Dynamic Energy Use Efficiency, Carbon Input, and Agricultural Benefits of Multiple Cropping in Southern China—A Case Study from Guangdong Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Data Calculation Methods
2.3. Grey Model GM (1,1) Prediction
2.4. Statistical Analysis
3. Results
3.1. Analysis of Energy Input and Energy Output
3.2. Energy-Related Indexes
3.3. Analysis of Carbon Input
3.4. Analysis of Agricultural Economic Return and Grey Model Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, C.J. Food development and food security in the post-epidemic era. Agric. Econ. Issues 2021, 1, 4–13. [Google Scholar] [CrossRef]
- Lugo-Morin, D.R. Innovate or Perish: Food Policy Design in an Indigenous Context in a Post-Pandemic and Climate Adaptation Era. J. Open Innov. 2022, 8, 34. [Google Scholar] [CrossRef]
- Zhang, X.H.; Zhang, R.; Wu, J.; Zhang, Y.Z.; Lin, L.L.; Deng, S.H.; Li, L.; Yang, G.; Yu, X.Y.; Qi, H.; et al. An emergy evaluation of the sustainability of Chinese crop production system during 2000–2010. Ecol. Indic. 2016, 60, 622–633. [Google Scholar] [CrossRef]
- Hu, Q.L.; Shi, H.W.; Wang, L.; Wang, L.; Hou, Y.; Wang, H.L.; Lai, C.H.; Zhang, S. Mitigating environmental impacts using net energy system in feed formulation in China’s pig production. Sci. Total Environ. 2023, 856, 159103. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z. The Ministry of Agriculture and Rural Affairs of the People’s Republic of China has deployed a nationwide campaign to increase the yield of major crops such as grain and oil. Agric. Equip. Technol. 2023, 49, 1. [Google Scholar]
- Society, T.R. Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture; Mccarthy; University of Reading: Reading, UK, 2009. [Google Scholar]
- Hunter Mitchell, C.; Smith Richard, G.; Schipanski Meagan, E.; Atwood Lesley, W.; Mortensen David, A. Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. BioScience 2017, 67, 386–391. [Google Scholar] [CrossRef]
- Qiu, B.; Jian, Z.; Yang, P.; Tang, Z.; Zhu, X.; Duan, M.; Yu, Q.; Chen, X.; Zhang, M.; Tu, P.; et al. Unveiling grain production patterns in China (2005–2020) towards targeted sustainable intensification. Agric. Syst. 2024, 216, 103878. [Google Scholar] [CrossRef]
- Liu, X.H.; Chen, F.; Wu, Y. Multiple cropping: The principal part of China’s agriculture. Crops 2015, 6, 1–9. [Google Scholar] [CrossRef]
- Liang, Y.G.; Zhou, J.; Yang, Q.; Huang, H. Development status, function and prospect analysis of the multiple cropping in southern China. Crop Res. 2016, 30, 572–578. [Google Scholar] [CrossRef]
- Waha, K.; Dietrich, J.P.; Portmann, F.T.; Siebert, S.; Thornton, P.K.; Bondeau, A.; Herrero, M. Multiple cropping systems of the world and the potential for increasing cropping intensity. Glob. Environ. Chang. 2020, 64, 102131. [Google Scholar] [CrossRef]
- Liu, H.; Xiong, W.; Li, Y.C.; Yang, D. Advances of impacts and adaptation of climate change on crop rotations in China. Chin. J. Agrometeorol. 2017, 38, 613–631. [Google Scholar] [CrossRef]
- Zhang, X.Y. Multiple Cropping System Expansion: Increasing Agricultural Greenhouse Gas Emissions in the North China Plain and Neighboring Regions. Sustainability 2019, 11, 3941. [Google Scholar] [CrossRef]
- Zhang, C.J.; He, H.M.; Mokhtar, A. The Impact of Climate Change and Human Activity on Spatiotemporal Patterns of Multiple Cropping Index in South West China. Sustainability 2019, 11, 5308. [Google Scholar] [CrossRef]
- Tan, S.J.; Xie, D.T.; Ni, J.P.; Chen, F.X.; Ni, C.S.; Shao, J.G.; Zhu, D.; Wang, S.; Lei, P.; Zhao, G.Y.; et al. Characteristics and influencing factors of chemical fertilizer and pesticide applications by farmers in hilly and mountainous areas of Southwest, China. Ecol. Indic. 2022, 143, 109346. [Google Scholar] [CrossRef]
