Assessing the Sustainability of Urban Agriculture in Shanghai’s Nine Agriculture Districts: A Decadal Analysis (2010–2020)
Abstract
:1. Introduction
2. Background
2.1. Agriculture Sustainability
2.2. Urban Agriculture
2.3. Agriculture Sustainability Assessment Framework
- (1)
- System Principle: The indicators must cover all aspects of regional agricultural development comprehensively and objectively without overlapping, linking evaluation goals with indicators.
- (2)
- Dynamic Principle: The indicators should be dynamic, reflecting trends and spatial distribution in regional agriculture, focusing on the potential for future sustainable development.
- (3)
- Scientific principle: The indicator system should be scientifically based, with clear meanings, standard measurement, and statistical methods.
- (4)
- Operability principle: Indicator selection should balance simplicity and complexity, consider quantification, data collection ease, and reliability using existing agricultural data and norms.
- (5)
- Regional principle: The indicators should account for regional differences in agricultural development.
3. Methods
3.1. Research Area
3.2. Delphi Method
3.3. AHP Method
3.4. Data Sources
4. Results
4.1. Indicator Results from the Construction of a Sustainable Indicator System for Urban Agriculture in Shanghai
4.2. Results of the Total Sustainability of Urban Agriculture in Shanghai
4.3. Results of Agricultural Sustainability in Shanghai’s Agricultural Districts
5. Discussion
5.1. Discussion of the Factors Influencing the Sustainability of Urban Agriculture in Shanghai’s Agricultural Districts
5.1.1. Minhang District
5.1.2. Baoshan District
5.1.3. Jiading District
5.1.4. Pudong New District
5.1.5. Jinshan District
5.1.6. Songjiang District
5.1.7. Qingpu District
5.1.8. Fengxian District
5.1.9. Chongming
5.2. Policy Recommendations for Improving the Sustainability of Urban Agriculture in Shanghai
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ahani, S.; Dadashpoor, H. A review of domains, approaches, methods and indicators in peri-urbanization literature. Habitat. Int. 2021, 114, 102387. [Google Scholar] [CrossRef]
- Ahani, S.; Dadashpoor, H. Urban growth containment policies for the guidance and control of peri-urbanization: A review and proposed framework. Environ. Dev. Sustain. 2021, 23, 14215–14244. [Google Scholar] [CrossRef]
- Dona, C.G.W.; Mohan, G.; Fukushi, K. Promoting urban agriculture and its opportunities and challenges—A global review. Sustainability 2021, 13, 9609. [Google Scholar] [CrossRef]
- Hardman, M.; Chipungu, L.; Magidimisha, H.; Larkham, P.J.; Scott, A.J.; Armitage, R.P. Guerrilla gardening and green activism: Rethinking the informal urban growing movement. Landsc. Urban Plan. 2018, 170, 6–14. [Google Scholar] [CrossRef]
- Langemeyer, J.; Madrid-Lopez, C.; Beltran, A.M.; Mendez, G.V. Urban agriculture—A necessary pathway towards urban resilience and global sustainability? Landsc. Urban Plan. 2021, 210, 104055. [Google Scholar] [CrossRef]
- Robineau, O.; Dugué, P. A socio-geographical approach to the diversity of urban agriculture in a West African City. Landsc. Urban Plan. 2018, 170, 48–58. [Google Scholar] [CrossRef]
- Brown, L.R. World population growth, soil erosion, and food security. Science 1981, 214, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- De Olde, E.M.; Oudshoorn, F.W.; Sørensen, C.A.G.; Bokkers, E.A.M.; De Boer, I.J.M. Assessing sustainability at farm-level: Lessons learned from a comparison of tools in practice. Ecol. Indic. 2016, 66, 391–404. [Google Scholar] [CrossRef]
- Cui, L.; Shi, J. Urbanization and its environmental effects in Shanghai, China. Urban Clim. 2012, 2, 1–15. [Google Scholar] [CrossRef]
- Gu, H.Y.; Wang, C.W. Impacts of the COVID-19 pandemic on vegetable production and countermeasures from an agricultural insurance perspective. J. Integr. Agric. 2020, 19, 2866–2876. [Google Scholar] [CrossRef]
- Shanghai Municipal Statistics Bureau. Shanghai Statistical Yearbook 2021; Shanghai Municipal Statistics Bureau: Shanghai, China, 2022.
