Nano-Food Farming Approaches to Mitigate Heat Stress under Ongoing Climate Change: A Review
Abstract
:1. Introduction
2. Climate Change: A Global Issue
2.1. Climate Change Features
2.2. Climate Change Threats
2.3. Climate Change and Heat Stress
2.4. Climate Resilient Agriculture
2.5. Climate Change and Nano-Farming
- (1)
- Nanofilms for the electrocatalytic reduction of CO2 [97];
- (2)
- Nano-metal organic frameworks (MOFs) as absorbents for GHG sequestration [98];
- (3)
- Nanofibers as catalysts for the conversion and sequestration of CO2 [99];
- (4)
- Nanocomposites for photocatalytic CO2 reduction and H2 evolution reactions [100];
- (5)
- Carbon nanotubes to reduce CO2 emissions and utilization [101];
- (6)
- Nano-membranes to combat climate change using hydrogen production as a clean energy source instead of fossil fuels [102];
- (7)
- Nano-zeolites for CO2 capture [103];
- (8)
- Nano-silica to reduce CO2 emissions [104].
3. Heat Stress and Agroecosystems
3.1. Agroecosystems in a Changing World
3.2. Food Security under Heat Stress
3.3. Heat Stress and Cultivated Plants
- (1)
- Maintain protein and flower homeostasis and non-coding RNA regulation;
- (2)
- Minimize cellular damage and enhance antioxidant enzymes;
- (3)
- Protect heat shock proteins, the formation of buds, and the development of pollen and fruits from dehydration, and delay leaf senescence;
- (4)
- Promote the photosynthesis rate and antioxidant defenses, and activate defense pathways;
- (5)
- Regulate heat shock factors, transcription, and epigenetics;
- (6)
3.4. Plant–Pathogen Interactions under Heat Stress
3.5. Mechanisms of the Plant Response to Heat Stress
4. Nano-Food Farming: Is It a Crucial Solution?
5. Nano-Farming for Global Food Security
6. Nano-Management of Heat Stress
7. Nano-Food Farming and Nanotoxicity
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hurlimann, A.C.; Moosavi, S.; Browne, G.R. Climate Change Transformation: A Definition and Typology to Guide Decision Making in Urban Environments. Sustain. Cities Soc. 2021, 70, 102890. [Google Scholar] [CrossRef]
- Yeleliere, E.; Antwi-Agyei, P.; Guodaar, L. Farmers Response to Climate Variability and Change in Rainfed Farming Systems: Insight from Lived Experiences of Farmers. Heliyon 2023, 9, e19656. [Google Scholar] [CrossRef]
- Brevik, E. The Potential Impact of Climate Change on Soil Properties and Processes and Corresponding Influence on Food Security. Agriculture 2013, 3, 398–417. [Google Scholar] [CrossRef]
- Oyelami, L.O.; Edewor, S.E.; Folorunso, J.O.; Abasilim, U.D. Climate Change, Institutional Quality and Food Security: Sub-Saharan African Experiences. Sci. Afr. 2023, 20, e01727. [Google Scholar] [CrossRef]
- Squalli, J.; Adamkiewicz, G. The Spatial Distribution of Agricultural Emissions in the United States: The Role of Organic Farming in Mitigating Climate Change. J. Clean. Prod. 2023, 414, 137678. [Google Scholar] [CrossRef]
- Siddique, K.H.M.; Bolan, N.; Rehman, A.; Farooq, M. Enhancing Crop Productivity for Recarbonizing Soil. Soil Tillage Res. 2024, 235, 105863. [Google Scholar] [CrossRef]
- Brevik, E.C. Soils and Climate Change: Gas Fluxes and Soil Processes. Soil Horiz. 2012, 53, 12. [Google Scholar] [CrossRef]
- Hrour, Y.; Fovet, O.; Lacombe, G.; Rousseau-Gueutin, P.; Sebari, K.; Pichelin, P.; Thomas, Z. A Framework to Assess Future Water-Resource under Climate Change in Northern Morocco Using Hydro-Climatic Modelling and Water-Withdrawal Scenarios. J. Hydrol. Reg. Stud. 2023, 48, 101465. [Google Scholar] [CrossRef]
- Ohta, H.; Barrett, B.F.D. Politics of Climate Change and Energy Policy in Japan: Is Green Transformation Likely? Earth Syst. Gov. 2023, 17, 100187. [Google Scholar] [CrossRef]
- Li, S.H. Impact of Climate Change on Wind Energy across North America under Climate Change Scenario RCP8.5. Atmos. Res. 2023, 288, 106722. [Google Scholar] [CrossRef]
- Ngammuangtueng, P.; Nilsalab, P.; Chomwong, Y.; Wongruang, P.; Jakrawatana, N.; Sandhu, S.; Gheewala, S.H. Water-Energy-Food Nexus of Local Bioeconomy Hub and Future Climate Change Impact Implication. J. Clean. Prod. 2023, 399, 136543. [Google Scholar] [CrossRef]
- Peeters, P.; Çakmak, E.; Guiver, J. Current Issues in Tourism: Mitigating Climate Change in Sustainable Tourism Research. Tour. Manag. 2024, 100, 104820. [Google Scholar] [CrossRef]
- Lal, R.; Bouma, J.; Brevik, E.; Dawson, L.; Field, D.J.; Glaser, B.; Hatano, R.; Hartemink, A.E.; Kosaki, T.; Lascelles, B.; et al. Soils and Sustainable Development Goals of the United Nations: An International Union of Soil Sciences Perspective. Geoderma Reg. 2021, 25, e00398. [Google Scholar] [CrossRef]
- Dannevig, H.; Korsbrekke, M.H.; Hovelsrud, G.K. Advancements of Sustainable Development Goals in Co-Production for Climate Change Adaptation Research. Clim. Risk Manag. 2022, 36, 100438. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Ni, X.; Dong, M.; Zhu, J.; Zhang, Q.; Wang, J. Climate Action May Reduce the Risk of Unemployment: An Insight into the City-Level Interconnections among the Sustainable Development Goals. Resour. Conserv. Recycl. 2023, 194, 107002. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The Significance of Soils and Soil Science towards Realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef]
- Dos Santos, T.B.; Ribas, A.F.; De Souza, S.G.H.; Budzinski, I.G.F.; Domingues, D.S. Physiological Responses to Drought, Salinity, and Heat Stress in Plants: A Review. Stresses 2022, 2, 113–135. [Google Scholar] [CrossRef]
- Cherlinka, V. Heat Stress in Plants: Symptoms, Prevention, and Recovery. Available online: https://eos.com/blog/heat-stress-in-plants/ (accessed on 2 March 2024).
- Kumar, M.; Ratwan, P.; Dahiya, S.P.; Nehra, A.K. Climate Change and Heat Stress: Impact on Production, Reproduction and Growth Performance of Poultry and Its Mitigation Using Genetic Strategies. J. Therm. Biol. 2021, 97, 102867. [Google Scholar] [CrossRef]
- Michael, P.; De Cruz, C.R.; Mohd Nor, N.; Jamli, S.; Goh, Y.M. Evaluation of Heat Stress Threshold and Impacts on Milk Yield in Dairy Cattle Crossbreds in a Hot and Humid Climate. Theor. Appl. Climatol. 2023, 154, 235–244. [Google Scholar] [CrossRef]
- Li, C.; Yu, Z.; Yuan, Y.; Geng, X.; Zhang, D.; Zheng, X.; Li, R.; Sun, W.; Wang, X. A Synthetic Water-Heat-Vegetation Biodiversity Nexus Approach to Assess Coastal Vulnerability in Eastern China. Sci. Total Environ. 2022, 845, 157074. [Google Scholar] [CrossRef]
- Hidalgo García, D.; Rezapouraghdam, H. Climate Change, Heat Stress and the Analysis of Its Space-Time Variability in European Metropolises. J. Clean. Prod. 2023, 425, 138892. [Google Scholar] [CrossRef]
- Amoadu, M.; Ansah, E.W.; Sarfo, J.O.; Hormenu, T. Impact of Climate Change and Heat Stress on Workers’ Health and Productivity: A Scoping Review. J. Clim. Chang. Health 2023, 12, 100249. [Google Scholar] [CrossRef]
- Yang, M.; Wang, G. Heat Stress to Jeopardize Crop Production in the US Corn Belt Based on Downscaled CMIP5 Projections. Agric. Syst. 2023, 211, 103746. [Google Scholar] [CrossRef]
- Zhang, L.; Huo, Z.; Amou, M.; Xiao, J.; Cao, Y.; Gou, P.; Li, S. Optimized Rice Adaptations in Response to Heat and Cold Stress under Climate Change in Southern China. Reg. Environ. Chang. 2023, 23, 25. [Google Scholar] [CrossRef]
- Steffan, J.J.; Derby, J.A.; Brevik, E.C. Soil Pathogens That May Potentially Cause Pandemics, Including Severe Acute Respiratory Syndrome (SARS) Coronaviruses. Curr. Opin. Environ. Sci. Health 2020, 17, 35–40. [Google Scholar] [CrossRef]
- Brevik, E.C.; Slaughter, L.; Singh, B.R.; Steffan, J.J.; Collier, D.; Barnhart, P.; Pereira, P. Soil and Human Health: Current Status and Future Needs. Air Soil Water Res. 2020, 13, 117862212093444. [Google Scholar] [CrossRef]
