Using Cover Crops as Means of Controlling Weeds and Reducing the Applied Quantity of Glyphosate-Based Herbicide in No-Till Glyphosate Tolerant Soybean and Corn
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Sampling and Measurements
2.2.1. Weeds Cover Rates
2.2.2. Crops Biomass and Height
2.2.3. Grain Yields
2.2.4. Soil Water Content
2.2.5. Soil Physicochemical Analyses
2.3. Statistical Analyses
3. Results
3.1. Weeds Cover Rates
3.2. Crops Weights, Heights and Grain Yields
3.2.1. Soybean Plants
3.2.2. Corn Plants
3.2.3. Grain Yields
3.3. Soil Water Content
3.4. Soil cation Content Nutriments
4. Discussion
4.1. The Use of Cover Crop to Control Weeds
4.2. Influence of CC on GBH Doses of Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perotti, V.E.; Larran, A.S.; Palmieri, V.E.; Martinatto, A.K.; Permingeat, H.R. Herbicide resistant weeds: A call to integrate conventional agricultural practices, molecular biology knowledge and new technologies. Plant Sci. 2020, 290, 110255. [Google Scholar] [CrossRef] [PubMed]
- Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Clay, S.A. Near-termchallenges for global agriculture: Herbicide-resistant weeds. Agron. J. 2021, 113, 4463–4472. [Google Scholar] [CrossRef]
- Harlan, J.R.; de Wet, J.M.J. Some thoughts about weeds. Econ. Bot. 1965, 19, 16–24. [Google Scholar] [CrossRef]
- Sharma, G.; Shrestha, S.; Kunwar, S.; Tseng, T.-M. Crop diversification for improved weed management: A review. Agriculture 2021, 11, 461. [Google Scholar] [CrossRef]
- Soltani, N.; Dille, J.A.; Burke, I.C.; Everman, W.J.; VanGessel, M.J.; Davis, V.M.; Sikkema, P.H. Potential corn yield losses from weeds in North America. Weed Technol. 2016, 30, 979–984. [Google Scholar] [CrossRef]
- Soltani, N.; Dille, J.A.; Burke, I.C.; Everman, W.J.; VanGessel, M.J.; Davis, V.M.; Sikkema, P.H. Perspectives on potential soybean yield losses from weeds in North America. Weed Technol. 2017, 31, 148–154. [Google Scholar] [CrossRef]
- Timmons, F.L. A history of weed control in the United States and Canada. Weed Sci. 2005, 53, 748–761. [Google Scholar] [CrossRef]
- Heap, I.; Duke, S.O. Overview of glyphosate-resistant weeds worldwide. Pest Manag. Sci. 2018, 74, 1040–1049. [Google Scholar] [CrossRef]
- Fernando, N.; Manalil, S.; Chauhan, B.S.; Florentine, S.K.; Seneweera, S. Glyphosate Resistance of C3 and C4 Weeds under Rising Atmospheric CO2. Front. Plant Sci. 2016, 7, 910. [Google Scholar] [CrossRef]
- Heap, I. The International Survey of Herbicide Resistant Weeds. Available online: http://www.weedscience.org/Account/FAQ (accessed on 19 February 2024).