- Tao, J.; Fu, M.C.; Zheng, X.Q.; Zhang, J.J.; Zhang, D.X. Provincial level-based emergy evaluation of crop production system and development modes in China. Ecol. Indic. 2013, 29, 325–338. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Cai, Y.P.; Liu, G.Y.; Zhang, P.; Li, B.; Li, B.; Jia, Q.P.; Huang, Y.P.; Shu, T.C. Evaluation of sustainable crop production from an ecological perspective based emergy analysis: A case of China’s provinces. J. Clean. Prod. 2021, 313, 127912. [Google Scholar] [CrossRef]
- Pramanick, B.; Mahapatra, B.; Datta, D.; Dey, P.; Singh, S.P.; Kumar, A.M.; Paramanik, B.; Awasthi, N. An innovative approach to improve oil production and quality of mustard (Brassica juncea L.) with multi-nutrient-rich polyhalite. Heliyon 2023, 9, e13997. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.X.; Chi, L.; Xing, L.W.; Meng, H.; Zhu, M.S.; Zhang, J.; Wu, J.Z. Decomposing the decoupling relationship between energy consumption and economic growth in China’s agricultural sector. Sci. Total Environ. 2023, 873, 162323. [Google Scholar] [CrossRef] [PubMed]
- Zhen, W.; Qin, Q.; Kuang, Y.; Huang, N. Investigating low-carbon crop production in Guangdong Province, China (1993–2013): A decoupling and decomposition analysis. J. Clean. Prod. 2017, 146, 63–70. [Google Scholar] [CrossRef]
- Tao, A.X. Study on the path of coordinated development between carbon emission reduction and economy in Guangdong Province. Energy Rep. 2022, 8, 477–481. [Google Scholar] [CrossRef]
- Liu, L.H. Agricultural Carbon Emissions in Guangdong Province: Temporal Spatial Difference and Driving Factors. J. Agro-For. Econ. Manag. 2015, 14, 192–198. [Google Scholar] [CrossRef]
- Han, B.; Jin, X.B.; Zhao, Q.L.; Chen, H.F. Spatiotemporal patterns and mechanisms of land-use conflicts affecting high-quality development in China. Appl. Geogr. 2023, 155, 102972. [Google Scholar] [CrossRef]
- Wu, X.H.; Yuan, Z.J. Understanding the socio-cultural resilience of rural areas through the intergenerational relationship in transitional China: Case studies from Guangdong. J. Rural. Stud. 2023, 97, 303–313. [Google Scholar] [CrossRef]
- Sun, J.W.; Yin, S. Strategic Conception of High-quality Development of Guangdong-Hong Kong-Macao Greater Bay Area under the New Development Pattern of ‘Double Cycle’. Guangdong Soc. Sci. 2022, 4, 17–25. [Google Scholar]
- Wan, J.Y.; Han, Y.L. Comparison of the supply capacity of edible agricultural products and the function of agricultural industrial chain in Guangdong-Hong Kong-Macao Greater Bay Area. J. South China Technol. Univ. 2019, 21, 9–20. [Google Scholar] [CrossRef]
- Zhao, W.D. Research on Construction in Guangzhou of Guangdong-Hong Kong-Macao Greater Bay Area Agricultural Product Supply Chain Channel under Rural Revitalization Strategy. Logist. Technol. 2022, 41, 14–19, 64. [Google Scholar] [CrossRef]
- Li, L.; Wen, X.W.; Gu, L.T. Research on Quality and Safety Supervision Technology of Agricultural Products Supply Chain between Guangdong and Hong Kong. Sci. Technol. Manage. Res. 2016, 36, 119–123. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, C.; Jiang, H.P. Study on Effect and Mechanism of China’s Agricultural Economic Resilience on Agricultural High-quality Development. Agric. Econ. Manag. 2022, 1, 20–32. [Google Scholar] [CrossRef]
- Liu, Y.G.; Zhang, J.X.; Wang, F.L. Scalar traps in the coordinated development of the Guangdong-Hong Kong-Macao Greater Bay Area. Prog. Geogr. 2022, 41, 1677–1687. [Google Scholar] [CrossRef]
- Bureau of Statistics of Guangdong. Guangdong Statistical Yearbook 2012–2022. Available online: http://stats.gd.gov.cn/gdtjnj/ (accessed on 17 March 2024).