- Zeren Cetin, I.; Varol, T.; Ozel, H.B. A Geographic Information Systems and Remote Sensing–Based Approach to Assess Urban Micro-Climate Change and Its Impact on Human Health in Bartin, Turkey. Environ. Monit. Assess. 2023, 195, 540. [Google Scholar] [CrossRef]
- Kan, Y.; Mu, X.-R.; Gao, J.; Lin, H.-X.; Lin, Y. The Molecular Basis of Heat Stress Responses in Plants. Mol. Plant 2023, 16, 1612–1634. [Google Scholar] [CrossRef]
- Mondal, S.; Karmakar, S.; Panda, D.; Pramanik, K.; Bose, B.; Singhal, R.K. Crucial Plant Processes under Heat Stress and Tolerance through Heat Shock Proteins. Plant Stress 2023, 10, 100227. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, S. Surviving and Thriving: How Plants Perceive and Respond to Temperature Stress. Dev. Cell 2022, 57, 947–958. [Google Scholar] [CrossRef]
- Mohapatra, B.; Chamoli, S.; Salvi, P.; Saxena, S.C. Fostering Nanoscience’s Strategies: A New Frontier in Sustainable Crop Improvement for Abiotic Stress Tolerance. Plant Nano Biol. 2023, 3, 100026. [Google Scholar] [CrossRef]
- Pramanik, B.; Sar, P.; Bharti, R.; Gupta, R.K.; Purkayastha, S.; Sinha, S.; Chattaraj, S.; Mitra, D. Multifactorial Role of Nanoparticles in Alleviating Environmental Stresses for Sustainable Crop Production and Protection. Plant Physiol. Biochem. 2023, 201, 107831. [Google Scholar] [CrossRef]
- El-Ramady, H.; Abdalla, N.; Sári, D.; Ferroudj, A.; Muthu, A.; Prokisch, J.; Fawzy, Z.F.; Brevik, E.C.; Solberg, S.Ø. Nanofarming: Promising Solutions for the Future of the Global Agricultural Industry. Agronomy 2023, 13, 1600. [Google Scholar] [CrossRef]
- Kandhol, N.; Singh, V.P.; Ramawat, N.; Prasad, R.; Chauhan, D.K.; Sharma, S.; Grillo, R.; Sahi, S.; Peralta-Videa, J.; Tripathi, D.K. Nano-Priming: Impression on the Beginner of Plant Life. Plant Stress 2022, 5, 100091. [Google Scholar] [CrossRef]
- Kumar, N.; Samota, S.R.; Venkatesh, K.; Tripathi, S.C. Global Trends in Use of Nano-Fertilizers for Crop Production: Advantages and Constraints—A Review. Soil Tillage Res. 2023, 228, 105645. [Google Scholar] [CrossRef]
- Shen, M.; Liu, S.; Jiang, C.; Zhang, T.; Chen, W. Recent Advances in Stimuli-Response Mechanisms of Nano-Enabled Controlled-Release Fertilizers and Pesticides. Eco-Environ. Health 2023, 2, 161–175. [Google Scholar] [CrossRef]
- Abdalla, Z.; El-Sawy, S.; El-Bassiony, A.E.-M.; Jun, H.; Shedeed, S.; Okasha, A.; Bayoumi, Y.; El-Ramady, H.; Prokisch, J. Smart Fertilizers vs. Nano-Fertilizers: A Pictorial Overview. Environ. Biodivers. Soil Secur. 2022, 6, 191–204. [Google Scholar] [CrossRef]
- He, J.; Li, J.; Gao, Y.; He, X.; Hao, G. Nano-Based Smart Formulations: A Potential Solution to the Hazardous Effects of Pesticide on the Environment. J. Hazard. Mater. 2023, 456, 131599. [Google Scholar] [CrossRef]
- Sári, D.; Ferroudj, A.; Muthu, A.; Prokisch, J.; El-Ramady, H.; Elsakhawy, T.; Omara, A.E.-D.; Brevik, E. Nano-Enabled Agriculture Using Nano-Selenium for Crop Productivity: What Should Be Addressed More? Environ. Biodivers. Soil Secur. 2023, 7, 85–99. [Google Scholar] [CrossRef]
- Saberi Riseh, R.; Vatankhah, M.; Hassanisaadi, M.; Kennedy, J.F. Chitosan-Based Nanocomposites as Coatings and Packaging Materials for the Postharvest Improvement of Agricultural Product: A Review. Carbohydr. Polym. 2023, 309, 120666. [Google Scholar] [CrossRef]
- Wang, S.; Herrera-Balandrano, D.D.; Jiang, Y.; Shi, X.; Chen, X.; Liu, F.; Laborda, P. Application of Chitosan Nanoparticles in Quality and Preservation of Postharvest Fruits and Vegetables: A Review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1722–1762. [Google Scholar] [CrossRef] [PubMed]
- Vithanage, M.; Zhang, X.; Gunarathne, V.; Zhu, Y.; Herath, L.; Peiris, K.; Solaiman, Z.M.; Bolan, N.; Siddique, K.H.M. Plant Nanobionics: Fortifying Food Security via Engineered Plant Productivity. Environ. Res. 2023, 229, 115934. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.; Khan, F.; Ahmed, T.; Noman, M.; Zulfiqar, F.; Rizwan, M.; Chen, J.; Siddique, K.H.M.; Li, B. Nanobiotechnology to Advance Stress Resilience in Plants: Current Opportunities and Challenges. Mater. Today Bio 2023, 22, 100759. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.T. Climate Change: Definition, Causes, Effects, & Facts. Available online: https://www.britannica.com/science/climate-change (accessed on 13 April 2024).
- Zhang, Y.; Niu, H.; Yu, Q. Impacts of Climate Change and Increasing Carbon Dioxide Levels on Yield Changes of Major Crops in Suitable Planting Areas in China by the 2050s. Ecol. Indic. 2021, 125, 107588. [Google Scholar] [CrossRef]
- Singh, R.; Machanuru, R.; Singh, B.; Shrivastava, M. Climate-Resilient Agriculture. In Global Climate Change; Elsevier: Amsterdam, The Netherlands, 2021; pp. 45–61. ISBN 978-0-12-822928-6. [Google Scholar]
- Subedi, B.; Poudel, A.; Aryal, S. The Impact of Climate Change on Insect Pest Biology and Ecology: Implications for Pest Management Strategies, Crop Production, and Food Security. J. Agric. Food Res. 2023, 14, 100733. [Google Scholar] [CrossRef]
- Barati, A.A.; Zhoolideh, M.; Azadi, H.; Lee, J.-H.; Scheffran, J. Interactions of Land-Use Cover and Climate Change at Global Level: How to Mitigate the Environmental Risks and Warming Effects. Ecol. Indic. 2023, 146, 109829. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Qi, J.; Feng, P.; Zhang, X.; Liu, D.L.; Marek, G.W.; Srinivasan, R.; Chen, Y. Assessing Impacts of Global Climate Change on Water and Food Security in the Black Soil Region of Northeast China Using an Improved SWAT-CO2 Model. Sci. Total Environ. 2023, 857, 159482. [Google Scholar] [CrossRef]
- Mirón, I.J.; Linares, C.; Díaz, J. The Influence of Climate Change on Food Production and Food Safety. Environ. Res. 2023, 216, 114674. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, R.; Wang, J.; Sun, H.; Liu, X.; Ren, X.; Zhuang, S.; Guo, Z.; Lu, X. Greenhouse Gas Emissions from Daihai Lake, China: Should Eutrophication and Salinity Promote Carbon Emission Dynamics? J. Environ. Sci. 2024, 135, 407–423. [Google Scholar] [CrossRef]
- Resplandy, L.; Hogikyan, A.; Müller, J.D.; Najjar, R.G.; Bange, H.W.; Bianchi, D.; Weber, T.; Cai, W.-J.; Doney, S.C.; Fennel, K.; et al. A Synthesis of Global Coastal Ocean Greenhouse Gas Fluxes. Glob. Biogeochem. Cycles 2024, 38, e2023GB007803. [Google Scholar] [CrossRef]
- Zhu, Y.; Butterbach-Bahl, K.; Merbold, L.; Oduor, C.O.; Gakige, J.K.; Mwangi, P.; Leitner, S.M. Greenhouse Gas Emissions from Sheep Excreta Deposited onto Tropical Pastures in Kenya. Agric. Ecosyst. Environ. 2024, 359, 108724. [Google Scholar] [CrossRef]
- Silva-Parra, A.; Trujillo-González, J.M.; Brevik, E.C. Greenhouse Gas Balance and Mitigation Potential of Agricultural Systems in Colombia: A Systematic Analysis. Greenh. Gases Sci. Technol. 2021, 11, 554–572. [Google Scholar] [CrossRef]
- Qin, Z.; Deng, S.; Dunn, J.; Smith, P.; Sun, W. Animal Waste Use and Implications to Agricultural Greenhouse Gas Emissions in the United States. Environ. Res. Lett. 2021, 16, 064079. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Y.; Jeong, S.; Ito, A.; Bastos, A.; Poulter, B.; Wang, Y.; Ciais, P.; Tian, H.; Yuan, W.; et al. The Greenhouse Gas Budget of Terrestrial Ecosystems in East Asia Since 2000. Glob. Biogeochem. Cycles 2024, 38, e2023GB007865. [Google Scholar] [CrossRef]
- Brevik, E.C.; Homburg, J.A. A 5000 Year Record of Carbon Sequestration from a Coastal Lagoon and Wetland Complex, Southern California, USA. CATENA 2004, 57, 221–232. [Google Scholar] [CrossRef]
- He, H.; Li, D.; Wu, Z.; Wu, Z.; Hu, Z.; Yang, S. Assessment of the Straw and Biochar Application on Greenhouse Gas Emissions and Yield in Paddy Fields under Intermittent and Controlled Irrigation Patterns. Agric. Ecosyst. Environ. 2024, 359, 108745. [Google Scholar] [CrossRef]
- Ritchie, H.; Rosado, P.; Roser, M. CO2 and Greenhouse Gas Emissions. Our World Data 2023. Available online: https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed on 2 March 2024).