- Varanasi, A.; Vara Prasad, P.V.; Jugulam, M. Impact of Climate Change Factors on Weeds and Herbicide Efficacy. Adv. Agron. 2016, 135, 107–146. [Google Scholar]
- Triplett, G.B.; Dick, W.A. No-tillage crop production: A revolution in agriculture! Agron. J. 2008, 100, 153–166. [Google Scholar] [CrossRef]
- Liu, M.; Ussirib, D.A.N.; Lal, R. Soil organic carbon and nitrogen fractions under different land uses and tillage practices. Commun. Soil Sci. Plant Anal. 2016, 47, 1528–1541. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, C.; Hennessy, D.A.; Feng, H.; Tian, H. Impacts of tillage practices on soil carbon stocks in the US corn-soybean cropping system during 1998 to 2016. Environ. Res. Lett. 2020, 15, 014008. [Google Scholar] [CrossRef]
- Derpsch, R.; Friedrich, T.; Kassam, A.; Hongwen, L. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng. 2010, 3, 1–25. [Google Scholar]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of Conservation Agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Beckie, H.J.; Flower, K.C.; Ashworth, M.B. Farming without Glyphosate? Plants 2020, 9, 96. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.O.; Powles, S.B.; Sammons, R.D. Glyphosate-How it became a once in hundred year herbicide and its future. Outlooks Pest Manag. 2018, 29, 247–251. [Google Scholar] [CrossRef]
- Farooq, M.; Flower, K.C.; Jabran, K.; Wahid, A.; Siddique, K.H.M. Crop yield and weed management in rainfed conservation agriculture. Soil Tillage Res. 2011, 117, 172–183. [Google Scholar] [CrossRef]
- Duke, S.O. The history and current status of glyphosate. Pest Manag. Sci. 2017, 74, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Brookes, G.; Taheripour, F.; Tyner, W. The Contribution of Glyphosate to Agriculture and Potential Impact of Restrictions on Use at the Global Level. GM Crops Food 2017, 8, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Brookes, G. Glyphosate use in Asia and implications of possible restrictions on its use. AgBioForum 2019, 22, 1–26. [Google Scholar]
- Kanissery, R.; Gairhe, B.; Kadyampakeni, D.; Batuman, O.; Alferez, F. Glyphosate: Its environmental persistence and impact on crop health and nutrition. Plants 2019, 8, 499. [Google Scholar] [CrossRef] [PubMed]
- Osipitan, O.A.; Dille, J.A.; Assefa, Y.; Radicetti, E.; Ayeni, A.; Knezevic, S.Z. Impact of cover crop management on level of weed suppression: A meta-analysis. Crop Sci. 2019, 59, 833–842. [Google Scholar] [CrossRef]
- Lemessa, F.; Wakjira, M. Cover crops as a means of ecological weed management in agroecosystems. J. Crop Sci. Biotechnol. 2015, 18, 133–145. [Google Scholar] [CrossRef]
- OMAFRA. Guide Agronomique des Grandes Cultures, Publication 811F ed.; l’Ontario, G.d., Ed.; Ministère de l’agriculture, de l’alimentation et des Affaires rurales (OMAFRA): Toronto, ON, Canada, 2017; pp. 1–521. [Google Scholar]