- Yuan, S.; Peng, S.B. Input-output energy analysis of rice production in different crop management practices in central China. Energy 2017, 141, 1124–1132. [Google Scholar] [CrossRef]
- Yuan, S.; Peng, S.B. Trends in the economic return on energy use and energy use efficiency in China’s crop production. Renew. Sustain. Energy Rev. 2017, 70, 836–844. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Lin, J.D.; Liu, Y.Z.; Mo, C.Y.; Yang, J.P. Double paddy rice conversion to maize–paddy rice reduces carbon footprint and enhances net carbon sink. J. Clean. Prod. 2020, 258, 120643. [Google Scholar] [CrossRef]
- Esengun, K.; Gündüz, O.; Erdal, G. Input–output energy analysis in dry apricot production of Turkey. Energy Convers. Manag. 2007, 48, 592–598. [Google Scholar] [CrossRef]
- Sayin, C.; Nisa Mencet, M.; Ozkan, B. Assessing of energy policies based on Turkish agriculture. Energy Policy 2005, 33, 2361–2373. [Google Scholar] [CrossRef]
- Eskandari, H.; Attar, S. Energy comparison of two rice cultivation systems. Renew. Sustain. Energy Rev. 2015, 42, 666–671. [Google Scholar] [CrossRef]
- Naseri, H.; Parashkoohi, M.G.; Ranjbar, I.; Zamani, D.M. Energy-economic and life cycle assessment of sugarcane production in different tillage systems. Energy 2021, 217, 119252. [Google Scholar] [CrossRef]
- Gokdogan, O.; Oguz, H.I.; Baran, M.F. Energy Input-Output Analysis in Organic Mulberry (Morus spp.). Erwerbs-Obstbau 2017, 59, 326–330. [Google Scholar] [CrossRef]
- Dyer, J.A.; Desjardins, R.L. Carbon Dioxide Emissions Associated with the Manufacturing of Tractors and Farm Machinery in Canada. Biosyst. Eng. 2006, 93, 107–118. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Ji, Y.; Zhang, M.; Xu, Y.Z.; Li, Z.; Tu, D.B.; Wu, W.G. Exploring a sustainable rice-cropping system to balance grain yield, environmental footprint and economic benefits in the middle and lower reaches of the Yangtze River in China. J. Clean. Prod. 2023, 404, 136988. [Google Scholar] [CrossRef]
- Yin, W.; Chai, Q.; Fan, Z.; Hu, F.; Fan, H.; Guo, Y.; Zhao, C.; Yu, A. Energy budgeting, carbon budgeting, and carbon footprints of straw and plastic film management for environmentally clean of wheat-maize intercropping system in northwestern China. Sci. Total Environ. 2022, 826, 154220. [Google Scholar] [CrossRef]
- Yadav, G.S.; Lal, R.; Meena, R.S.; Datta, M.; Babu, S.; Das, A.; Layek, J.; Saha, P. Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J. Clean. Prod. 2017, 158, 29–37. [Google Scholar] [CrossRef]
- Yang, X.L.; Gao, W.S.; Zhang, M.; Chen, Y.Q.; Sui, P. Reducing agricultural carbon footprint through diversified crop rotation systems in the North China Plain. J. Clean. Prod. 2014, 76, 131–139. [Google Scholar] [CrossRef]
- Deike, S.; Pallutt, B.; Christen, O. Investigations on the energy effiffifficiency of organic and integrated farming with specifific emphasis on pesticide use intensity. Eur. J. Agron. 2008, 28, 461–470. [Google Scholar] [CrossRef]
- Kuemmel, B.; Langer, V.; Magid, J.; De Neergaard, A.; Porter, J.R. Energetic, economic and ecological balances of a combined food and energy system. Biomass Bioenerg. 1998, 15, 407–416. [Google Scholar] [CrossRef]