- Franco, C.; Melica, G.; Treville, A.; Baldi, M.G.; Ortega, A.; Bertoldi, P.; Thiel, C. Key Predictors of Greenhouse Gas Emissions for Cities Committing to Mitigate and Adapt to Climate Change. Cities 2023, 137, 104342. [Google Scholar] [CrossRef]
- Keil, M. The Greenhouse Gas Emissions of a German Hospital—A Case Study of an Easy-to-Use Approach Based on Financial Data. Clean. Environ. Syst. 2023, 11, 100140. [Google Scholar] [CrossRef]
- Zhao, J.; Xie, H.; Liu, D.; Huang, R.; Peng, H. Climate-Smart Management for Increasing Crop Yield and Reducing Greenhouse Gas Emission in Beijing-Tianjin-Hebei Region, China. Agric. For. Meteorol. 2023, 339, 109569. [Google Scholar] [CrossRef]
- Bleviss, D.L. Transportation Is Critical to Reducing Greenhouse Gas Emissions in the United States. WIREs Energy Environ. 2021, 10, e390. [Google Scholar] [CrossRef]
- Kocak, E.; Alnour, M. Energy R&D Expenditure, Bioethanol Consumption, and Greenhouse Gas Emissions in the United States: Non-Linear Analysis and Political Implications. J. Clean. Prod. 2022, 374, 133887. [Google Scholar] [CrossRef]
- Atedhor, G.O. Greenhouse Gases Emissions and Their Reduction Strategies: Perspectives of Africa’s Largest Economy. Sci. Afr. 2023, 20, e01705. [Google Scholar] [CrossRef]
- Thomson, A.; Coronel, E.; Young, K.M. Environmental Outcomes from On-Farm Agricultural Production in the United States: Part 1: Land Use, Soil Erosion, Irrigation Water Use, Energy Use, and Greenhouse Gas Emissions. Crops Soils 2022, 55, 40–47. [Google Scholar] [CrossRef]
- Chausali, N.; Saxena, J.; Prasad, R. Nanotechnology as a Sustainable Approach for Combating the Environmental Effects of Climate Change. J. Agric. Food Res. 2023, 12, 100541. [Google Scholar] [CrossRef]
- Ponsonby, W.; Di Corleto, R. Climate Change and Heat Stress. Occup. Med. 2024, 74, 138–139. [Google Scholar] [CrossRef] [PubMed]
- Newman, R.; Noy, I. The Global Costs of Extreme Weather That Are Attributable to Climate Change. Nat. Commun. 2023, 14, 6103. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, L.; Otto, I.M. Changing Seasonal Temperature Offers a Window of Opportunity for Stricter Climate Policy. Environ. Sci. Policy 2023, 140, 35–45. [Google Scholar] [CrossRef]
- Yu, L.; Liu, Y.; Li, X.; Yan, F.; Lyne, V.; Liu, T. Vegetation-Induced Asymmetric Diurnal Land Surface Temperatures Changes across Global Climate Zones. Sci. Total Environ. 2023, 896, 165255. [Google Scholar] [CrossRef] [PubMed]
- Zalewska, T.; Wilman, B.; Łapeta, B.; Marosz, M.; Biernacik, D.; Wochna, A.; Saniewski, M.; Grajewska, A.; Iwaniak, M. Seawater Temperature Changes in the Southern Baltic Sea (1959–2019) Forced by Climate Change. Oceanologia 2023, 66, 37–55. [Google Scholar] [CrossRef]
- Xiao, Z.; Sun, J.; Lin, B.; Yuan, B. Multi-Timescale Changes of Water Temperature Due to the Three Gorges Reservoir and Climate Change in the Yangtze River, China. Ecol. Indic. 2023, 148, 110129. [Google Scholar] [CrossRef]
- Thanvisitthpon, N.; Nakburee, A.; Khamchiangta, D.; Saguansap, V. Climate Change-Induced Urban Heat Island Trend Projection and Land Surface Temperature: A Case Study of Thailand’s Bangkok Metropolitan. Urban Clim. 2023, 49, 101484. [Google Scholar] [CrossRef]
- Xu, B.; Wang, T.; Ma, D.; Song, R.; Zhang, M.; Gao, L.; Li, S.; Zhuang, B.; Li, M.; Xie, M. Impacts of Regional Emission Reduction and Global Climate Change on Air Quality and Temperature to Attain Carbon Neutrality in China. Atmos. Res. 2022, 279, 106384. [Google Scholar] [CrossRef]
- Ji, S.; Ahn, K.-H. Temperature Change-Informed Future Multisite Streamflow Generation to Support Water Supply Vulnerability Assessments under Climate Change. J. Hydrol. 2023, 624, 129928. [Google Scholar] [CrossRef]
- Sharma, A.; Lin, Y.-K.; Chen, C.-C.; Deng, L.; Wang, Y.-C. Projections of Temperature-Associated Mortality Risks under the Changing Climate in an Ageing Society. Public Health 2023, 221, 23–30. [Google Scholar] [CrossRef]
- Hebbern, C.; Gosselin, P.; Chen, K.; Chen, H.; Cakmak, S.; MacDonald, M.; Chagnon, J.; Dion, P.; Martel, L.; Lavigne, E. Future Temperature-Related Excess Mortality under Climate Change and Population Aging Scenarios in Canada. Can. J. Public Health 2023, 114, 726–736. [Google Scholar] [CrossRef]
- Islam, Z.; Sabiha, N.E.; Salim, R. Integrated Environment-Smart Agricultural Practices: A Strategy towards Climate-Resilient Agriculture. Econ. Anal. Policy 2022, 76, 59–72. [Google Scholar] [CrossRef]
- Hellin, J.; Fisher, E.; Taylor, M.; Bhasme, S.; Loboguerrero, A.M. Transformative Adaptation: From Climate-Smart to Climate-Resilient Agriculture. CABI Agric. Biosci. 2023, 4, 30. [Google Scholar] [CrossRef]
- Gorripati, R.; Thakur, M.; Kolagani, N. Promoting Climate Resilient Sustainable Agriculture through Participatory System Dynamics with Crop-Water-Income Dynamics. Water Resour. Manag. 2023, 37, 3935–3951. [Google Scholar] [CrossRef]
- Rayanoothala, P.; Hasibul Alam, S.; Mahapatra, S.; Gafur, A.; Antonius, S. Rhizosphere Microorganisms for Climate Resilient and Sustainable Crop Production. Gesunde Pflanz. 2023, 75, 2207–2225. [Google Scholar] [CrossRef]
- Zong, X.; Liu, X.; Chen, G.; Yin, Y. A Deep-Understanding Framework and Assessment Indicator System for Climate-Resilient Agriculture. Ecol. Indic. 2022, 136, 108597. [Google Scholar] [CrossRef]
- Goswami, M.; Gupta, A.K.; Kishan, R.; Baidya, S.; Khan, Y.D.I.; Prakash, S.; Premkumar, A.; Nautiyal, S. An Evaluation of Climate Resilient Agricultural Practices in India: A Narrative Synthesis of Literature. Environ. Sustain. 2023, 6, 7–23. [Google Scholar] [CrossRef]
- Mosadeghrad, A.M.; Isfahani, P.; Eslambolchi, L.; Zahmatkesh, M.; Afshari, M. Strategies to Strengthen a Climate-Resilient Health System: A Scoping Review. Glob. Health 2023, 19, 62. [Google Scholar] [CrossRef]
- Wakweya, R.B. Challenges and Prospects of Adopting Climate-Smart Agricultural Practices and Technologies: Implications for Food Security. J. Agric. Food Res. 2023, 14, 100698. [Google Scholar] [CrossRef]
- Nazir, M.J.; Li, G.; Nazir, M.M.; Zulfiqar, F.; Siddique, K.H.M.; Iqbal, B.; Du, D. Harnessing Soil Carbon Sequestration to Address Climate Change Challenges in Agriculture. Soil Tillage Res. 2024, 237, 105959. [Google Scholar] [CrossRef]
- Liang, S.; Sun, N.; Meersmans, J.; Longdoz, B.; Colinet, G.; Xu, M.; Wu, L. Impacts of Climate Change on Crop Production and Soil Carbon Stock in a Continuous Wheat Cropping System in Southeast England. Agric. Ecosyst. Environ. 2024, 365, 108909. [Google Scholar] [CrossRef]
- Quan, H.; Wang, B.; Wu, L.; Feng, H.; Wu, L.; Wu, L.; Liu, D.L.; Siddique, K.H.M. Impact of Plastic Mulching and Residue Return on Maize Yield and Soil Organic Carbon Storage in Irrigated Dryland Areas under Climate Change. Agric. Ecosyst. Environ. 2024, 362, 108838. [Google Scholar] [CrossRef]
- Novara, A.; Sarno, M.; Pereira, P.; Cerdà, A.; Brevik, E.C.; Gristina, L. Straw Uses Trade-off Only after Soil Organic Carbon Steady-State. Ital. J. Agron. 2018, 13, 216–220. [Google Scholar] [CrossRef]
- Zul Azlan, Z.H.; Junaini, S.N.; Bolhassan, N.A.; Wahi, R.; Arip, M.A. Harvesting a Sustainable Future: An Overview of Smart Agriculture’s Role in Social, Economic, and Environmental Sustainability. J. Clean. Prod. 2024, 434, 140338. [Google Scholar] [CrossRef]