- Bernier Brillon, J.; Moingt, M.; Lucotte, M. Influence of no-till system with or without cover crops on stomata sensitivity of glyphosate-tolerant soybeans to vapor pressure deficit. Physiologia 2023, 3, 531–541. [Google Scholar] [CrossRef]
- Datta, S.; Taghvaeian, S.; Stivers, J. Understanding Soil Water Content and Thresholds for Irrigation Management; Oklahoma Cooperative Extension Service, Oklahoma State University, Division of Agricultural Sciences and Natural Resources: Stillwater, OK, USA, 2017. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Nichols, V.; Carlson, S.; Martinez-Feria, R.; Basso, B.; Weisberger, D.; Basche, A. Cover crops and weed suppression in the U.S. Midwest: A meta-analysis and modeling study. Agric. Environ. Lett. 2020, 5, e20022. [Google Scholar] [CrossRef]
- Teasdale, J.R. Contribution of cover crops to weed management in sustainable agricultural systems. J. Prod. Agric. 1996, 9, 475–479. [Google Scholar] [CrossRef]
- Petit, S.; Cordeau, S.; Chauvel, B.; Bohan, D.; Guillemin, J.-P.; Steinberg, C. Biodiversity-based options for arable weed management. A review. Agron. Sustain. Dev. 2018, 38, 48. [Google Scholar] [CrossRef]
- Woolford, A.R.; Jarvis, P.E. Cover, catch and companion crops: Benefits, challenges and economics for Uk growers. Agricology 2017. [Google Scholar]
- Grossiord, C.; Buckley, T.N.; Novick, K.A.; Poulter, B.; Sperry, J.S.; McDowell, N.G. Plant responses to rising vapor pressure deficit. New Phytol. 2020, 226, 1550–1566. [Google Scholar] [CrossRef] [PubMed]
- Seager, R.; Hooks, A.; Parkwilliams, A.; Cook, B.; Nakamura, J.; Henderson, N. Climatology, variability, and trends in the U.S. vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteorol. Climatol. 2015, 54, 1121–1141. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Devi, J.; Shekoofa, A.; Choudhary, S.; Sadok, W.; Vadez, V.; Riar, M.; Rufty, T. Limited-transpiration response to high vapor pressure deficit in crop species. Plant Sci. 2017, 260, 109–118. [Google Scholar] [CrossRef]
- Robertson, G.P.; Gross, K.L.; Hamilton, S.K.; Landis, D.A.; Schmidt, T.M.; Snapp, S.S.; Swinton, S.M. Farming for ecosystem services: An ecological approach to production agriculture. BioScience 2014, 64, 404–415. [Google Scholar] [CrossRef] [PubMed]
- Scopel, E.; Triomphe, B.; Affholder, F.; Macena Da Silva, F.A.; Corbeels, M.; Valadares Xavier, J.H.; Lahmar, R.; Recous, S.; Bernoux, M.; Blanchart, E.; et al. Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agron. Sustain. Dev. 2013, 33, 113–130. [Google Scholar] [CrossRef]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kuiz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and economic cost of soil erosion and conservation benefit. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef]
- Baraibar, B.; White, C.M.; Hunter, M.C.; Finney, D.M.; Barbercheck, M.E.; Kaye, J.P.; Curran, W.S.; Bunchek, J.; Mortensen, D.A. Weeds in cover crops: Context and management considerations. Agriculture 2021, 11, 193. [Google Scholar] [CrossRef]