- Chuai, X.W.; Lai, L.; Huang, X.J.; Zhao, R.Q.; Wang, W.J.; Chen, Z.G. Temporospatial changes of carbon footprint based on energy consumption in China. J. Geogr. Sci. 2012, 22, 110–124. [Google Scholar] [CrossRef]
- Arratibel, O.; Furceri, D.; Martin, R.; Zdzienicka, A. The effect of nominal exchange rate volatility on real macroeconomic performance in the CEE countries. Econ. Syst. 2011, 35, 261–277. [Google Scholar] [CrossRef]
- Huiping, W.; Zhun, Z. Forecasting the renewable energy consumption of Australia by a novel grey model with conformable fractional opposite-direction accumulation. Environ. Sci. Pollut. Res. Int. 2023, 30, 104415–104431. [Google Scholar]
- Chen, Q.S.; Wang, S.Y.; Chi, G.B.; Jing, C.X.; Dong, X.M. Prediction and evaluation of GM model by Excel. Chin. J. Dis. Control Prev. 2003, 5, 451–453. [Google Scholar]
- Ijlal, R.; Mujawar, M.N.; Rao, K.R.; Manoj, T.; Ibrahim Sobhy, M.; Ali, M.S.; Sabzoi, N. Forecasting of energy consumption by G20 countries using an adjacent accumulation grey model. Sci. Rep. 2022, 12, 13417. [Google Scholar] [CrossRef]
- Wang, X.J.; Wu, J.X.; Jiang, H.P. Dynamic assessment and trend prediction of rural eco-environmental quality in China. J. Nat. Res. 2017, 32, 864–876. [Google Scholar] [CrossRef]
- Chen, J.N.; Abou-Elwafa, S.F.; Huang, M. Dynamic changes in the fossil energy use efficiency in crop production: A case study from Hunan province of China. J. Clean. Prod. 2022, 371, 133627. [Google Scholar] [CrossRef]
- Gao, F.L.; Yu, J.H.; Xie, L.X.; Rao, G.L.; Xu, S.J. Practice and Discussion on Fertilizer Reduction and Efficiency Improvement—Taking Guangdong as an Example. Chin. Compr. Agric. Dev. 2021, 12, 25–30. [Google Scholar]
- Li, Y.L.; Cai, G.Y.; Tan, K.M.; Chen, X.W.; Wang, X.L. Emergy-based efficiency and sustainability assessments of diversified multi-cropping systems in South China. J. Clean. Prod. 2023, 414, 137600. [Google Scholar] [CrossRef]
- Hei, Z.W.; Xiang, H.M.; Zhang, J.; Liang, K.; Zhong, J.E.; Li, M.J.; Ren, X.Q. Intercropping of Rice and Water Mimosa (Neptunia oleracea Lour.): A Novel Model to Control Pests and Diseases and Improve Yield and Grain Quality while Reducing N Fertilizer Application. Agriculture 2022, 12, 13. [Google Scholar] [CrossRef]
- Chen, Y.T.; Liu, C.H.; Chen, J.; Hu, N.J.; Zhu, L.Q. Evaluation on environmental consequences and sustainability of three rice-based rotation systems in Quanjiao, China by an integrated analysis of life cycle, emergy and economic assessment. J. Clean. Prod. 2021, 310, 127493. [Google Scholar] [CrossRef]
- Feng, S.S.; Hu, Y.F.; Liu, X.; Liang, J.F. Spatial and temporal evolution of crop planting structure in Guangdong-Hong Kong-Macao greater bay area from 1990 to 2020. Guangdong Agric. Sci. 2023, 50, 13–27. [Google Scholar] [CrossRef]
- Liu, X.; Feng, S.S.; Hu, Y.F.; Liang, J.F.; Luo, Y.W.; Liu, S.X.; Huang, J.C.; Zhou, C.F. Analysis of Spatial-temporal Pattern Evolution and Influencing Factors of Vegetable Production in Guangdong-Hong Kong-Macao Greater Bay Area. Guangdong Agric. Sci. 2023, 50, 40–49. [Google Scholar] [CrossRef]
- Li, M.T. Present situation analysis and development suggestions of intelligent orchard and intelligent agricultural machinery in Guangdong Province. Guangdong Sci. Technol. 2020, 29, 15–20. [Google Scholar] [CrossRef]