- Binder, C.R.; Feola, G.; Steinberger, J.K. Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environ. Impact Assess. Rev. 2010, 30, 71–81. [Google Scholar] [CrossRef]
- Cohen, M. A systematic review of urban sustainability assessment literature. Sustainability 2017, 9, 2048. [Google Scholar] [CrossRef]
- Costanza, R.; Patten, B.C. Defining and predicting sustainability. Ecol. Econ. 1995, 15, 193–196. [Google Scholar] [CrossRef]
- Davidson, M. Social sustainability: Politics and democracy in a time of crisis. In Urban Social Sustainability: Theory, Policy and Practice; Shirazi, M., Keivani, R., Eds.; Routledge: London, UK, 2019; pp. 27–41. [Google Scholar]
- Hueting, R.; Reijnders, L. Sustainability is an objective concept. Ecol. Econ. 1998, 27, 139–148. [Google Scholar]
- Kaur, H.; Garg, P. Urban sustainability assessment tools: A review. J. Clean. Prod. 2019, 210, 146–158. [Google Scholar] [CrossRef]
- Schader, C.; Grenz, J.; Meier, M.S.; Stolze, M. Scope and precision of sustainability assessment approaches to food systems. Ecol. Soc. 2014, 19, 42. [Google Scholar] [CrossRef]
- Pretty, J. Agricultural sustainability: Concepts, principles and evidence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 447–465. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.Q.; Zheng, X.Y.; Liu, Y.; Zhou, C.S. Classification of rural settlements and their spatial characteristics in Guangzhou. Econ. Geogr. 2017, 37, 206–214+223. [Google Scholar] [CrossRef]
- Janker, J.; Mann, S. Understanding the social dimension of sustainability in agriculture: A critical review of sustainability assessment tools. Environ. Dev. Sustain. 2020, 22, 1671–1691. [Google Scholar] [CrossRef]
- Gómez-Limón, J.A.; Sanchez-Fernandez, G. Empirical evaluation of agricultural sustainability using composite indicators. Ecol. Econ. 2010, 69, 1062–1075. [Google Scholar] [CrossRef]
- Shao, C.F.; Chen, S.H.; Gao, J.L.; He, Y.; Zhou, H.L. Design of China’s sustainable development evaluation indicator system based on SDGs. China Popul. Resour. Environ. 2021, 31, 1–12. [Google Scholar] [CrossRef]
- Chen, X.; Rong, F.; Li, S. Driving force–pressure–state–impact–response-based evaluation of rural human settlements’ resilience and their influencing factors: Evidence from Guangdong, China. Sustainability 2024, 16, 813. [Google Scholar] [CrossRef]
- Halla, P.; Merino-Saum, A. Conceptual frameworks in indicator-based assessments of urban sustainability—An analysis based on 67 initiatives. Sustain. Dev. 2022, 30, 1056–1071. [Google Scholar] [CrossRef]
- Jatav, S.S.; Naik, K. Measuring the agricultural sustainability of India: An application of pressure-state-response (PSR) model. Reg. Sustain. 2023, 4, 218–234. [Google Scholar] [CrossRef]
- Kumar, A.; Pant, S. Analytical hierarchy process for sustainable agriculture: An overview. MethodsX 2023, 10, 101954. [Google Scholar] [CrossRef]
- Aarts, H.F.M.; De Haan, M.H.A.; Schröder, J.J.; Holster, H.C.; De Boer, J.A.; Reijs, J.W.; Oenema, J.; Hilhorst, G.J.; Sebek, L.B.; Verhoeven, F.P.M.; et al. Quantifying the environmental performance of individual dairy farms-the annual nutrient cycling assessment (ANCA). In Grassland and Forages in High Output Dairy Farming Systems; Van Den Pol-Van Dasselaar, A., Aarts, H., DeVliegher, A., Elgersma, A., Reheul, D., Reijneveld, J., Verloop, J., Hopkins, A., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 377–380. [Google Scholar]
- An, J.; Wang, L. Dynamic evaluation of the level of agricultural sustainable development in Shandong Province. Shandong Agric. Sci. 2016, 48, 161–165. [Google Scholar] [CrossRef]
- Bastian, O.; Corti, C.; Lebboroni, M. Determining environmental minimum requirements for functions provided by agro-ecosystems. Agron. Sustain. Dev. 2007, 27, 279–291. [Google Scholar] [CrossRef]
- Cao, Z.W.; Zhou, P.; Gao, Y.; Li, Q.; Liu, C.Y.; Xu, H. Research on the evaluation system of ecological sustainable development of urban agriculture. J. Shanghai Jiao Tong Univ. Agric. Sci. 2019, 37, 19–24. [Google Scholar] [CrossRef]
- Chen, G.S.; Zhao, X.J. Construction and evaluation of an agricultural sustainable development indicator system for the Dongting Lake region. J. Hunan Univ. Finance Econ. 2011, 27, 46–49. [Google Scholar]
- Chen, Q.; Zhang, L.; Li, J. Evaluation and analysis of sustainable development of agriculture in Tianjin based on the DPSIR model. Guangdong Agric. Sci. 2017, 44, 160–167. [Google Scholar] [CrossRef]
- Dang, J.J. Ecological-Economic-Social Coordinated Development Evaluation Research for Ecological Restoration in the Loess Hilly Region. Ph.D. Thesis, Northwest A&F University, Xianyang, China, 2014. [Google Scholar]
