4, pp. 467–477. [Google Scholar]
- Cetinkaya, C.P.; Gunacti, M.C. Effects of crop pattern changes on hydroelectric power generation in Gediz river basin. Eur. Water 2017, 60, 131–137. [Google Scholar]
- Kumar, V.; Del Vasto- Terrientes, L.; Valls, A.; Schuhmacher, M. Adaptation strategies for water supply management in a drought prone Mediterranean river basin: Application of outranking method. Sci. Total Environ. 2016, 540, 344–357. [Google Scholar] [CrossRef]
- Van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Hargreaves, G.H. Defining and Using Reference Evapotranspiration. J. Irrig. Drain. Eng. 1994, 120, 1132–1139. [Google Scholar] [CrossRef]
- Trabucco, A.; Zomer, R.J. Global aridity index and potential evapotranspiration (ET0) climate database v3. Figshare 2019. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables; US Government Printing Office: Washington, DC, USA, 1968; p. 1046.
- Bydalek, A.W.; Stepnik, R.; Migas, P. Application of Kaplan–Meier and Weibull Procedures for Qualitative Assessment of Recycled Aluminum Bronzes. JOM 2024, 76, 548–554. [Google Scholar] [CrossRef]
- UÑA-Álvarez, J.D.; Otero-GirÁLdez, M.S.; ÁLvarez-Llorente, G. Estimation under length-bias and right-censoring: An application to unemployment duration analysis for married women. J. Appl. Stat. 2003, 30, 283–291. [Google Scholar] [CrossRef]
- Wahba, G. Spline bases, regularization and generalized cross validation for solving approximation problems with large quantities of noisy data. Univ. Wis. 1980, 597, 1–8. [Google Scholar]
- Hutchinson, M.F. ANUDEM and ANUSPLIN User Guides; Miscellaneous Report; Australian National University, Centre for Resource and Environmental Studies: Canberra, Australia, 1991; Volume 91. [Google Scholar]
- Hui-Mean, F.; Yusop, Z.; Yusof, F. Drought analysis and water resource availability using standardised precipitation evapotranspiration index. Atmos. Res. 2018, 201, 102–115. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, J.; Hannaford, J.; Wang, Y.; Sun, H.; Barker, L.J.; Ma, M.; Su, Z.; Eastman, M. Linking drought indices to impacts to support drought risk assessment in Liaoning province, China. Nat. Hazards Earth Syst. Sci. 2020, 20, 889–906. [Google Scholar] [CrossRef]
- Zeng, Z.; Wu, W.; Li, Z.; Zhou, Y.; Guo, Y.; Huang, H. Agricultural drought risk assessment in Southwest China. Water 2019, 11, 1064. [Google Scholar] [CrossRef]
- Hao, L.; Zhang, X.; Liu, S. Risk assessment to China’s agricultural drought disaster in county unit. Nat. Hazards 2012, 61, 785–801. [Google Scholar] [CrossRef]
- He, B.; Wu, J.; Lu, A.; Cui, X.; Zhou, L.; Liu, M.; Zhao, L. Quantitative assessment and spatial characteristic analysis of agricultural drought risk in China. Nat. Hazards 2013, 66, 155–166. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, P.; Li, J.; Xiao, M.; Singh, V.P. Assessment of drought vulnerability of the Tarim River basin, Xinjiang, China. Theor. Appl. Climatol. 2015, 121, 337–347. [Google Scholar] [CrossRef]
- Azam, M.; Maeng, S.J.; Kim, H.S.; Murtazaey, A. Copula-based stochastic simulation for regional drought risk assessment in South Korea. Water 2018, 10, 359. [Google Scholar] [CrossRef]
SPI/SPEI Values | Description of State |
---|---|
SPI/SPEI < −2 | Extreme drought |
−2 < SPI/SPEI < −1.5 | Severe drought |
−1.5 < SPI/SPEI < −1 | Moderate drought |
−1 < SPI/SPEI < 1 | Near normal |
1 < SPI/SPEI < 1.5 | Moderately wet |
1.5 < SPI/SPEI < 2 | Severely wet |
SPI/SPEI > 2 | Extremely wet |
Time (Month) | No. Unrealized Dry States ri | No. Dry States Realized di | Kaplan–Meier (t) | Drought Risk (DR(t)) |
---|---|---|---|---|
1 | 44 | 5 | 0.886 | 0.114 |
2 | 39 | 5 | 0.773 | 0.227 |
3 | 34 | 6 | 0.636 | 0.364 |
4 | 28 | 6 | 0.500 | 0.500 |
5 | 22 | 3 | 0.432 | 0.568 |
6 | 19 | 2 | 0.386 | 0.614 |
7 | 17 | 2 | 0.341 | 0.659 |
8 | 15 | 4 | 0.250 | 0.750 |
9 | 11 | 2 | 0.205 | 0.795 |
10 | 9 | 2 | 0.159 | 0.841 |
14 | 7 | 1 | 0.136 | 0.864 |
15 | 6 | 1 | 0.114 | 0.886 |
17 | 5 | 1 | 0.091 | 0.909 |
18 | 4 | 1 | 0.068 | 0.932 |
24 | 3 | 1 | 0.046 | 0.954 |
25 | 2 | 1 | 0.023 | 0.977 |
27 | 1 | 1 | 0 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cetinkaya, C.P.; Gunacti, M.C. Meteorological and Agricultural Drought Risk Assessment via Kaplan–Meier Survivability Estimator. Agriculture 2024, 14, 503. https://doi.org/10.3390/agriculture14030503
Cetinkaya CP, Gunacti MC. Meteorological and Agricultural Drought Risk Assessment via Kaplan–Meier Survivability Estimator. Agriculture. 2024; 14(3):503. https://doi.org/10.3390/agriculture14030503
Chicago/Turabian StyleCetinkaya, Cem Polat, and Mert Can Gunacti. 2024. "Meteorological and Agricultural Drought Risk Assessment via Kaplan–Meier Survivability Estimator" Agriculture 14, no. 3: 503. https://doi.org/10.3390/agriculture14030503
APA StyleCetinkaya, C. P., & Gunacti, M. C. (2024). Meteorological and Agricultural Drought Risk Assessment via Kaplan–Meier Survivability Estimator. Agriculture, 14(3), 503. https://doi.org/10.3390/agriculture14030503