- Li, S.X.; Hong, Y.B.; Chen, X.P.; Liang, X.Q. Present situation and development strategies of peanut production, breeding and seed industry in Guangdong. Guangdong Agric. Sci. 2020, 47, 78–83. [Google Scholar] [CrossRef]
- Yang, S.F. Achievements, Characteristics and Enlightenments of Guangdong Modern Agricultural Industrial Park Construction. Chin. J. Trop. Agric. 2023, 2, 5–12. [Google Scholar]
- Choudhary, V.K.; Kumar, P.S. Productivity, Water Use and Energy Profitability of Staggered Maize–Legume Intercropping in the Eastern Himalayan Region of India. Proc. Natl. Acad. Sci. USA India Sect. B Biol. Sci. 2016, 86, 547–557. [Google Scholar] [CrossRef]
- Liu, L.H.; Xin, H.P. Research on Spatial-Temporal Characteristics of Agricultural Carbon Emissions in Guangdong Province and the Relationship with Economic Growth. Adv. Mater. Res. 2014, 1010–1012, 2072–2079. [Google Scholar] [CrossRef]
- Marshall, Z.; Brockway, P.E. A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System. Biophys. Econ. Sustain. 2020, 5, 9. [Google Scholar] [CrossRef]
- Pervanchon, F.; Bockstaller, C.; Girardin, P. Assessment of energy use in arable farming systems by means of an agro-ecological indicator: The energy indicator. Agric. Syst. 2002, 72, 149–172. [Google Scholar] [CrossRef]
- Bakhtiari, A.A.; Hematian, A.; Sharifi, A. Energy analyses and greenhouse gas emissions assessment for saffron production cycle. Environ. Sci. Pollut. Res. Int. 2015, 22, 16184–16201. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, F.; Mei, H.; Li, T.; Li, D. Roles of Motivation, Opportunity, Ability, and Trust in the Willingness of Farmers to Adopt Green Fertilization Techniques. Sustainability 2019, 11, 6902. [Google Scholar] [CrossRef]
- Tan, H.; Qi, X. Synergistic Interconstruction of the Green Development Concept in Chinese Rural Ecological Agriculture. Sustainability 2023, 15, 3961. [Google Scholar] [CrossRef]
- Wu, W.H. Guangdong develops low-carbon agriculture to accelerate the transformation of industrial structure. Guangdong Sci. Technol. 2017, 26, 8–13. [Google Scholar]
- Chen, C.; Wen, Z.G. Cross-media transfer of nitrogen pollution in the fast-urbanized Greater Bay Area of China: Trends and essential control paths. J. Environ. Manag. 2023, 326, 116796. [Google Scholar] [CrossRef]
- Xiang, M.T.; Yu, Q.; Li, Y.; Shi, Z.; Wu, W.B. Increasing multiple cropping for land use intensification: The role of crop choice. Land Use Policy 2022, 112, 105846. [Google Scholar] [CrossRef]
- Li, L.; Ao, Z.; Zhao, Y.L.; Liu, X.L. Impacts of Rapid Socioeconomic Development on Cropping Intensity Dynamics in China during 2001–2016. Int. J. Geo-Inf. 2019, 8, 519. [Google Scholar] [CrossRef]
- Li, M.Y.; Luo, S.; Luo, W. Research on the influencing factors and countermeasures of agricultural production price in China. Agric. Econ. 2022, 9, 122–124. [Google Scholar]
- Liu, J.F.; Luo, H.W.; Duan, H.Y.; Lin, Y.X. Study on the model of agricultural science and technology service based on the modern agricultural demonstration base. Guangdong Agric. Sci. 2017, 44, 158–163. [Google Scholar] [CrossRef]