- Dantsis, T.; Douma, C.; Giourga, C.; Loumou, A.; Polychronaki, E.A. A methodological approach to assess and compare the sustainability level of agricultural plant production systems. Ecol. Indic. 2010, 10, 256–263. [Google Scholar] [CrossRef]
- Deng, C.X.; Xie, B.G.; Wu, Y.X.; Li, X.Q.; Fu, L.H. Quantitative comprehensive evaluation of sustainable urban agricultural development in Shanghai. J. Nat. Resour. 2010, 25, 1577–1588. [Google Scholar] [CrossRef]
- Ding, X.H. Research on the Impact of Urbanization on Urban Sustainable Development. Ph.D. Thesis, Northwest A&F University, Xianyang, China, 2011. [Google Scholar]
- Ding, W.G.; Liu, X.D.; Geng, Y.Y.; Chen, H.; He, L. Evaluation and coupling coordination analysis of agricultural sustainable development in Gansu Province. Chin. J. Agric. Resour. Reg. Plan. 2019, 40, 61–69. [Google Scholar]
- Hu, H.Z. Evaluation of Food Security in the Yangtze River Economic Belt based on Agricultural Sustainability. Master’s Thesis, Southwest University, El Paso, MA, USA, 2019. [Google Scholar]
- Li, T. Policy evaluation of sustainable development of the ecological environment in the Beijing-Tianjin-Hebei urban agglomeration based on the DPSIR-TOPSIS model. Ecol. Econ. 2022, 5, 107–113. [Google Scholar]
- Li, X.P.; Wang, J. Construction and evaluation of a sustainable development indicator system for suburban rural areas. Chin. J. Agric. Resour. Reg. Plan. 2017, 38, 129–134. [Google Scholar] [CrossRef]
- Li, X.H.; Zhu, Z.L.; Yang, L.P.; Zhang, Z. Evaluation of agricultural sustainable development level in Shandong Province based on the analytic hierarchy process. Shandong Agric. Sci. 2016, 48, 169–172. [Google Scholar] [CrossRef]
- Lin, W.X. Multi-Scale Evaluation and Regulation Strategies for Sustainable Development in Urban Areas. Ph.D. Thesis, Nanjing University, Nanjing, China, 2019. [Google Scholar] [CrossRef]
- Liu, H.L. Research on the Evaluation of Regional Agricultural Sustainable Development Integrated with Geographical Indications. Ph.D. Thesis, Gannan Normal University, Ganzhou, China, 2021. [Google Scholar] [CrossRef]
- Liu, H.Y.; Xing, L.; Yang, S.Q.; Wang, W.S.; Gao, Y. Research on the evaluation of agricultural sustainable development in different regions of Hainan Province. Chin. Agric. Sci. Bull. 2019, 19, 150–156. [Google Scholar]
- Liu, C.; Zhu, M.D.; Zhou, Y.S. Design of an evaluation index system for sustainable development of modern agriculture in China. J. Beijing Agric. Vocat. Coll. 2007, 21, 28–32. [Google Scholar] [CrossRef]
- Liu, J.; Dan, W.H.; Cheng, D.Y.; Wang, R. Evaluation of agricultural sustainable development and its subsystem coupling and coordination relationship in Yunnan Province. Ecol. Econ. 2020, 36, 107–115. [Google Scholar]
- Liu, Q.H.; Gao, Y.B.; Yuan, T.S.; Li, H.Y.; Lin, W. Application of C++ programs in the quantitative evaluation of agricultural sustainability. Anhui Agric. Sci. 2008, 36, 9332–9334. [Google Scholar] [CrossRef]
- Luo, Q.Y.; Tang, Q.; Liu, Y.; Gao, M.J.; Ma, L.Y. Construction and research of the evaluation index system for sustainable agricultural development in China. Chin. Agric. Sci. Bull. 2017, 27, 158–164. [Google Scholar]
- Mao, X.B.; Fu, L.L.; Mao, X.H.; Adil, A. Evaluation of the level of agricultural sustainable development in Zhejiang Province. J. Zhejiang Agric. Sci. 2019, 31, 1926–1934. [Google Scholar] [CrossRef]
- Miao, J.Q.; Zhao, M.; Huang, G.Q. Comprehensive evaluation and empirical analysis of agricultural sustainable development in southern hilly and mountainous areas. Chin. J. Agric. Resour. Reg. Plan. 2021, 8, 163–172. [Google Scholar] [CrossRef]
- Nemecek, T.; Huguenin-Elie, O.; Dubois, D.; Gaillard, G.; Schaller, B.; Chervet, A. Life cycle assessment of Swiss farming systems: II. Extensive and intensive production. Agric. Syst. 2011, 104, 233–245. [Google Scholar] [CrossRef]
- Nie, J.; Kiminami, A.; Yagi, H. Exploring the sustainability of urban leisure agriculture in Shanghai. Sustainability 2022, 14, 4813. [Google Scholar] [CrossRef]
- Peng, X.J.; Ji, Q.R.; Zhang, X.R. Evaluation and countermeasures research on agricultural sustainable development in Jiangxi. Jiangxi Soc. Sci. 2011, 9, 76–79. [Google Scholar]
- Shi, X.G. Research on the Evaluation of Sustainable Development Planning from the Perspective of Urban Comprehensive Development. Ph.D. Thesis, Chongqing University, Chongqing, China, 2019. [Google Scholar] [CrossRef]
- Simoncini, R. Developing an integrated approach to enhance the delivering of environmental goods and services by agro-ecosystems. Reg. Environ. Chang. 2009, 9, 153–167. [Google Scholar] [CrossRef]