- Halli, H.M.; Govindasamy, P.; Wasnik, V.K.; Shivakumar, B.G.; Swami, S.; Choudhary, M.; Yadav, V.K.; Singh, A.K.; Raghavendra, N.; Govindasamy, V.; et al. Climate-Smart Deficit Irrigation and Nutrient Management Strategies to Conserve Energy, Greenhouse Gas Emissions, and the Profitability of Fodder Maize Seed Production. J. Clean. Prod. 2024, 442, 140950. [Google Scholar] [CrossRef]
- Han, H.; Zou, K.; Yuan, Z. Impact of Specialized Agricultural Services on Climate-Smart Agricultural Practices: Evidence from Biopesticide Application in Jiangsu Province, China. Environ. Impact Assess. Rev. 2024, 105, 107430. [Google Scholar] [CrossRef]
- Youns, Y.T.; Manshad, A.K.; Ali, J.A. Sustainable Aspects behind the Application of Nanotechnology in CO2 Sequestration. Fuel 2023, 349, 128680. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, X.; Kang, Z.; Peralta-Videa, J.R.; Zhu, Y.-G. Nano-Enabled Seed Treatment: A New and Sustainable Approach to Engineering Climate-Resilient Crops. Sci. Total Environ. 2024, 910, 168640. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Y.; Su, D.; Man, W.; Lau, K.; Han, L.; Zhao, L.; Zhan, D.; Zhu, X. In Situ Electropolymerized 3D Microporous Cobalt-Porphyrin Nanofilm for Highly Effective Molecular Electrocatalytic Reduction of Carbon Dioxide. Adv. Mater. 2023, 35, 2303179. [Google Scholar] [CrossRef]
- Xu, R.; Ahn, H.; Kim, S.; Lee, J.W.; Kang, Y.T. CO2 Capture Enhancement by Encapsulation of Nanoparticles in Metal–Organic Frameworks Suspended in Physical Absorbents. J. CO2 Util. 2023, 69, 102397. [Google Scholar] [CrossRef]
- Arizapana, K.; Schossig, J.; Wildy, M.; Weber, D.; Gandotra, A.; Jayaraman, S.; Wei, W.; Xu, K.; Yu, L.; Mugweru, A.M.; et al. Harnessing the Synergy of Fe and Co with Carbon Nanofibers for Enhanced CO2 Hydrogenation Performance. ACS Sustain. Chem. Eng. 2024, 12, 1868–1883. [Google Scholar] [CrossRef]
- Balan, B.; Xavier, M.M.; Mathew, S. MoS2-Based Nanocomposites for Photocatalytic Hydrogen Evolution and Carbon Dioxide Reduction. ACS Omega 2023, 8, 25649–25673. [Google Scholar] [CrossRef]
- Ji, X.; Liu, Y.; Zhang, Z.; Cui, J.; Fan, Y.; Qiao, Y. Porous Carbon Foam with Carbon Nanotubes as Cathode for Li−CO2 Batteries. Chem.–Eur. J. 2024, 30, e202303319. [Google Scholar] [CrossRef]
- Gao, X.; Dai, S.; Teng, Y.; Wang, Q.; Zhang, Z.; Yang, Z.; Park, M.; Wang, H.; Jia, Z.; Wang, Y.; et al. Ultra-Efficient and Cost-Effective Platinum Nanomembrane Electrocatalyst for Sustainable Hydrogen Production. Nano-Micro Lett. 2024, 16, 108. [Google Scholar] [CrossRef]
- Bahmanzadegan, F.; Pordsari, M.A.; Ghaemi, A. Improving the Efficiency of 4A-Zeolite Synthesized from Kaolin by Amine Functionalization for CO2 Capture. Sci. Rep. 2023, 13, 12533. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Lu, L.; Cheng, X.; Li, L. Strength and Durability of Marine Cement-Based Mortar Modified by Colloidal Nano-Silica with Epoxy Silane for Low CO2 Emission. J. Clean. Prod. 2023, 382, 135281. [Google Scholar] [CrossRef]
- Wu, L.; Elshorbagy, A.; Helgason, W. Assessment of Agricultural Adaptations to Climate Change from a Water-Energy-Food Nexus Perspective. Agric. Water Manag. 2023, 284, 108343. [Google Scholar] [CrossRef]
- Brevik, E.C.; Pereg, L.; Pereira, P.; Steffan, J.J.; Burgess, L.C.; Gedeon, C.I. Shelter, Clothing, and Fuel: Often Overlooked Links between Soils, Ecosystem Services, and Human Health. Sci. Total Environ. 2019, 651, 134–142. [Google Scholar] [CrossRef]
- Pereira, P.; Bogunovic, I.; Muñoz-Rojas, M.; Brevik, E.C. Soil Ecosystem Services, Sustainability, Valuation and Management. Curr. Opin. Environ. Sci. Health 2018, 5, 7–13. [Google Scholar] [CrossRef]
- Furtak, K.; Wolińska, A. The Impact of Extreme Weather Events as a Consequence of Climate Change on the Soil Moisture and on the Quality of the Soil Environment and Agriculture—A Review. CATENA 2023, 231, 107378. [Google Scholar] [CrossRef]
- Ahmad, M.; Imtiaz, M.; Shoib Nawaz, M.; Mubeen, F.; Imran, A. What Did We Learn From Current Progress in Heat Stress Tolerance in Plants? Can Microbes Be a Solution? Front. Plant Sci. 2022, 13, 794782. [Google Scholar] [CrossRef]
- Kumar, R.R.; Jin, B.; Teng, N. Heat Stress: Response, Mitigation, and Tolerance in Plants. Front. Plant Sci. 2023, 14, 1266765. [Google Scholar] [CrossRef]
- Mishra, S.; Spaccarotella, K.; Gido, J.; Samanta, I.; Chowdhary, G. Effects of Heat Stress on Plant-Nutrient Relations: An Update on Nutrient Uptake, Transport, and Assimilation. Int. J. Mol. Sci. 2023, 24, 15670. [Google Scholar] [CrossRef]
- Resentini, F.; Orozco-Arroyo, G.; Cucinotta, M.; Mendes, M.A. The Impact of Heat Stress in Plant Reproduction. Front. Plant Sci. 2023, 14, 1271644. [Google Scholar] [CrossRef]
- Cartwright, S.L.; Schmied, J.; Karrow, N.; Mallard, B.A. Impact of Heat Stress on Dairy Cattle and Selection Strategies for Thermotolerance: A Review. Front. Vet. Sci. 2023, 10, 1198697. [Google Scholar] [CrossRef]
- El Khayat, M.; Halwani, D.A.; Hneiny, L.; Alameddine, I.; Haidar, M.A.; Habib, R.R. Impacts of Climate Change and Heat Stress on Farmworkers’ Health: A Scoping Review. Front. Public Health 2022, 10, 782811. [Google Scholar] [CrossRef]
- Krüger, E.; Gobo, J.P.A.; Tejas, G.T.; Da Silva De Souza, R.M.; Neto, J.B.F.; Pereira, G.; Mendes, D.; Di Napoli, C. The Impact of Urbanization on Heat Stress in Brazil: A Multi-City Study. Urban Clim. 2024, 53, 101827. [Google Scholar] [CrossRef]
- Brevik, E.C.; Pereg, L.; Steffan, J.J.; Burgess, L.C. Soil Ecosystem Services and Human Health. Curr. Opin. Environ. Sci. Health 2018, 5, 87–92. [Google Scholar] [CrossRef]
- Bao, L.; Yu, L.; Li, Y.; Yan, F.; Lyne, V.; Ren, C. Climate Change Impacts on Agroecosystems in China: Processes, Mechanisms and Prospects. Chin. Geogr. Sci. 2023, 33, 583–600. [Google Scholar] [CrossRef]
- Das, S.R.; Nayak, B.K.; Dey, S.; Sarkar, S.; Chatterjee, D.; Saha, S.; Sarkar, D.; Pradhan, A.; Saha, S.; Nayak, A.K. Potential Soil Organic Carbon Sequestration Vis-a-Vis Methane Emission in Lowland Rice Agroecosystem. Environ. Monit. Assess. 2023, 195, 1099. [Google Scholar] [CrossRef]
- Chauhan, Y.S.; Anwar, M.R.; Richards, M.F.; Lake, L.; Sadras, V.O.; Luckett, D.J.; Raman, R.; Krosch, S.; Graham, N. Effect of Soil Water on Flowering and Pod-Set in Chickpea: Implications for Modelling and Managing Frost and Heat Stress. Agron. Sustain. Dev. 2023, 43, 49. [Google Scholar] [CrossRef]
- Alharbi, K.; Khan, A.A.; Sakit Alhaithloul, H.A.; Al-Harbi, N.A.; Al-Qahtani, S.M.; Aloufi, S.S.; Abdulmajeed, A.M.; Muneer, M.A.; Alghanem, S.M.S.; Zia-ur-Rehman, M.; et al. Synergistic Effect of β-Sitosterol and Biochar Application for Improving Plant Growth of Thymus Vulgaris under Heat Stress. Chemosphere 2023, 340, 139832. [Google Scholar] [CrossRef]
- FAO. Declaration of the World Summit on Food Security; FAO: Rome, Italy, 2009.
- Clapp, J.; Moseley, W.G.; Burlingame, B.; Termine, P. Viewpoint: The Case for a Six-Dimensional Food Security Framework. Food Policy 2022, 106, 102164. [Google Scholar] [CrossRef]
- Behera, B.; Haldar, A.; Sethi, N. Agriculture, Food Security, and Climate Change in South Asia: A New Perspective on Sustainable Development. Environ. Dev. Sustain. 2023. [Google Scholar] [CrossRef]
- FAO. Trade Reforms and Food Security: Conceptualizing the Linkages; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003.