- Jabran, K.; Mahajan, G.; Sardana, V.; Chauhan, B.S. Allelopathy for weed control in agricultural systems. Crop Prot. 2015, 72, 57–65. [Google Scholar] [CrossRef]
- Abbas, T.; Ahmad, A.; Kamal, A.; Nawaz, M.Y.; Jamil, M.A.; Saeed, T.; Abid, M.A.; Ali, H.H.; Ateeq, M. Ways to use allelopathic potential for weed management: A review. Int. J. Food Sci. Agric. 2021, 5, 492–498. [Google Scholar] [CrossRef]
- Alsaadawi, I.S.; Sarbout, A.K.; Al-Shamma, L.M. Differential allelopathic potential of sunflower (Helianthus annuus L.) genotypes on weeds and wheat (Triticum aestivum L.) crop. Arch. Agron. Soil Sci. 2012, 58, 1139–1148. [Google Scholar] [CrossRef]
- Schulz, M.; Marocco, A.; Tabaglio, V.; Macias, F.A.; Molinillo, J.M.G. Benzoxazinoids in rye allelopathy: From discovery to application in sustainable weed control and organic farming. J. Chem. Ecol. 2013, 39, 154–174. [Google Scholar] [CrossRef] [PubMed]
- Scavo, A.; Mauromicale, G. Crop allelopathy for sustainable weed management in agroecosystems: Knowing the present with a view to the future. Agronomy 2021, 11, 2104. [Google Scholar] [CrossRef]
- Fahey, J.W.; Zalcmann, A.T.; Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001, 56, 5–51. [Google Scholar] [CrossRef] [PubMed]
- Bachheti, A.; Sharma, A.; Bachheti, R.K.; Husen, A.; Pandey, D.P. Plant allelochemicals and their various applications. In Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2019; pp. 1–25. [Google Scholar]
- Blackshaw, R.E.; Harker, K.N.; O’Donovan, J.T.; Beckie, H.J.; Smith, E.G. Ongoing Development of Integrated Weed Management Systems on the Canadian Prairie. Weed Sci. 2008, 56, 146–150. [Google Scholar] [CrossRef]
- Moss, S.; Ulber, L.; den Hoed, I. A herbicide resistance risk matrix. Crop Prot. 2019, 115, 13–19. [Google Scholar] [CrossRef]
- Clements, D.R.; Weise, S.F.; Swanton, C.J. Integrated weed management and weed species diversity. Phytoprotection 1994, 75, 1–18. [Google Scholar] [CrossRef]
- Harker, K.N.; O’Donovan, J.T. Recent Weed Control, Weed Management, and Integrated Weed Management. Weed Technol. 2013, 27, 1–11. [Google Scholar] [CrossRef]
- Davis, A.S. Cover-crop roller–crimper contributes to weed management in no-till soybean. Weed Sci. 2010, 58, 300–309. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Curran, W.S.; Mortenseny, D.M.; Ryany, M.R.; Shumway, D.L. Timing of cover-crop management effects on weed suppression in no-till planted soybean using a roller-crimper. Weed Sci. 2011, 59, 380–389. [Google Scholar] [CrossRef]
Years | Cover Crops Mix Sowed | ||
---|---|---|---|
Wheat | Corn | Soybean | |
2019 | 12 May: berseem (5 kg ha−1) and crimson clover (5 kg ha−1). Sown manually. | 19 June: crimson clover (5 kg ha−1), tillage radish (3 kg ha−1) and tillage turnips (2 kg ha−1). Sown manually. | 6 September: autumn wheat (225 kg ha−1). Sown with a Great Plains® seed drill. |