- Speelman, E.N.; López-Ridaura, S.; Colomer, N.A.; Astier, M.; Masera, O.R. Ten years of sustainability evaluation using the MESMIS framework: Lessons learned from its application in 28 Latin American case studies. Int. J. Sustain. Dev. World Ecol. 2007, 14, 345–361. [Google Scholar] [CrossRef]
- Sun, N. Evaluation of Sustainable Development of Forestry in Shaanxi Province. Ph.D. Thesis, Northwest A&F University, Xianyang, China, 2012. [Google Scholar]
- Thiollet-Scholtus, M.; Bockstaller, C. Using indicators to assess the environmental impacts of wine growing activity: The INDIGO® method. Eur. J. Agron. 2015, 62, 13–25. [Google Scholar] [CrossRef]
- Valizadeh, N.; Hayati, D. Development and validation of an index to measure agricultural sustainability. J. Clean. Prod. 2021, 280, 123797. [Google Scholar] [CrossRef]
- Van Calker, K.J.; Berentsen, P.B.M.; Romero, C.; Giesen, G.W.J.; Huirne, R.B.M. Development and application of a multi-attribute sustainability function for Dutch dairy farming systems. Ecol. Econ. 2006, 57, 640–658. [Google Scholar] [CrossRef]
- Viglizzo, E.F.; Frank, F.; Bernardos, J.; Buschiazzo, D.E.; Cabo, S. A rapid method for assessing the environmental performance of commercial farms in the Pampas of Argentina. Environ. Monit. Assess. 2006, 117, 109–134. [Google Scholar] [CrossRef] [PubMed]
- Wackernagel, M.; Onisto, L.; Bello, P.; Linares, A.C.; Falfán, I.S.L.; Garcίa, J.M.; Guerrero, A.I.S.; Guerrero, M.G.S. National natural capital accounting with the ecological footprint concept. Ecol. Econ. 1999, 29, 375–390. [Google Scholar] [CrossRef]
- Wang, F. Construction and capacity evaluation of the agricultural sustainable development indicator system for Hainan Province based on the analytic hierarchy process. Xinjiang Agric. Reclam. Econ. 2011, 12, 9–13. [Google Scholar] [CrossRef]
- Wang, Y. Analysis and Evaluation of Typical Models of Circular Agriculture in the Central Region of Shaanxi Province. Ph.D. Thesis, Northwest A&F University, Xianyang, China, 2020. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Gorobets, A. Revision of the human development index and alternative indicators of sustainable development. China Environ. Manag. 2012, 01, 59–65. [Google Scholar] [CrossRef]
- Wang, H.J.; Lan, Z.M. Construction, measurement, and evaluation of the sustainable urban development indicator system in China. Bus. Econ. Res. 2022, 07, 184–188. [Google Scholar]
- Wang, J.; Wang, H.L. Construction of agricultural sustainable development indicator system. Mod. Agric. Technol. 2021, 7, 347–350. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, S.Q. Evaluation of agricultural sustainable development based on euclidean distance method: A case study of Tongren City, Guizhou Province. J. Guizhou Univ. Nat. Sci. Ed. 2019, 36, 113–117. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.N.; Huang, Y. Study on the evaluation of agricultural sustainable development level in Guizhou Province based on entropy method. Res. Land Nat. Resour. 2022, 1, 52–54. [Google Scholar] [CrossRef]
- Wang, P.L.; Gao, F.; Huang, C.L.; Song, X.Y.; Wang, B.; Wei, Y.Q.; Niu, Y.B. Progress in the study of urban sustainable development evaluation indicator systems oriented towards SDGs. Remote Sens. Technol. Appl. 2018, 33, 784–792. [Google Scholar]
- Wang, S.F.; Liu, Y.M.; Yang, L.Y.; Liu, X.D. Evaluation study of sustainable development of agriculture in Gaotai Country under the background of climate change. Gansu Agric. 2020, 12, 53–56. [Google Scholar] [CrossRef]
- Wang, J.; Xie, S.Y.; Ren, W.; Dai, G.F. Comprehensive evaluation of the sustainability of ecological agriculture in the three Gorges area. J. Southwest Norm. Univ. Nat. Sci. Ed. 2011, 36, 86–91. [Google Scholar]
- Wu, Y.; Du, D. Evaluation of agricultural sustainable development capability in Jiangsu Province based on BP neural network. In Decision Science and Evaluation—Proceedings of the Eighth Academic Annual Conference of the Chinese Society for Systems Engineering Decision Science Committee; Chinese Systems Engineering Society: Beijing, China, 2009. [Google Scholar]
- Xu, L.F. Research on the Evaluation Index System for the Construction of Urban Ecological Civilization in China. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2014. [Google Scholar]
- Yang, R. Evaluation of Agricultural Climate Ecological Adaptability and Sustainable Development Research Based on GIS. Master’s Thesis, Shaanxi Normal University, Xi’an, China, 2010. [Google Scholar]
- Yao, P.W. Construction and evaluation of the indicator system for sustainable agricultural development in Anqiu City. J. Mt. Agric. Biol. 2007, 26, 156–160. [Google Scholar] [CrossRef]