- Liu, T.; Wu, G. Does agricultural cooperative membership help reduce the overuse of chemical fertilizers and pesticides? Evidence from rural China. Environ. Sci. Pollut. Res 2022, 29, 7972–7983. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Tang, C.M.; Lin, Y.T.; Luo, G.Q.; Li, Z.Y.; Wang, Y.; Wang, Z.J. Development status, problems and suggestions of sericulture industry in Guangdong Province. Chin. J. Trop. Agric. 2022, 6, 5–11, 22. [Google Scholar]
- Li, X.B.; Suo, H.C.; Lai, Y.C.; Luo, H.M.; Deng, Y.B.; An, K.; Li, C.C.; Liu, X.J. Effects of replacing early rice with economic crops on fertilizer utilization, soil nutrients and economic benefits. J. Nucl. Agric. Sci. 2020, 34, 2080–2087. [Google Scholar] [CrossRef]
Year | NEcR | NEcRI | NEcRO | NEcRA | NEcRC | |||||
---|---|---|---|---|---|---|---|---|---|---|
Actual Value (×103) | Predicted Value (×103) | Actual Value (×104) | Predicted Value (×104) | Actual Value (×103) | Predicted Value (×103) | Actual Value (×105) | Predicted Value (×105) | Actual Value (×102) | Predicted Value (×102) | |
2011 | 1.91 | 1.91 | 1.12 | 1.12 | 6.85 | 6.85 | 3.53 | 3.53 | 2.39 | 2.39 |
2012 | 2.06 | 2.03 | 1.21 | 1.20 | 7.19 | 7.41 | 3.80 | 3.89 | 2.59 | 2.55 |
2013 | 2.23 | 2.19 | 1.33 | 1.31 | 8.09 | 7.87 | 4.10 | 4.17 | 2.83 | 2.76 |
2014 | 2.36 | 2.36 | 1.49 | 1.43 | 8.28 | 8.36 | 4.46 | 4.46 | 3.08 | 2.99 |
2015 | 2.49 | 2.54 | 1.57 | 1.56 | 8.76 | 8.88 | 4.74 | 4.77 | 3.21 | 3.24 |
2016 | 2.76 | 2.74 | 1.70 | 1.70 | 9.69 | 9.44 | 5.29 | 5.11 | 3.51 | 3.51 |
2017 | 2.89 | 2.95 | 1.82 | 1.85 | 9.94 | 10.03 | 5.47 | 5.47 | 3.74 | 3.80 |
2018 | 3.09 | 3.18 | 1.88 | 2.01 | 10.60 | 10.65 | 5.77 | 5.85 | 3.84 | 4.12 |
2019 | 3.53 | 3.43 | 2.23 | 2.19 | 11.60 | 11.32 | 6.46 | 6.26 | 4.54 | 4.46 |
2020 | 3.77 | 3.70 | 2.43 | 2.39 | 12.05 | 12.03 | 6.75 | 6.70 | 4.94 | 4.83 |
2021 | 3.95 | 3.99 | 2.63 | 2.60 | 12.59 | 12.78 | 6.98 | 7.17 | 5.28 | 5.23 |
2025 | 5.38 | 3.67 | 1.63 | 9.40 | 7.20 | |||||
2030 | 7.84 | 5.63 | 2.20 | 13.19 | 10.74 | |||||
Mean value | ||||||||||
2011–2015 | 2.21 | 2.20 | 1.34 | 1.32 | 7.83 | 7.87 | 4.13 | 4.16 | 2.82 | 2.79 |
2016–2020 | 3.21 | 3.20 | 2.01 | 2.03 | 10.78 | 10.69 | 5.95 | 5.88 | 4.11 | 4.14 |
2021–2025 | 4.66 | 3.11 | 14.47 | 8.25 | 6.18 | |||||
2026–2030 | 6.78 | 4.78 | 19.59 | 11.57 | 9.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Deng, S.; Li, Y.; Qing, B.; Li, W.; Mo, Z. Dynamic Energy Use Efficiency, Carbon Input, and Agricultural Benefits of Multiple Cropping in Southern China—A Case Study from Guangdong Province. Agriculture 2024, 14, 641. https://doi.org/10.3390/agriculture14040641
Zhang T, Deng S, Li Y, Qing B, Li W, Mo Z. Dynamic Energy Use Efficiency, Carbon Input, and Agricultural Benefits of Multiple Cropping in Southern China—A Case Study from Guangdong Province. Agriculture. 2024; 14(4):641. https://doi.org/10.3390/agriculture14040641
Chicago/Turabian StyleZhang, Tantan, Siying Deng, Yanhong Li, Bowen Qing, Wu Li, and Zhaowen Mo. 2024. "Dynamic Energy Use Efficiency, Carbon Input, and Agricultural Benefits of Multiple Cropping in Southern China—A Case Study from Guangdong Province" Agriculture 14, no. 4: 641. https://doi.org/10.3390/agriculture14040641
APA StyleZhang, T., Deng, S., Li, Y., Qing, B., Li, W., & Mo, Z. (2024). Dynamic Energy Use Efficiency, Carbon Input, and Agricultural Benefits of Multiple Cropping in Southern China—A Case Study from Guangdong Province. Agriculture, 14(4), 641. https://doi.org/10.3390/agriculture14040641