- Manikas, I.; Ali, B.M.; Sundarakani, B. A Systematic Literature Review of Indicators Measuring Food Security. Agric. Food Secur. 2023, 12, 10. [Google Scholar] [CrossRef]
- Brevik, E.C. Soil, Food Security, and Human Health. In Soils, Plant Growth and Crop Production; Verheye, W.H., Ed.; EOLSS Publishers: Abu Dhabi, United Arab Emirates, 2010; Volume III, pp. 161–195. ISBN 978-1-84826-879-7. [Google Scholar]
- Ramya, A.; Dhevagi, P.; Poornima, R.; Avudainayagam, S.; Watanabe, M.; Agathokleous, E. Effect of Ozone Stress on Crop Productivity: A Threat to Food Security. Environ. Res. 2023, 236, 116816. [Google Scholar] [CrossRef]
- Rai, P.K.; Song, H.; Kim, K.-H. Nanoparticles Modulate Heavy-Metal and Arsenic Stress in Food Crops: Hormesis for Food Security/Safety and Public Health. Sci. Total Environ. 2023, 902, 166064. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Devi, P.; Chaudhary, S.; Rani, A.; Jha, U.C.; Kumar, S.; Bindumadhava, H.; Prasad, P.V.V.; Sharma, K.D.; Siddique, K.H.M.; et al. ‘Omics’ Approaches in Developing Combined Drought and Heat Tolerance in Food Crops. Plant Cell Rep. 2022, 41, 699–739. [Google Scholar] [CrossRef]
- Rahman, M.A.; Afridi, S.; Hossain, M.B.; Rana, M.; Al Masum, A.; Rahman, M.M.; Al-Maruf, A. Nexus between Heat Wave, Food Security and Human Health (HFH): Developing a Framework for Livelihood Resilience in Bangladesh. Environ. Chall. 2024, 14, 100802. [Google Scholar] [CrossRef]
- Wani, N.R.; Rather, R.A.; Farooq, A.; Padder, S.A.; Baba, T.R.; Sharma, S.; Mubarak, N.M.; Khan, A.H.; Singh, P.; Ara, S. New Insights in Food Security and Environmental Sustainability through Waste Food Management. Environ. Sci. Pollut. Res. 2023, 31, 17835–17857. [Google Scholar] [CrossRef]
- Ma, Z.; Lv, J.; Wu, W.; Fu, D.; Lü, S.; Ke, Y.; Yang, P. Regulatory Network of Rice in Response to Heat Stress and Its Potential Application in Breeding Strategy. Mol. Breed. 2023, 43, 68. [Google Scholar] [CrossRef]
- Dagoudo, M.; Mutebi, E.T.; Qiang, J.; Tao, Y.-F.; Zhu, H.-J.; Ngoepe, T.K.; Xu, P. Effects of Acute Heat Stress on Haemato-Biochemical Parameters, Oxidative Resistance Ability, and Immune Responses of Hybrid Yellow Catfish (Pelteobagrus fulvidraco × P. vachelli) Juveniles. Vet. Res. Commun. 2023, 47, 1217–1229. [Google Scholar] [CrossRef] [PubMed]
- Sargani, G.R.; Jiang, Y.; Joyo, M.A.; Liu, Y.; Shen, Y.; Chandio, A.A. No Farmer No Food, Assessing Farmers Climate Change Mitigation, and Adaptation Behaviors in Farm Production. J. Rural Stud. 2023, 100, 103035. [Google Scholar] [CrossRef]
- Filho, W.L.; Setti, A.F.F.; Azeiteiro, U.M.; Lokupitiya, E.; Donkor, F.K.; Etim, N.N.; Matandirotya, N.; Olooto, F.M.; Sharifi, A.; Nagy, G.J.; et al. An Overview of the Interactions between Food Production and Climate Change. Sci. Total Environ. 2022, 838, 156438. [Google Scholar] [CrossRef]
- Olarewaju, O.O.; Fajinmi, O.O.; Arthur, G.D.; Coopoosamy, R.M.; Naidoo, K. Effect of Climate Change on the Production of Cucurbitaceae Species in North African Countries. J. Agric. Food Res. 2023, 14, 100742. [Google Scholar] [CrossRef]
- Garzke, J.; Forster, I.; Graham, C.; Costalago, D.; Hunt, B.P.V. Future Climate Change-Related Decreases in Food Quality May Affect Juvenile Chinook Salmon Growth and Survival. Mar. Environ. Res. 2023, 191, 106171. [Google Scholar] [CrossRef] [PubMed]
- Teasdale, N.; Panegyres, P.K. Climate Change in Western Australia and Its Impact on Human Health. J. Clim. Chang. Health 2023, 12, 100243. [Google Scholar] [CrossRef]
- Bozzola, M.; Lamonaca, E.; Santeramo, F.G. Impacts of Climate Change on Global Agri-Food Trade. Ecol. Indic. 2023, 154, 110680. [Google Scholar] [CrossRef]
- Hoshikawa, K.; Pham, D.; Ezura, H.; Schafleitner, R.; Nakashima, K. Genetic and Molecular Mechanisms Conferring Heat Stress Tolerance in Tomato Plants. Front. Plant Sci. 2021, 12, 786688. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lu, Z.; Wang, L.; Jin, B. Plant Responses to Heat Stress: Physiology, Transcription, Noncoding RNAs, and Epigenetics. Int. J. Mol. Sci. 2020, 22, 117. [Google Scholar] [CrossRef] [PubMed]
- Ratnarajah, V.; Gnanachelvam, N. Effect of Abiotic Stress on Onion Yield: A Review. Adv. Technol. 2021, 1, 147–160. [Google Scholar] [CrossRef]
- Majeed, S.; Rana, I.A.; Mubarik, M.S.; Atif, R.M.; Yang, S.-H.; Chung, G.; Jia, Y.; Du, X.; Hinze, L.; Azhar, M.T. Heat Stress in Cotton: A Review on Predicted and Unpredicted Growth-Yield Anomalies and Mitigating Breeding Strategies. Agronomy 2021, 11, 1825. [Google Scholar] [CrossRef]
- Xu, Y.; Chu, C.; Yao, S. The Impact of High-Temperature Stress on Rice: Challenges and Solutions. Crop J. 2021, 9, 963–976. [Google Scholar] [CrossRef]
- Lindsey, R.; Dahlman, L. Climate Change: Global Temperature. Available online: http://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature (accessed on 14 April 2024).
- Jevtić, R.; Župunski, V. The Challenge of Managing Yellow Rust (Puccinia Striiformis f.Sp. Tritici) in Winter Wheat: How Combined Climate and Pathogen Stressors Impact Variability in Genotype Reactions. Front. Plant Sci. 2023, 14, 1270087. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Chen, L.; Fan, Z.; Peng, M.; Zhao, J.; Chen, W.; Li, H.; Shi, Y.; Ding, S.; Li, H. Heat Stress Tolerance Gene FpHsp104 Affects Conidiation and Pathogenicity of Fusarium Pseudograminearum. Front. Microbiol. 2021, 12, 695535. [Google Scholar] [CrossRef]
- Shah, S.H.; Shan, X.; Baig, S.; Zhao, H.; Ismail, B.; Shahzadi, I.; Majeed, Z.; Nawazish, S.; Siddique, M.; Baig, A. First Identification of Potato Tuber Rot Caused by Penicillium Solitum, Its Silver Nanoparticles Synthesis, Characterization and Use against Harmful Pathogens. Front. Plant Sci. 2023, 14, 1255480. [Google Scholar] [CrossRef]
- Kareem, H.A.; Saleem, M.F.; Saleem, S.; Rather, S.A.; Wani, S.H.; Siddiqui, M.H.; Alamri, S.; Kumar, R.; Gaikwad, N.B.; Guo, Z.; et al. Zinc Oxide Nanoparticles Interplay With Physiological and Biochemical Attributes in Terminal Heat Stress Alleviation in Mungbean (Vigna radiata L.). Front. Plant Sci. 2022, 13, 842349. [Google Scholar] [CrossRef] [PubMed]
- Victoria, J.; Tripathi, S.; Prakash, V.; Tiwari, K.; Mahra, S.; Sharma, A.; Rana, S.; Kandhol, N.; Sahi, S.; Tripathi, D.K.; et al. Encapsulated Nanopesticides Application in Plant Protection: Quo Vadis? Plant Physiol. Biochem. 2024, 206, 108225. [Google Scholar] [CrossRef] [PubMed]
- Warghane, A.; Saini, R.; Shri, M.; Andankar, I.; Ghosh, D.K.; Chopade, B.A. Application of Nanoparticles for Management of Plant Viral Pathogen: Current Status and Future Prospects. Virology 2024, 592, 109998. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Wang, X.-W.; Chen, H.; Wen, J. Chiral Nanopesticides: The Invincible Opponent of Plant Viruses. Trends Plant Sci. 2024, 29, 120–122. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Zhao, M.; Jing, T.; Zhang, M.; Lu, M.; Yu, G.; Wang, J.; Guo, D.; Pan, Y.; Hoffmann, T.D.; et al. Volatile Compound-Mediated Plant–Plant Interactions under Stress with the Tea Plant as a Model. Hortic. Res. 2023, 10, uhad143. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.; Basu, S.; Crowder, D.W. Drought Stress Affects Interactions between Potato Plants, Psyllid Vectors, and a Bacterial Pathogen. FEMS Microbiol. Ecol. 2022, 99, fiac142. [Google Scholar] [CrossRef] [PubMed]
- Krokene, P.; Børja, I.; Carneros, E.; Eldhuset, T.D.; Nagy, N.E.; Volařík, D.; Gebauer, R. Effects of Combined Drought and Pathogen Stress on Growth, Resistance and Gene Expression in Young Norway Spruce Trees. Tree Physiol. 2023, 43, 1603–1618. [Google Scholar] [CrossRef] [PubMed]
- Szczepaniec, A.; Finke, D. Plant-Vector-Pathogen Interactions in the Context of Drought Stress. Front. Ecol. Evol. 2019, 7, 262. [Google Scholar] [CrossRef]
- Kansman, J.T.; Basu, S.; Casteel, C.L.; Crowder, D.W.; Lee, B.W.; Nihranz, C.T.; Finke, D.L. Plant Water Stress Reduces Aphid Performance: Exploring Mechanisms Driven by Water Stress Intensity. Front. Ecol. Evol. 2022, 10, 846908. [Google Scholar] [CrossRef]