- Yao, W.; Zhang, H.Y. Sustainable development indicator system and mathematical models—A case study of Angola. Business 2015, 22, 293. [Google Scholar]
- Yu, X. Empirical Research on the Capacity Assessment and Demonstration Effect of National Sustainable Development Experimental Zones. Ph.D. Thesis, Southwest Jiao Tong University, Chengdu, China, 2015. [Google Scholar]
- Zhang, Z.C. Research on the construction of urban sustainable development evaluation indicator system. Constr. Sci. Technol. 2022, 6, 15–17+26. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, Y. Research on the sustainable development evaluation indicator system for pastoral areas in China. J. Dalian Natl. Univ. 2012, 14, 333–337. [Google Scholar] [CrossRef]
- Zhang, G.F.; Gou, B.C. Comprehensive evaluation of sustainable development of agriculture in Fuxin based on PCA method. J. Liaoning Tech. Univ. Soc. Sci. Ed. 2012, 4, 349–351. [Google Scholar]
- Zhang, M.; Zhu, H.J. Research on the evaluation indicator system for sustainable agricultural production systems in Fujian Province. J. Fujian Norm. Univ. Nat. Sci. Ed. 2001, 17, 92–97. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Q.Z.; Shi, J.J.; Cao, D.D.; Zhou, C.H.; Xue, J.H.; Cui, X.D. Analysis and reference of international typical sustainable development indicator systems. China Environ. Manag. 2020, 12, 89–95. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Ma, Y.Q.; Min, R. Construction of an evaluation indicator system for sustainable grain production in Hunan Province. Mod. Agric. Sci. Technol. 2021, 11, 238–241+246. [Google Scholar] [CrossRef]
- Zhao, Q.W. Evaluation Research on the Sustainable Development of Sightseeing Agriculture in the Mountainous Areas of Dongyuan Country, Guangdong Province. Master’s Thsis, South China University of Technology, Guangzhou, China, 2020. [Google Scholar] [CrossRef]
- Zhao, Y.N. Dynamic evaluation of sustainable urban agriculture development in Zhengzhou. Coop. Econ. Sci. 2016, 17, 46–48. [Google Scholar]
- Zhao, D.D.; Liu, C.M.; Bao, B.F.; Xu, B. Evaluation of agricultural sustainable development capability and subsystem coordination analysis—A case study of China’s main grain-producing areas. Econ. Geogr. 2018, 4, 157–163. [Google Scholar] [CrossRef]
- Zhou, X.H. Sustainable Agricultural Development in China: Goals, Problems, and Strategies. Ph.D. Thesis, Southwestern University of Finance and Economics, Chengdu, China, 2000. [Google Scholar]
- Zhu, X.M.; Ma, Z.S. Evaluation of agricultural sustainable development level based on entropy method: A case study of cities in Anhui Province. Anhui Agric. Sci. 2019, 10, 231–233+237. [Google Scholar] [CrossRef]
- Haas, G.; Wetterich, F.; Geier, U. Life cycle assessment framework in agriculture on the farm level. Int. J. Life Cycle Assess. 2000, 5, 345–348. [Google Scholar] [CrossRef]
- Hani, F.; Braga, F.S.; Stampfli, A.; Keller, T.; Fischer, M.; Porsche, H. RISE, a tool for holistic sustainability assessment at the farm level. Int. Food Agribus. Manag. Rev. 2003, 6, 78–90. [Google Scholar] [CrossRef]
- Hou, L.C.; Li, H.Q. Evaluation of agricultural sustainability of farmers based on multi-criteria decision-making methods. Guangdong Agric. Sci. 2017, 44, 121–128. [Google Scholar]
- Wang, L.S. Evaluation and Countermeasure Research on Sustainable Agricultural Development in Xiadian Town. Master’s Thesis, Ocean University of China, Qingdao, China, 2011. [Google Scholar] [CrossRef]
- Lewis, K.; Bardon, K. A computer-based informal environmental management system for agriculture. Environ. Model. Softw. 1998, 13, 123–137. [Google Scholar] [CrossRef]
- López-ridaura, S.; Van Keulen, H.; Van Ittersum, M.K.; Leffelaar, P.A. Multiscale methodological framework to derive criteria and indicators for sustainability evaluation of peasant natural resource management systems. Environ. Dev. Sustain. 2005, 7, 51–69. [Google Scholar] [CrossRef]
- Meul, M.; Passel, S.; Nevens, F.; Dessein, J.; Rogge, E.; Mulier, A.; Hauwermeiren, A. MOTIFS: A monitoring tool for integrated farm sustainability. Agron. Sustain. Dev. 2008, 28, 321–332. [Google Scholar] [CrossRef]
- Pacini, C.; Lazzerini, G.; Migliorini, P.; Vazzana, C. An indicator-based framework to evaluate sustainability of farming systems: Review of applications in Tuscany. Ital. J. Agron. 2009, 4, 23–40. [Google Scholar] [CrossRef]
- Pacini, G.C.; Lazzerini, G.; Vazzana, C. AESIS: A support tool for the evaluation of sustainability of agroecosystems. Example of applications to organic and integrated farming systems in Tuscany, Italy. Ital. J. Agron. 2011, 6, e3. [Google Scholar] [CrossRef]