27 August: buckwheat (5 kg ha−1), sunflower (5 kg ha−1), faba bean (15 kg ha−1), tillage radish (3 kg ha−1), phacelia (1 kg ha−1), pea (25 kg ha−1) and oats (20 kg ha−1). Sown with a Great Plains® seed drill. | 8 September: autumn rye (50 kg ha−1), tillage radish (3 kg ha−1), tillage turnip (2 kg ha−1) and common vetch (10 kg ha−1). Sown with a Great Plains® seed drill. | ||
2020 | 1 June: berseem (5 kg ha−1) and crimson clover (5 kg ha−1). Sown manually. | 28 June: crimson clover (5 kg ha−1), tillage radish (3 kg ha−1 and tillage turnips (2 kg ha−1). Sown manually. | 6 October: autumn wheat (200 kg ha−1). Sown with a Great Plains® seed drill. |
14 August: buckwheat (5 kg ha−1), sunflower (5 kg ha−1), faba bean (15 kg ha−1), tillage radish (3 kg ha−1), phacelia (1 kg ha−1), pea (25 kg ha−1) and oats (20 kg ha−1). Sown with a Great Plains® seed drill. | 8 September: autumn rye (200 kg ha−1). Sown with a Great Plains® seed drill. |
Soybean | Crop Parameters | Years | Crop Managements | Years*Crop Managements |
Weed cover rates | 0.053 | <0.0001 * | 0.9911 | |
Plant (FW) | 0.642 | 0.0261 * | 0.6794 | |
Plant (DW) | 0.0182 | <0.0001 * | 0.183 | |
Plant height | <0.0001 * | 0.1113 | 0.9751 | |
Grain yield | 0.067 | <0.0001 * | 0.0848 | |
Corn | Crop Parameters | Years | Crop Managements | Years*Crop Managements |
Weed cover rates | 0.8695 | 0.0013 * | 0.8186 | |
Plant FW | <0.0001 * | 0.0001 * | 0.1152 | |
Plant DW | 0.2107 | 0.0068 * | 0.3269 | |
Plant height | 0.0013 * | 0.0001 * | 0.0842 | |
Grain yield | <0.0001 * | <0.0001 * | 0.027 * |
Plant Parameters | 2019 | 2020 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DSCC 0.84 | DSCC 1.67 | DSCC 3.33 | DS 3.33 | p-Value | DSCC 0.84 | DSCC 1.67 | DSCC 3.33 | DS 3.33 | p-Value | ||
Soybean | Fresh weight (FW) (g) | 31.4 ± 3.6 a | 33.8 ± 2.94 a | 37.8 ± 3.5 a | 35.9 ± 2.7 a | 0.5352 | 26.0 ± 4.6 a | 31.9 ± 3.4 a | 41.1 ± 4.2 a | 35.3 ± 3.2 a | 0.0597 * |
Dry weight (DW) (g) | 7.5 ± 0.8 a | 7.9 ± 0.7 a | 9.1 ± 0.9 a | 8.0 ± 0.5 a | 0.516 | 3.9 ± 0.9 a | 4.6 ± 0.6 a | 5.9 ± 0.7 a | 5.0 ± 0.6 a | 0.2564 | |
Height (cm) | 49.3 ± 1.6 c | 53.7 ± 1.2 b | 54.5 ± 3.1 b | 58.4 ± 5.8 a | 0.0004 | 48.3 ± 2.7 b | 56.5 ± 1.6 a | 60.5 ± 0.9 a | 61.2 ± 1.2 a | <0.001 | |
Grain yield (t ha−1) | 1.6 ± 0.1 b | 2.4 ± 0.1 a | 2.6 ± 0.1 a | 2.5 ± 0.1 a | <0.001 | 1.2 ± 0.4 b | 2.8 ± 0.3 a | 3.3 ± 0.3 a | 3.1 ± 0.1 a | 0.0008 | |
2019 | 2020 | ||||||||||
DSCC 0.84 | DSCC 1.67 | DSCC 3.33 | DS 3.33 | p-Value | DSCC 0.84 | DSCC 1.67 | DSCC 3.33 | DS 3.33 | p-Value | ||
Corn | Fresh weight (FW) (g) | 116.7 ± 15.4 a | 118.1 ± 10.1 a | 140.6 ± 18.8 a | 173.4 ± 20.9 a | 0.0962 | 51.7 ± 4.8 b | 91.1 ± 12.3 a | 111.7 ± 14.4 a | 101.5 ± 11.2 a | 0.0004 * |
Dry weight (DW) (g) | 11.8 ± 1.5 a | 11.2 ± 0.9 a | 14.0 ± 1.7 a | 16.0 ± 1.7 a | 0.1162 | 8.8 ± 0.7 b | 12.3 ± 1.3 a | 14.1 ± 1.5 a | 12.8 ± 1.2 a | 0.0231 | |