- Scandolera, T.; Teano, G.; Naderpour, M.; Geffroy, V.; Pflieger, S. Insights into the Effects of Elevated Atmospheric Carbon Dioxide on Plant-Virus Interactions: A Literature Review. Environ. Exp. Bot. 2024, 221, 105737. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, J.; Wan, Z.; Huang, S.; Di, H.; He, Y.; Jin, S. Physiological and Transcriptome Analyses Provide New Insights into the Mechanism Mediating the Enhanced Tolerance of Melatonin-Treated Rhododendron Plants to Heat Stress. J. Integr. Agric. 2023, 22, 2397–2411. [Google Scholar] [CrossRef]
- Saha, G.; Mostofa, M.G.; Rahman, M.M.; Tran, L.-S.P. Silicon-Mediated Heat Tolerance in Higher Plants: A Mechanistic Outlook. Plant Physiol. Biochem. 2021, 166, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Kálmán, C.D.; Nagy, Z.; Berényi, A.; Kiss, E.; Posta, K. Investigating PGPR Bacteria for Their Competence to Protect Hybrid Maize from the Factor Drought Stress. Cereal Res. Commun. 2024, 52, 129–150. [Google Scholar] [CrossRef]
- Ali, S.; Rizwan, M.; Arif, M.S.; Ahmad, R.; Hasanuzzaman, M.; Ali, B.; Hussain, A. Approaches in Enhancing Thermotolerance in Plants: An Updated Review. J. Plant Growth Regul. 2020, 39, 456–480. [Google Scholar] [CrossRef]
- Ghosh, U.K.; Islam, M.N.; Siddiqui, M.N.; Khan, M.A.R. Understanding the Roles of Osmolytes for Acclimatizing Plants to Changing Environment: A Review of Potential Mechanism. Plant Signal. Behav. 2021, 16, 1913306. [Google Scholar] [CrossRef]
- Huang, M.; Yin, X.; Chen, J.; Cao, F. Biochar Application Mitigates the Effect of Heat Stress on Rice (Oryza sativa L.) by Regulating the Root-Zone Environment. Front. Plant Sci. 2021, 12, 711725. [Google Scholar] [CrossRef]
- Iqbal, N.; Sehar, Z.; Fatma, M.; Umar, S.; Sofo, A.; Khan, N.A. Nitric Oxide and Abscisic Acid Mediate Heat Stress Tolerance through Regulation of Osmolytes and Antioxidants to Protect Photosynthesis and Growth in Wheat Plants. Antioxidants 2022, 11, 372. [Google Scholar] [CrossRef]
- Wang, W.; Xie, Y.; Liu, C.; Jiang, H. The Exogenous Application of Brassinosteroids Confers Tolerance to Heat Stress by Increasing Antioxidant Capacity in Soybeans. Agriculture 2022, 12, 1095. [Google Scholar] [CrossRef]
- Goyal, V.; Kumari, A.; Avtar, R.; Baliyan, V.; Mehrotra, S. Orthosilicic Acid and Seaweed Extract Alleviate the Deteriorative Effects of High Temperature Stress in Brassica juncea (L.) Czern & Coss. Silicon 2023, 15, 4909–4919. [Google Scholar] [CrossRef]
- Deng, H.; Wang, X.; Deng, S.; Zhang, L.; Ashraf, U.; Imran, M.; Tian, H.; Tang, X.; Mo, Z. Silicon (Si) Application Improved the Antioxidant Response and Grain Yield Formation in Rice Under High Temperature Conditions. Silicon 2023, 15, 4375–4385. [Google Scholar] [CrossRef]
- Do Nascimento, C.W.A.; Da Silva, F.B.V.; Lima, L.H.V.; Silva, J.R.; De Lima Veloso, V.; Da Silva, F.L.; De Freitas, S.T.; Dos Santos, L.F.; Dos Santos, M.A. Silicon Application to Soil Increases the Yield and Quality of Table Grapes (Vitis vinifera L.) Grown in a Semiarid Climate of Brazil. Silicon 2022, 15, 1647–1658. [Google Scholar] [CrossRef]
- Shahid, M.; Saleem, M.F.; Saleem, A.; Sarwar, M.; Ma, B.-L.; Anjum, S.A.; Hussain, A. Does Exogenous Selenium Elicited Biochemical Regulations Make Economic Improvements in Terminally Heat-Stressed Bread Wheat? An Evidence from Marginal Analysis. J. Soil Sci. Plant Nutr. 2023, 23, 3521–3536. [Google Scholar] [CrossRef]
- Al Masruri, M.H.K.; Ullah, A.; Farooq, M. Application of Nano Chitosan-Glycinebetaine for Improving Bread Wheat Performance under Combined Drought and Heat Stresses. J. Soil Sci. Plant Nutr. 2023, 23, 3482–3499. [Google Scholar] [CrossRef]
- Shakoor, A.; Saleem, M.F.; Sarwar, M.; Zia Ul Haq, M. Exogenous Application of Chitosan Mediated Biochemical, Phenological, Quality, and Yield Attributes of Heat-Stressed Cotton (Gossypium hirsutum L.). Gesunde Pflanz. 2023, 75, 1755–1767. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, M.; Wu, C.; Huang, S.; Danish, S. Mitigation of Heat Stress in Wheat (Triticum aestivum L.) via Regulation of Physiological Attributes Using Sodium Nitroprusside and Gibberellic Acid. BMC Plant Biol. 2023, 23, 302. [Google Scholar] [CrossRef] [PubMed]
- Seliem, M.K.; Hafez, Y.; El-Ramady, H. Using of Nano—Selenium in Reducing the Negative Effects of High Temperature Stress on Chrysanthemum Morifolium Ramat. J. Sustain. Agric. Sci. 2020, 46, 47–60. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Saad, A.M.; Najjar, A.A.; Alzahrani, S.O.; Alkhatib, F.M.; Shafi, M.E.; Selem, E.; Desoky, E.-S.M.; Fouda, S.E.E.; El-Tahan, A.M.; et al. The Use of Biological Selenium Nanoparticles to Suppress Triticum Aestivum L. Crown and Root Rot Diseases Induced by Fusarium Species and Improve Yield under Drought and Heat Stress. Saudi J. Biol. Sci. 2021, 28, 4461–4471. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, T.A.; Abd-Alkarim, E.; El-Aidy, F.; Hamed, E.-S.; Sharaf-Eldin, M.; Taha, N.; El-Ramady, H.; Bayoumi, Y.; Dos Reis, A.R. Nano-Selenium, Silicon and H2O2 Boost Growth and Productivity of Cucumber under Combined Salinity and Heat Stress. Ecotoxicol. Environ. Saf. 2021, 212, 111962. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.A.; Adeel, M.; Shakoor, N.; Ali, I.; Ishfaq, M.; Haider, F.U.; Deng, X. Unraveling the Roles of Modified Nanomaterials in Nano Enabled Agriculture. Plant Physiol. Biochem. 2023, 202, 107944. [Google Scholar] [CrossRef]
- Haris, M.; Hussain, T.; Mohamed, H.I.; Khan, A.; Ansari, M.S.; Tauseef, A.; Khan, A.A.; Akhtar, N. Nanotechnology—A New Frontier of Nano-Farming in Agricultural and Food Production and Its Development. Sci. Total Environ. 2023, 857, 159639. [Google Scholar] [CrossRef]
- Ahmed, T.; Noman, M.; Gardea-Torresdey, J.L.; White, J.C.; Li, B. Dynamic Interplay between Nano-Enabled Agrochemicals and the Plant-Associated Microbiome. Trends Plant Sci. 2023, 28, 1310–1325. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, M.; Kumar, A.; Rani, R. Application of Nano Formulations in Agriculture. Biocatal. Agric. Biotechnol. 2023, 54, 102934. [Google Scholar] [CrossRef]
- Sharma, R.; Kumar, V. Nano Enabled Agriculture for Sustainable Soil. Waste Manag. Bull. 2024, 2, 152–161. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, W.; Zhu, G.; Tan, Z.; Huang, L.; Zhang, P.; Gao, L.; Rui, Y. Nano-Pesticides and Fertilizers: Solutions for Global Food Security. Nanomaterials 2023, 14, 90. [Google Scholar] [CrossRef] [PubMed]
- Ningombam, L.; Mana, T.; Apum, G.; Ningthoujam, R.; Disco Singh, Y. Nano-Bioremediation: A Prospective Approach for Environmental Decontamination in Focus to Soil, Water and Heavy Metals. Environ. Nanotechnol. Monit. Manag. 2024, 21, 100931. [Google Scholar] [CrossRef]
- Garg, S.; Rumjit, N.P.; Roy, S. Smart Agriculture and Nanotechnology: Technology, Challenges, and New Perspective. Adv. Agrochem. 2023, in press. [Google Scholar] [CrossRef]
- Ullah, A.; Nadeem, F.; Nawaz, A.; Siddique, K.H.M.; Farooq, M. Heat Stress Effects on the Reproductive Physiology and Yield of Wheat. J. Agron. Crop Sci. 2022, 208, 1–17. [Google Scholar] [CrossRef]
- Jakhar, A.M.; Aziz, I.; Kaleri, A.R.; Hasnain, M.; Haider, G.; Ma, J.; Abideen, Z. Nano-Fertilizers: A Sustainable Technology for Improving Crop Nutrition and Food Security. NanoImpact 2022, 27, 100411. [Google Scholar] [CrossRef] [PubMed]
- Prokisch, J.; Törős, G.; Nguyen, D.H.H.; Neji, C.; Ferroudj, A.; Sári, D.; Muthu, A.; Brevik, E.C.; El-Ramady, H. Nano-Food Farming: Toward Sustainable Applications of Proteins, Mushrooms, Nano-Nutrients, and Nanofibers. Agronomy 2024, 14, 606. [Google Scholar] [CrossRef]
- Verma, K.K.; Song, X.-P.; Joshi, A.; Tian, D.-D.; Rajput, V.D.; Singh, M.; Arora, J.; Minkina, T.; Li, Y.-R. Recent Trends in Nano-Fertilizers for Sustainable Agriculture under Climate Change for Global Food Security. Nanomaterials 2022, 12, 173. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, K.; Ahmad, R.; Abd-Elsalam, K.A. Emerging Frontiers in Nanotechnology for Precision Agriculture: Advancements, Hurdles and Prospects. Agrochemicals 2023, 2, 220–256. [Google Scholar] [CrossRef]
- El-Ramady, H.; El-Henawy, A.; Amer, M.; Omara, A.E.-D.; Elsakhawy, T.; Elbasiouny, H.; Elbehiry, F.; Abou Elyazid, D.; El-Mahrouk, M. Agricultural Waste and Its Nano-Management: Mini Review. Egypt. J. Soil Sci. 2020, 60, 349–364. [Google Scholar] [CrossRef]