- Rigby, D.; Woodhouse, P.; Young, T.; Burton, M. Constructing a farm level indicator of sustainable agricultural practice. Ecol. Econ. 2001, 39, 463–478. [Google Scholar] [CrossRef]
- Rodrigues, G.S.; Rodrigues, I.A.; Buschinelli, C.C.D.A.; De Barros, I. Integrated farm sustainability assessment for the environmental management of rural activities. Environ. Impact Assess. Rev. 2010, 30, 229–239. [Google Scholar] [CrossRef]
- Rong, S.H. Fuzzy comprehensive evaluation of sustainable development of ecological agriculture in Heigangkou Yellow river irrigation area. Mod. Agric. Sci. Technol. 2008, 23, 315–317. [Google Scholar] [CrossRef]
- Tzilivakis, J.; Lewis, K.A. The development and use of farm-level indicators in England. Sustain. Dev. 2004, 12, 107–120. [Google Scholar] [CrossRef]
- Wang, Z.W. Research on the sustainable development of farms in the yellow flood area of Henan. J. Manag. Cadre Coll. Minist. Agric. Rural Aff. 2021, 2, 51–58. [Google Scholar]
- Zahm, F.; Viaux, P.; Vilain, L.; Girardin, P.; Mouchet, C. Assessing farm sustainability with the IDEA method—From the concept of agriculture sustainability to case studies on farms. Sustain. Dev. 2008, 16, 271–281. [Google Scholar] [CrossRef]
- Benoît, C.; Norris, G.A.; Valdivia, S.; Ciroth, A.; Moberg, A.; Bos, U.; Prakash, S.; Ugaya, C.; Beck, T. The guidelines for social life cycle assessment of products: Just in time! Int. J. Life Cycle Assess. 2010, 15, 156–163. [Google Scholar] [CrossRef]
- López-Ridaura, S.; Masera, O.; Astier, M. Evaluating the sustainability of complex socio-environmental systems. The MESMIS framework. Ecol. Indic. 2002, 2, 135–148. [Google Scholar] [CrossRef]
- Pottiez, E.; Lescoat, P.; Bouvarel, I. AVIBIO: A method to assess the sustainability of the organic poultry industry. In Proceedings of the 10th European International Farming Systems Association (IFSA) Symposium, Aarhus, Denmark, 1–4 July 2012; pp. 1–7. [Google Scholar]
- Van Cauwenbergh, N.; Biala, K.; Bielders, C.; Brouckaert, V.; Franchois, L.; Cidad, V.G.; Hermy, M.; Mathijs, E.; Muys, B.; Reijnders, J.; et al. SAFE—A hierarchical framework for assessing the sustainability of agricultural systems. Agric. Ecosyst. Environ. 2007, 120, 229–242. [Google Scholar] [CrossRef]
- Zhuang, L. Research on Sustainable Development Issues of Forestry Enterprises in China. Ph.D. Thesis, Northeast Agricultural University, Harbin, China, 2013. [Google Scholar]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Wang, D.; Lin, X.; Liu, X.; Sun, M. Dynamic divergence and improvement paths of sustainable development level of urban agriculture in Beijing counties. Geogr. Res. 2014, 33, 1706–1715. [Google Scholar] [CrossRef]
- D’Souza, G.; Cyphers, D.; Phipps, T. Factors affecting the adoption of sustainable agricultural practices. Agric. Resour. Econ. Rev. 1993, 22, 159–165. [Google Scholar] [CrossRef]
- Nkonya, E.; Mirzabaev, A.; Von Braun, J. Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development; Springer Nature: Cham, Switzerland, 2016. [Google Scholar]
- Ingrao, C.; Strippoli, R.; Lagioia, G.; Huisingh, D. Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Heliyon 2023, 9, e18507. [Google Scholar] [CrossRef]
- Huang, J.; Tichit, M.; Poulot, M.; Darly, S.; Li, S.; Petit, C.; Aubry, C. Comparative review of multifunctionality and ecosystem services in sustainable agriculture. J. Environ. Manag. 2015, 149, 138–147. [Google Scholar] [CrossRef]
- DeBoe, G. Impacts of Agricultural Policies on Productivity and Sustainability Performance in Agriculture: A Literature Review. OECD Food, Agriculture and Fisheries Papers, No. 141; OECD: Paris, France, 2020. [Google Scholar]
- Archer, D.W.; Dawson, J.; Kreuter, U.P.; Hendrickson, M.; Halloran, J.M. Social and political influences on agricultural systems. Renew. Agric. Food Syst. 2008, 23, 272–284. [Google Scholar] [CrossRef]
- Liu, Y.S.; Liu, Y.; Guo, L.Y. Impact of climatic change on agricultural production and response strategies in China. Chin. J. Eco-Agric. 2010, 18, 905–910. [Google Scholar] [CrossRef]
- Cui, F.Q. Development of water-enclosed economy and agricultural restructuring. Water Resour. World 2001, 09, 16–17. [Google Scholar]
- Lee, D.R. Agricultural sustainability and technology adoption: Issues and policies for developing countries. Am. J. Agric. Econ. 2005, 87, 1325–1334. [Google Scholar] [CrossRef]
- Lechenet, M.; Bretagnolle, V.; Bockstaller, C.; Boissinot, F.; Petit, M.S.; Petit, S.; Munier-Jolain, N.M. Reconciling pesticide reduction with economic and environmental sustainability in arable farming. PloS ONE 2014, 9, e97922. [Google Scholar] [CrossRef] [PubMed]