Height (cm) | 93.9 ± 3.7 b | 94.8 ± 2.9 b | 100.5 ± 4.0 b | 111.8 ± 4.2 a | 0.0054 | 80.3 ± 2.3 b | 92.0 ± 3.0 a | 99.5 ± 4.3 a | 94.8 ± 4.5 a | 0.0042 | |
Significant interaction year*crop managements | |||||||||||
2019 | 2020 | ||||||||||
DSCC 0.84 | DSCC 1.67 | DSCC 3.33 | DS 3.33 | DSCC 0.84 | DSCC 1.67 | DSCC 3.33 | DS 3.33 | p-value | |||
Grain yield (t ha−1) | 6.5 ± 0.5 D | 8.8 ± 0.2 B | 8.7 ± 0.4 B | 10.2 ± 0.6 A | 4.0 ± 0.4 E | 6.1 ± 0.3 D | 8.1 ± 0.2 BC | 7.1 ± 0.6 CD | <0.027 * |
Element (mg kg−1) | Crop Managements | ||||
---|---|---|---|---|---|
DSCC 0.84 | DSCC 1.67 | DSCC 3.33 | DS 3.33 | p-Value | |
P | 13.95 ± 2.54 a | 12.74 ± 0.82 a | 11.03 ± 0.68 a | 16.90 ± 4.66 a | 0.4797 |
K | 320.8 ± 5.0 a | 331.0 ± 7.0 a | 320.6 ± 5.1 a | 318.6 ± 5.2 a | 0.4051 |
Ca | 2897.8 ± 25.2 a | 2787.5 ± 48.4 a | 2950.9 ± 55.7 a | 2940.9 ± 51.3 a | 0.0603 |
Mg | 820.7 ± 25.9 a | 787.6 ± 6.7 ab | 794.9 ± 15.0 ab | 780.35 ± 13.3 b | 0.0230 * |
Al | 1043.0 ± 5.6 a | 1053.2 ± 5.2 a | 1050.5 ± 4.4 a | 1049.3 ± 5.1 a | 0.5423 |
B | 0.700 ± 0.012 a | 0.702 ± 0.016 a | 0.740 ± 0.014 a | 0.718 ± 0.020 a | 0.2438 |
Cu | 10.94 ± 0.12 a | 11.20 ± 0.10 a | 11.38 ± 0.18 a | 11.12 ± 0.17 a | 0.2198 |
Fe | 219.0 ± 4.8 a | 221.7 ± 2.9 a | 219.2 ± 3.4 a | 217.4 ± 3.1 a | 0.8632 |
Mn | 21.82 ± 1.00 a | 20.72 ± 1.07 a | 23.14 ± 1.06 a | 22.95 ± 1.54 a | 0.4503 |
Zn | 2.36 ± 0.07 a | 2.53 ± 0.05 a | 2.51 ± 0.07 a | 2.53 ± 0.11 a | 0.3698 |
Na | 44.26 ± 0.84 a | 44.06 ± 0.94 a | 45.13 ± 0.78 a | 44.51 ± 1.03 a | 0.8519 |
Ni | 1.29 ± 0.04 b | 1.45 ± 0.03 a | 1.36 ± 0.03 ab | 1.39 ± 0.05 ab | 0.0455 * |
Cd | 0.086 ± 0.002 a | 0.089 ± 0.001 a | 0.089 ± 0.002 a | 0.089 ± 0.002 a | 0.4941 |
Cr | 0.289 ± 0.004 a | 0.284 ± 0.003 a | 0.291 ± 0.004 a | 0.295 ± 0.005 a | 0.3184 |
Co | 0.446 ± 0.017 a | 0.451 ± 0.018 a | 0.468 ± 0.018 a | 0.475 ± 0.024 a | 0.6918 |
Pb | 3.49 ± 0.09 a | 3.73 ± 0.07 a | 3.85 ± 0.12 a | 3.63 ± 0.11 a | 0.0787 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernier Brillon, J.; Lucotte, M.; Bernier, A.; Fontaine, M.; Moingt, M. Using Cover Crops as Means of Controlling Weeds and Reducing the Applied Quantity of Glyphosate-Based Herbicide in No-Till Glyphosate Tolerant Soybean and Corn. Agriculture 2024, 14, 659. https://doi.org/10.3390/agriculture14050659
Bernier Brillon J, Lucotte M, Bernier A, Fontaine M, Moingt M. Using Cover Crops as Means of Controlling Weeds and Reducing the Applied Quantity of Glyphosate-Based Herbicide in No-Till Glyphosate Tolerant Soybean and Corn. Agriculture. 2024; 14(5):659. https://doi.org/10.3390/agriculture14050659
Chicago/Turabian StyleBernier Brillon, Jérôme, Marc Lucotte, Ariane Bernier, Myriam Fontaine, and Matthieu Moingt. 2024. "Using Cover Crops as Means of Controlling Weeds and Reducing the Applied Quantity of Glyphosate-Based Herbicide in No-Till Glyphosate Tolerant Soybean and Corn" Agriculture 14, no. 5: 659. https://doi.org/10.3390/agriculture14050659