- Sathish Kumar, R.K.; Sasikumar, R.; Dhilipkumar, T. Exploiting Agro-Waste for Cleaner Production: A Review Focusing on Biofuel Generation, Bio-Composite Production, and Environmental Considerations. J. Clean. Prod. 2024, 435, 140536. [Google Scholar] [CrossRef]
- Valenzuela-Amaro, H.M.; Aguayo-Acosta, A.; Meléndez-Sánchez, E.R.; De La Rosa, O.; Vázquez-Ortega, P.G.; Oyervides-Muñoz, M.A.; Sosa-Hernández, J.E.; Parra-Saldívar, R. Emerging Applications of Nanobiosensors in Pathogen Detection in Water and Food. Biosensors 2023, 13, 922. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Hazarika, M.; Heisnam, P.; Pandey, H.; Devadas, V.S.; Singh, D.; Wangsu, M.; Kartha, B.D. Influence of Storage Conditions, Packaging, Post-Harvest Technology, Nanotechnology and Molecular Approaches on Shelf Life of Microgreens. J. Agric. Food Res. 2023, 14, 100835. [Google Scholar] [CrossRef]
- Zamel, D.; Khan, A.U.; Waris, A.; Ebrahim, A.; Abd El-Sattar, N.E.A. Nanomaterials Advancements for Enhanced Contaminant Removal in Wastewater Treatment: Nanoparticles, Nanofibers, and Metal-Organic Frameworks (MOFs). Results Chem. 2023, 6, 101092. [Google Scholar] [CrossRef]
- Chauhan, P.; Imam, A.; Kanaujia, P.K.; Suman, S.K. Nano-Bioremediation: An Eco-Friendly and Effective Step towards Petroleum Hydrocarbon Removal from Environment. Environ. Res. 2023, 231, 116224. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Guo, Q.; Zhong, C.; Zhang, Z. Multifunctional Cell Membranes-Based Nano-Carriers for Targeted Therapies: A Review of Recent Trends and Future Perspective. Drug Deliv. 2023, 30, 2288797. [Google Scholar] [CrossRef]
- Kalimuthu, R.; Meenachi Sellan, K.; Antony, D.; Rajaprakasam, S.; Chokkalingam, V.; Chidambaram, P.; Kanagarajan, S. Nanopriming Action of Microwave-Assisted Biofunctionalized ZnO Nanoparticles to Enhance the Growth under Moisture Stress in Vigna radiata. ACS Omega 2023, 8, 28143–28155. [Google Scholar] [CrossRef]
- Younis, A.A.; Khattab, H.; Emam, M.M. Impacts of Silicon and Silicon Nanoparticles on Leaf Ultrastructure and TaPIP1 and TaNIP2 Gene Expressions in Heat Stressed Wheat Seedlings. Biol. Plant. 2020, 64, 343–352. [Google Scholar] [CrossRef]
- Wydra, K.; Vollmer, V.; Busch, C.; Prichta, S. Agrivoltaic: Solar Radiation for Clean Energy and Sustainable Agriculture with Positive Impact on Nature. In Solar Radiation—Enabling Technologies, Recent Innovations, and Advancements for Energy Transition; IntechOpen: London, UK, 2023. [Google Scholar]
- Gomez-Casanovas, N.; Mwebaze, P.; Khanna, M.; Branham, B.; Time, A.; DeLucia, E.H.; Bernacchi, C.J.; Knapp, A.K.; Hoque, M.J.; Du, X.; et al. Knowns, Uncertainties, and Challenges in Agrivoltaics to Sustainably Intensify Energy and Food Production. Cell Rep. Phys. Sci. 2023, 4, 101518. [Google Scholar] [CrossRef]
- Jo, H.; Asekova, S.; Bayat, M.A.; Ali, L.; Song, J.T.; Ha, Y.-S.; Hong, D.-H.; Lee, J.-D. Comparison of Yield and Yield Components of Several Crops Grown under Agro-Photovoltaic System in Korea. Agriculture 2022, 12, 619. [Google Scholar] [CrossRef]
- Haider, S.; Iqbal, J.; Naseer, S.; Yaseen, T.; Shaukat, M.; Bibi, H.; Ahmad, Y.; Daud, H.; Abbasi, N.L.; Mahmood, T. Molecular Mechanisms of Plant Tolerance to Heat Stress: Current Landscape and Future Perspectives. Plant Cell Rep. 2021, 40, 2247–2271. [Google Scholar] [CrossRef] [PubMed]
- Ul Hassan, M.; Rasool, T.; Iqbal, C.; Arshad, A.; Abrar, M.; Abrar, M.M.; Habib-ur-Rahman, M.; Noor, M.A.; Sher, A.; Fahad, S. Linking Plants Functioning to Adaptive Responses Under Heat Stress Conditions: A Mechanistic Review. J. Plant Growth Regul. 2022, 41, 2596–2613. [Google Scholar] [CrossRef]
- Djalovic, I.; Kundu, S.; Bahuguna, R.N.; Pareek, A.; Raza, A.; Singla-Pareek, S.L.; Prasad, P.V.V.; Varshney, R.K. Maize and Heat Stress: Physiological, Genetic, and Molecular Insights. Plant Genome 2023, 17, e20378. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.R.; Choudhary, M.; Singh, J.; Lal, M.K.; Jha, P.K.; Udawat, P.; Gupta, N.K.; Rajput, V.D.; Garg, N.K.; Maheshwari, C.; et al. Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates. Int. J. Mol. Sci. 2022, 23, 2838. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yu, J.; Qian, Q.; Shang, L. Enhancement of Heat and Drought Stress Tolerance in Rice by Genetic Manipulation: A Systematic Review. Rice 2022, 15, 67. [Google Scholar] [CrossRef] [PubMed]
- Devi, J.; Sagar, V.; Mishra, G.P.; Jha, P.K.; Gupta, N.; Dubey, R.K.; Singh, P.M.; Behera, T.K.; Prasad, P.V.V. Heat Stress Tolerance in Peas (Pisum sativum L.): Current Status and Way Forward. Front. Plant Sci. 2023, 13, 1108276. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, S.; Lasorella, C.; Dipierro, N.; Vita, F.; De Pinto, M.C. Redox Signaling in Plant Heat Stress Response. Antioxidants 2023, 12, 605. [Google Scholar] [CrossRef]
- Omar, A.A.; Heikal, Y.M.; Zayed, E.M.; Shamseldin, S.A.M.; Salama, Y.E.; Amer, K.E.; Basuoni, M.M.; Abd Ellatif, S.; Mohamed, A.H. Conferring of Drought and Heat Stress Tolerance in Wheat (Triticum aestivum L.) Genotypes and Their Response to Selenium Nanoparticles Application. Nanomaterials 2023, 13, 998. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Belliraj, N.; Bossmann, S.H.; Prasad, P.V.V. High-Temperature Stress Alleviation by Selenium Nanoparticle Treatment in Grain Sorghum. ACS Omega 2018, 3, 2479–2491. [Google Scholar] [CrossRef] [PubMed]
- Safari, M.; Oraghi Ardebili, Z.; Iranbakhsh, A. Selenium Nano-Particle Induced Alterations in Expression Patterns of Heat Shock Factor A4A (HSFA4A), and High Molecular Weight Glutenin Subunit 1Bx (Glu-1Bx) and Enhanced Nitrate Reductase Activity in Wheat (Triticum aestivum L.). Acta Physiol. Plant. 2018, 40, 117. [Google Scholar] [CrossRef]
- Zhao, W.; Wu, Z.; Amde, M.; Zhu, G.; Wei, Y.; Zhou, P.; Zhang, Q.; Song, M.; Tan, Z.; Zhang, P.; et al. Nanoenabled Enhancement of Plant Tolerance to Heat and Drought Stress on Molecular Response. J. Agric. Food Chem. 2023, 71, 20405–20418. [Google Scholar] [CrossRef] [PubMed]
- Azameti, M.K.; Imoro, A.-W.M. Nanotechnology: A Promising Field in Enhancing Abiotic Stress Tolerance in Plants. Crop Des. 2023, 2, 100037. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Rashmi, R.; Surya Ulhas, R.; Sudheer, W.N.; Banadka, A.; Nagella, P.; Aldaej, M.I.; Rezk, A.A.-S.; Shehata, W.F.; Almaghasla, M.I. The Role of Nanoparticles in Response of Plants to Abiotic Stress at Physiological, Biochemical, and Molecular Levels. Plants 2023, 12, 292. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Liu, Y.; Li, T. Nano-TiO2 Improve the Photosynthesis of Tomato Leaves under Mild Heat Stress. Biol. Trace Elem. Res. 2013, 156, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Elsakhawy, T.; Omara, A.E.-D.; Amer, M.; El-Ramady, H.; Prokisch, J.; Brevik, E. A Diagrammatic Mini-Review on Soil-Human Health-Nexus: With Focus on Soil Nano-Pollution. Environ. Biodivers. Soil Secur. 2022, 6, 327–338. [Google Scholar] [CrossRef]
- Behl, T.; Kaur, I.; Sehgal, A.; Singh, S.; Sharma, N.; Bhatia, S.; Al-Harrasi, A.; Bungau, S. The Dichotomy of Nanotechnology as the Cutting Edge of Agriculture: Nano-Farming as an Asset versus Nanotoxicity. Chemosphere 2022, 288, 132533. [Google Scholar] [CrossRef]
- Ali, S.S.; Al-Tohamy, R.; Koutra, E.; Moawad, M.S.; Kornaros, M.; Mustafa, A.M.; Mahmoud, Y.A.-G.; Badr, A.; Osman, M.E.H.; Elsamahy, T.; et al. Nanobiotechnological Advancements in Agriculture and Food Industry: Applications, Nanotoxicity, and Future Perspectives. Sci. Total Environ. 2021, 792, 148359. [Google Scholar] [CrossRef]
- Mejía-Jaramillo, A.M.; Gómez-Hoyos, C.; Cañas Gutierrez, A.I.; Correa-Hincapié, N.; Zuluaga Gallego, R.; Triana-Chávez, O. Tackling the Cytotoxicity and Genotoxicity of Cellulose Nanofibers from the Banana Rachis: A New Food Packaging Alternative. Heliyon 2023, 9, e21560. [Google Scholar] [CrossRef]
- Shahid, M.; Zeyad, M.T.; Syed, A.; Bahkali, A.H.; Pichtel, J.; Verma, M. Assessing Phytotoxicity and Cyto-Genotoxicity of Two Insecticides Using a Battery of in-Vitro Biological Assays. Mutat. Res. Toxicol. Environ. Mutagen. 2023, 891, 503688. [Google Scholar] [CrossRef] [PubMed]