- Penuelas, J.; Coello, F.; Sardans, J. A better use of fertilizers is needed for global food security and environmental sustainability. Agric. Food Secur. 2023, 12, 5. [Google Scholar] [CrossRef]
- Wang, F. Thoughts on accelerating the revitalization and adjustment of Baoshan district’s stock of inefficient industrial land. Shanghai Land 2014, 3, 20–23. [Google Scholar]
- Khairallah, V. How Bridges and Pedestrian Subways Can Be More than Means for Transportation a Study on How to Raise Social Aspects in Planning Processes. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2019. [Google Scholar]
- Penrith, M.L.; Bastos, A.D.; Etter, E.M.C.; Beltrán-Alcrudo, D. Epidemiology of African swine fever in Africa today: Sylvatic cycle versus socio-economic imperatives. Transbound. Emerg. Dis. 2019, 66, 672–686. [Google Scholar] [CrossRef] [PubMed]
- Hemani, S.; Das, A.K.; Chowdhury, A. Influence of urban forms on social sustainability: A case of Guwahati, Assam. Urban Des. Int. 2017, 22, 168–194. [Google Scholar] [CrossRef]
- Liu, J.; Liu, B.; Shan, B.; Wei, S.; An, T.; Shen, G.; Chen, Z. Prevalence of African swine fever in China, 2018–2019. J. Med. Virol. 2020, 92, 1023–1034. [Google Scholar] [CrossRef]
- Jiang, H. Discussion on the rationality of the red line of arable land. J. Econ. Res. 2013, 25, 36–37. [Google Scholar] [CrossRef]
- Yoshida, S.; Yagi, H.; Kiminami, A. Diversification strategies and the sustainability of agricultural management: Focusing on the role of business management capacity in urban and suburban agricultural management. J. Agric. Manag. Res. 2019, 57, 7–19. [Google Scholar] [CrossRef]
- Shanghai Municipal Statistics Bureau. Shanghai Rural and Agricultural Statistical Yearbook 2020; Shanghai Municipal Statistics Bureau: Shanghai, China, 2021.
- Wang, A.H. The dilemma and way out of rural population aging in the new period--a re-examination based on the perspective of urbanization. Explor. Econ. Issues 2012, 12, 91–96. [Google Scholar] [CrossRef]
- Zhai, J. Urban population expansion and changes in local agriculture in modern Shanghai. Stud. Chin. Econ. Hist. 2022, 4, 124–134. [Google Scholar]
Number | System Level | Author |
---|---|---|
64 | Regional level | Aarts et al. [28], An and Wang [29], Bastian et al. [30], Cao et al. [31], Chen and Zhao [32], Chen et al. [33], Dang [34], Dantsis et al. [35], Deng et al. [36], Ding [37], Ding et al. [38], Hu [39], Li [40], Li and Wang [41], Li et al. [42], Lin [43], Liu [44], Liu et al. [45], Liu et al. [46], Liu et al. [47], Liu et al. [48], Luo et al. [49], Mao et al. [50], Miao et al. [51], Nemecek et al. [52], Nie et al. [53], Peng et al. [54], Shao et al. [23], Shi [55], Simoncini [56], Speelman et al. [57], Sun [58], Thiollet-Scholtus and Bockstaller [59], Valizadeh and Hayati [60], Van Calker et al. [61], Viglizzo et al. [62], Wackernagel et al. [63], Wang [64], Wang [65], Wang and Gorobets [66], Wang and Lan [67], Wang and Wang [68], Wang and Yang [69], Wang et al. [70], Wang et al. [71], Wang et al. [72], Wang et al. [73], Wu and Du [74], Xu [75], Yang [76], Yao [77], Yao and Zhang [78], Yu [79], Zhang [80], Zhang and Cao [81], Zhang and Gou [82], Zhang and Zhu [83], Zhang et al. [84], Zhang et al. [85], Zhao [86], Zhao [87], Zhao et al. [88], Zhou [89], and Zhu and Ma [90] |
15 | Farm level | Haas et al. [91], Hani et al. [92], Hou and Li [93], Wang [94], Lewis and Bardon [95], López-Ridaura et al. [96], Meul et al. [97], Pacini et al. [98], Pacini et al. [99], Rigby et al. [100], Rodrigues et al. [101], Rong [102], Tzilivakis and Lewis [103], Tzilivakis and Lewis [103], Wang [104], and Zahm et al. [105] |
5 | Industry level | Benoît et al. [106], López-Ridaura et al. [107], Pottiez et al. [108], Van Cauwenbergh et al. [109], and Zhuang [110] |
No. | Indicators |
---|---|
1 | Government policy |
2 | Technology to promote resource recycling |
3 | Sustainable development advocacy |
4 | Education for sustainable development |
5 | Forms of rural collective organization |
6 | Agricultural waste resource utilization rate |
7 | Reduction rate of pesticide and chemical fertilizer use |
8 | Water-saving irrigation measures |
9 | Use rate of mulch |
10 | Recycling rate of mulch |
11 | Scale of rural collective economy |
12 | Water-saving irrigation measures |
13 | Organic fertilizer replacement rate |
14 | Agricultural product safety sample inspection pass rate |
No. | Indicators | Measurement Method | Nature | |
---|---|---|---|---|
Economic Sustainability | A1 | Per capita income | Total income/population | + |
A2 | Land productivity | Total output/land area | + | |