- Paz-Trejo, C.; Arenas-Huertero, F.; Gómez-Arroyo, S. Nano Fraction of Pesticide Induces Genotoxicity and Oxidative Stress-dependent Reticulum Stress. Environ. Toxicol. 2024, 39, 1072–1085. [Google Scholar] [CrossRef]
- Santos, J.; Barreto, A.; Fernandes, C.; Silva, A.R.R.; Cardoso, D.N.; Pinto, E.; Daniel-da-Silva, A.L.; Maria, V.L. A Comprehensive Ecotoxicity Study of Molybdenum Disulfide Nanosheets versus Bulk Form in Soil Organisms. Nanomaterials 2023, 13, 3163. [Google Scholar] [CrossRef]
- Kumah, E.A.; Fopa, R.D.; Harati, S.; Boadu, P.; Zohoori, F.V.; Pak, T. Human and Environmental Impacts of Nanoparticles: A Scoping Review of the Current Literature. BMC Public Health 2023, 23, 1059. [Google Scholar] [CrossRef]
- Xuan, L.; Ju, Z.; Skonieczna, M.; Zhou, P.; Huang, R. Nanoparticles-induced Potential Toxicity on Human Health: Applications, Toxicity Mechanisms, and Evaluation Models. MedComm 2023, 4, e327. [Google Scholar] [CrossRef]
- Zafar, H.; Javed, R.; Zia, M. Nanotoxicity Assessment in Plants: An Updated Overview. Environ. Sci. Pollut. Res. 2023, 30, 93323–93344. [Google Scholar] [CrossRef] [PubMed]
- Ghadam, P.; Saboora, A. Negative Effects of Nanonutrients on Plants. In Nanofertilizer Delivery, Effects and Application Methods; Elsevier: Amsterdam, The Netherlands, 2024; pp. 351–369. ISBN 978-0-443-13332-9. [Google Scholar]
- Zhang, Y.; Goss, G.G. Nanotechnology in Agriculture: Comparison of the Toxicity between Conventional and Nano-Based Agrochemicals on Non-Target Aquatic Species. J. Hazard. Mater. 2022, 439, 129559. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Xiong, G.; Liu, Z. Toxicity of Metal-Based Nanoparticles: Challenges in the Nano Era. Front. Bioeng. Biotechnol. 2022, 10, 1001572. [Google Scholar] [CrossRef] [PubMed]
- Onyeaka, H.; Passaretti, P.; Miri, T.; Al-Sharify, Z.T. The Safety of Nanomaterials in Food Production and Packaging. Curr. Res. Food Sci. 2022, 5, 763–774. [Google Scholar] [CrossRef]
- Okeke, E.S.; Ezeorba, T.P.C.; Mao, G.; Chen, Y.; Feng, W.; Wu, X. Nano-Enabled Agrochemicals/Materials: Potential Human Health Impact, Risk Assessment, Management Strategies and Future Prospects. Environ. Pollut. 2022, 295, 118722. [Google Scholar] [CrossRef]
- Lu, S.; Liang, B.; Hu, J.; Liu, Y.; Yang, F.; Liu, J. Multidimensional Response of Dopamine Nano-System for on-Demand Fungicides Delivery: Reduced Toxicity and Synergistic Antibacterial Effects. Chem. Eng. J. 2024, 482, 148990. [Google Scholar] [CrossRef]
Plant Species | Anti-Heat-Stressor | Impact | Ref. |
---|---|---|---|
Common thyme (Thymus vulgaris L.) | Eucalyptus wood-derived biochar (5%) and β-sitosterol (100 ppm) | Enhanced tolerance by increasing photosynthetic pigment production and antioxidant activity, and by maintaining the nutrient supply. | [120] |
Rice (Oryza sativa L.) | Biochar application (40 g kg−1 soil) | Increased rice tolerance by improving the root-zone environment. | [164] |
Brassica juncea (L.) Czern & Coss | Ortho-silicic acid (3 ppm); seaweed extract (5 ppm) | Both treatments mitigated the adverse effects of heat stress by increasing the photosynthetic rate and chlorophyll content and decreasing membrane injury and the MDA content. | [167] |
Rice (Oryza sativa L.) | Silicon (12 g per pot) | Increased yield, dry matter accumulation, and tolerance under high-temperature conditions. | [168] |
Table grapes (Vitis vinifera L.) | Silica fertilizer (23% Si) | Increased yield and quality, mainly by increasing total soluble solids, macro- and micro-nutrients, and photosynthesis efficiency. | [169] |
Wheat (Triticum aestivum L.) | Selenium at 25, 50, 75 and 100 mg Se L−1 | Under heat stress, 75 mg Se L−1 provided more of a benefit than the other doses. | [170] |
Wheat (Triticum aestivum L.) | Nano-chitosan–glycine betaine 100 mM for 18 h | Seed priming improved heat and drought tolerance by osmotic adjustment, conserving water, activating antioxidants, and increasing yield. | [171] |
Cotton (Gossypium hirsutum L.) | Foliar chitosan (0.2, 0.4, 0.6, and 0.8 g L−1) | Under heat stress, 0.8 g L−1 increased fiber quality and phenological and yield attributes more than the other doses. | [172] |
Wheat (Triticum aestivum L.) | Sodium nitroprusside and gibberellic acid (100 µM and 5 µg/mL) | The treatment increased NO, H2O2, SOD, POD, APX, proline, GR, and GB that scavenged ROS and decreased the adverse effects of stress. | [173] |
Soybean (Glycine max L.) | Brassinosteroids as 24-epibrassinolide (up to 1 µM) | Improved the capacity of antioxidants to protect the photosynthetic apparatus under heat stress. | [166] |
Wheat (Triticum aestivum L.) | Nitric oxide (100 µM) and abscisic acid (100 µM) | Regulated the expression and activity of enzymatic antioxidants, with produced osmolytes acting as a possible strategy for heat tolerance. | [165] |
Chrysanthemum morifolium Ramat. | Biological nano-Se (50, 100, 150 and 200 mg L−1) | Nano-Se to 200 L−1 improved heat tolerance by enhancing antioxidant enzymes and decreasing polyphenol oxidase and electrolyte leakage. | [174] |
Wheat (Triticum aestivum L.) | Biological Se-NPs (100 mg L−1) | Enhanced plant tolerance to drought and heat stress by increasing growth and productivity; inhibited fungal disease as well. | [175] |
Cucumber (Cucumis sativus L.) | Silicon (200 mg L−1) and nano-Se (25 mg L−1) | Both Se and Si foliar applications boosted plant growth and the yield of cucumber under salinity and heat stress by increasing fruit yield and quality. | [176] |
Plant Species | Applied NMs | Heat Stress | General Impact | Ref. |
---|---|---|---|---|
Wheat (Triticum aestivum L.) | Se-NPs foliar spray (10 mg·L−1) | 38 °C for 5 h·day−1 | NMs mitigated physio-biochemical and gene expression attributes under heat stress. | [209] |
Bread wheat (Triticum aestivum L.) | Nano-sized chitosan–glycine betaine (100 mM) | 37/28 °C all seasons (4 months) | NMs increased the activity of antioxidant enzymes and sustained plant growth and yield. | [171] |
Mung bean (Vigna radiata L.) | Nano-ZnO (15, 30, 45, and 60 mg L−1) | 40 °C during the flowering stage | Foliar nano-ZnO protected plants from heat stress by improving physiological and biochemical attributes. | [149] |
Cucumber (Cucumis sativus L.) | Bio-nano-Se at 25 mg L−1 | 41 to 26 °C all season | Foliar NPs-Se promoted plant growth by increasing nutrient uptake and plant biomass. | [176] |
Sorghum (Sorghum bicolor L. Moench) | Foliar applied Se-NPs (10 ppm) | 38 °C for 10 days | Se-NPs can protect sorghum plants by enhancing the antioxidative defense system under heat stress. | [210] |
Wheat (Triticum aestivum L.) | Foliar nano-Se (5, 10, 50 mg L−1) | Not mentioned | Gene expression of heat shock factor (A4A) and high-molecular-weight glutenin subunit 1Bx was altered; nitrate reductase activity was changed. | [211] |
Tomato (Lycopersicon esculentum Mill.) | Nano-TiO2 (0.1–0.2 g L−1) | 35 °C for 7 days | Nano-TiO2 promoted photosynthesis in tomato leaves under mild heat stress. | [215] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Ramady, H.; Prokisch, J.; El-Mahrouk, M.E.; Bayoumi, Y.A.; Shalaby, T.A.; Brevik, E.C.; Solberg, S.Ø. Nano-Food Farming Approaches to Mitigate Heat Stress under Ongoing Climate Change: A Review. Agriculture 2024, 14, 656. https://doi.org/10.3390/agriculture14050656
El-Ramady H, Prokisch J, El-Mahrouk ME, Bayoumi YA, Shalaby TA, Brevik EC, Solberg SØ. Nano-Food Farming Approaches to Mitigate Heat Stress under Ongoing Climate Change: A Review. Agriculture. 2024; 14(5):656. https://doi.org/10.3390/agriculture14050656
Chicago/Turabian StyleEl-Ramady, Hassan, József Prokisch, Mohammed E. El-Mahrouk, Yousry A. Bayoumi, Tarek A. Shalaby, Eric C. Brevik, and Svein Ø. Solberg. 2024. "Nano-Food Farming Approaches to Mitigate Heat Stress under Ongoing Climate Change: A Review" Agriculture 14, no. 5: 656. https://doi.org/10.3390/agriculture14050656
APA StyleEl-Ramady, H., Prokisch, J., El-Mahrouk, M. E., Bayoumi, Y. A., Shalaby, T. A., Brevik, E. C., & Solberg, S. Ø. (2024). Nano-Food Farming Approaches to Mitigate Heat Stress under Ongoing Climate Change: A Review. Agriculture, 14(5), 656. https://doi.org/10.3390/agriculture14050656