A3 | Agricultural commodity rate | - | + | |
A4 | Output growth rate per capita | Current output—previous output/previous output/population | + | |
A5 | Income growth rate per capita | Current income—previous income/previous income/population | + | |
A6 | Share of agriculture industry in total regional output | Agriculture output/total output | + | |
A7 | Agricultural input–output ratio | Agriculture input/agriculture output | + | |
A8 | Vegetable output | - | + | |
A9 | Grain output | - | + | |
A10 | Meat output | - | + | |
A11 | Cash crop output | - | + | |
Environmental Sustainability | B1 | Air quality | AQI Index | - |
B2 | Water quality | - | + | |
B3 | Irrigation rate | Effective irrigated area/total area | + | |
B4 | Forest coverage rate | Forest area/total area | + | |
B5 | Total power of agricultural machinery | - | + | |
B6 | Fertilizer use reduction rate | Previous fertilizer use—current fertilizer use/previous fertilizer use | + | |
B7 | Reduction rate of pesticide use | Previous pesticide use—current pesticide use/previous pesticide use | + | |
B8 | Use rate of mulch | Area of mulch used/total area | + | |
B9 | Organic certification | Number of organic certifications in the district | + | |
Social Sustainability | C1 | Rural population | - | + |
C2 | Medical resources per rural resident | Number of rural hospital beds per capita | + | |
C3 | Employment rate of rural residents | - | + | |
C4 | Rural logistics conditions | Number of road miles | + | |
C5 | Life expectancy | - | + | |
C6 | Urbanization rate | Urban population/total population | - | |
C7 | Number of people with minimum subsistence guarantee | - | - | |
C8 | Average age | - | - | |
C9 | Sustainable development propaganda | Agricultural sustainable development information on website | + | |
C10 | Number of people working in agriculture-related field | - | + | |
C11 | Number of skilled personnel | - | + |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.52 | 0.89 | 1.12 | 1.24 | 1.36 | 1.41 | 1.46 | 1.49 | 1.52 | 1.54 | 1.56 | 1.58 |
Primary Indicators | Weight | No. | Secondary Indicators | Weight |
---|---|---|---|---|
Economic Sustainability | 0.3156 | A1 | Per capita income | 0.0960 |
A2 | Land productivity | 0.0985 | ||
A3 | Agricultural commodity rate | 0.0957 | ||
A4 | Output growth rate per capita | 0.0458 | ||
A5 | Income growth rate per capita | 0.0971 | ||
A6 | Share of agriculture industry in total regional output | 0.1020 | ||
A7 | Agricultural input–output ratio | 0.1523 | ||
A8 | Vegetable output | 0.0405 | ||
A9 | Grain output | 0.0345 | ||
A10 | Meat output | 0.2156 | ||
A11 | Cash crop output | 0.0220 | ||
Environmental Sustainability | 0.3691 | B1 | Air quality | 0.0776 |
B2 | Water quality | 0.1503 | ||
B3 | Irrigation rate | 0.1526 | ||
B4 | Forest coverage rate | 0.0356 | ||
B5 | Total power of agricultural machinery | 0.1417 | ||
B6 | Fertilizer use reduction rate | 0.1083 | ||
B7 | Reduction rate of pesticide use | 0.1290 | ||
B8 | Use rate of mulch | 0.1491 | ||
B9 | Organic certification | 0.0559 | ||
Social Sustainability | 0.3151 | C1 | Rural population | 0.1006 |
C2 | Medical resources per rural resident | 0.1024 | ||
C3 | Employment rate of rural residents | 0.1004 | ||
C4 | Rural logistics conditions | 0.0644 | ||
C5 | Life expectancy | 0.0775 | ||
C6 | Urbanization rate | 0.1021 | ||
C7 | Number of people with minimum subsistence guarantee | 0.0461 | ||
C8 | Average age | 0.1255 | ||
C9 | Sustainable development propaganda | 0.0362 | ||
C10 | Number of people working in agriculture-related field | 0.1928 | ||
C11 | Number of skilled personnel | 0.0521 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, J.; Kiminami, A.; Yagi, H. Assessing the Sustainability of Urban Agriculture in Shanghai’s Nine Agriculture Districts: A Decadal Analysis (2010–2020). Agriculture 2024, 14, 631. https://doi.org/10.3390/agriculture14040631
Nie J, Kiminami A, Yagi H. Assessing the Sustainability of Urban Agriculture in Shanghai’s Nine Agriculture Districts: A Decadal Analysis (2010–2020). Agriculture. 2024; 14(4):631. https://doi.org/10.3390/agriculture14040631
Chicago/Turabian StyleNie, Jianyun, Akira Kiminami, and Hironori Yagi. 2024. "Assessing the Sustainability of Urban Agriculture in Shanghai’s Nine Agriculture Districts: A Decadal Analysis (2010–2020)" Agriculture 14, no. 4: 631. https://doi.org/10.3390/agriculture14040631
APA StyleNie, J., Kiminami, A., & Yagi, H. (2024). Assessing the Sustainability of Urban Agriculture in Shanghai’s Nine Agriculture Districts: A Decadal Analysis (2010–2020). Agriculture, 14(4), 631. https://doi.org/10.3390/agriculture14040631