Crop HTP Technologies: Applications and Prospects
Abstract
:1. Introduction
2. Overview of Plant HTP Research
3. Key Technologies for Obtaining HTP Information
3.1. Sensor Applications
3.2. Phenotypic Information Extraction
3.3. Phenotypic Big Data Processing
4. Application of Crop HTP Technology
4.1. Monitoring the Growth and Development of Crops
4.1.1. Crops’ Above-Ground Portion
4.1.2. Crops’ Underground Components
4.2. Crop Yield Prediction
4.3. Crop Growth Environment Monitoring
4.4. Integration of HTP and Multi-Omics in Crops
5. Challenges and Strategies for Crop HTP Technology
5.1. Simple of Phenotypic Information
5.2. Instability of Data Accuracy
5.3. Non-Uniformity of Data Formats
6. Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guo, Q.H.; Yang, W.C.; Wu, F.F.; Pang, S.X.; Jin, S.C.; Chen, F.; Wang, X.J. High-throughput crop phenotype monitoring: An accelerator for breeding and precision agriculture development. Bull. Chin. Acad. Sci. 2018, 33, 940–946. (In Chinese) [Google Scholar] [CrossRef]
- Bao, Y.; Tang, L.; Breitzman, M.W.; Fernandez, M.G.S.; Schnable, P.S. Field-based robotic phenotyping of sorghum plant architecture using stereo vision. J. Field Robot. 2018, 36, 397–415. [Google Scholar] [CrossRef]
- Li, X.N.; Xu, X.Y.; Chen, M.G.; Xu, M.; Wang, W.Y.; Liu, C.Y.; Liu, W.G.; Yang, W.Y. The field phenotyping platform’s next darling: Dicotyledons. Front. Plant Sci. 2022, 13, 935748. [Google Scholar] [CrossRef] [PubMed]
- Solimani, F.; Cardellicchio, A.; Nitti, M.; Lako, A.; Dimauro, G.; Renò, V. A Systematic Review of Effective Hardware and Software Factors Affecting High-Throughput Plant Phenotyping. Information 2023, 14, 214. [Google Scholar] [CrossRef]
- Zhang, H.C.; Zhou, H.P.; Zheng, J.Q.; Ge, Y.F.; Li, Y.X. Research progress and prospect of plant phenotypic platform and image analysis technology. Trans. Chin. Soc. Agric. Mach. 2020, 51, 1–17. (In Chinese) [Google Scholar]
- Knecht, A.C.; Campbell, M.T.; Caprez, A.; Swanson, D.R.; Walia, H. Image Harvest: An open-source platform for high-throughput plant image processing and analysis. J. Exp. Bot. 2016, 67, 3587–3599. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.X.; Chen, Z.; Gao, Y.; Xue, R.X.; Geng, Z.D.; Bu, Q.Y.; Wang, Y.Y.; Chen, X.Q.; Jiang, Y.Q.; Chen, F.; et al. A Strategy for the Acquisition and Analysis of Image-Based Phenome in Rice during the Whole Growth Period. Plant Phenom. 2023, 5, 302. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.J.; Wang, N.; Sun, H.C.; Zhu, L.X.; Zhang, K.; Zhang, Y.J.; Zhu, J.J.; Li, A.C.; Bai, Z.Y.; Liu, X.Q.; et al. RhizoPot platform: A high-throughput in situ root phenotyping platform with integrated hardware and software. Front. Plant Sci. 2022, 13, 1004904. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhao, Y.Y.; Wang, H.; Yang, T.L.; Hu, Y.N.; Zhong, X.C.; Liu, T.; Sun, C.M.; Sun, T.; Liu, S.P. WG-3D: A Low-Cost Platform for High-Throughput Acquisition of 3D Information on Wheat Grain. Agriculture 2022, 12, 1861. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhang, W.J.; Cao, Q.C.; Zheng, X.J.; Yang, J.T.; Xue, T.; Sun, W.H.; Du, X.R.; Wang, L.L.; Wang, J.; et al. WinRoots: A High-Throughput Cultivation and Phenotyping System for Plant Phenomics Studies Under Soil Stress. Front. Plant Sci. 2021, 12, 794020. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Yu, L.J.; Yang, W.N.; Liu, M.; Jiang, N.; Wu, D.; Chen, G.X.; Xiong, L.Z.; Liu, K.D.; Liu, Q. A high-throughput stereo-imaging system for quantifying rape leaf traits during the seedling stage. Plant Methods 2017, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.J.; Jung, J.H.; Jung, J.H.; Yeom, J.H.; Landivar, J. 3D Characterization of Sorghum Panicles Using a 3D Point Could Derived from UAV Imagery. Remote Sens. 2021, 13, 282. [Google Scholar] [CrossRef]
- Liu, F.S.; Song, Q.F.; Zhao, J.K.; Mao, L.X.; Bu, H.Y.; Hu, Y.; Zhu, X.G. Canopy occupation volume as an indicator of canopy photosynthetic capacity. New Phytol. 2021, 232, 941–956. [Google Scholar] [CrossRef] [PubMed]
- Borra-Serrano, I.; De Swaef, T.; Quataert, P.; Aper, J.; Saleem, A.; Saeys, W.; Somers, B.; Roldán-Ruiz, I.; Lootens, P. Closing the phenotyping gap: High resolution UAV time series for soybean growth analysis provides objective data from field trials. Remote Sens. 2020, 12, 1644. [Google Scholar] [CrossRef]
- Gao, M.; Yang, F.B.; Wei, H.; Liu, X.X. Individual Maize Location and Height Estimation in Field from UAV-Borne LiDAR and RGB Images. Remote Sens. 2022, 14, 2292. [Google Scholar] [CrossRef]
- Casagrande, C.R.; Sant’ana, G.C.; Meda, A.R.; Garcia, A.; Carneiro, P.C.S.; Nardino, M.; Borem, A. Association between unmanned aerial vehicle high-throughput canopy phenotyping and soybean yield. Agron. J. 2022, 114, 1581–1598. [Google Scholar] [CrossRef]
- Xiao, F.; Li, W.W.; Xiao, M.H.; Yang, Z.F.; Cheng, W.D.; Gao, S.; Li, G.H.; Ding, Y.F.; Paul, M.J.; Liu, Z.H. A novel light interception trait of a hybrid rice ideotype indicative of leaf to panicle ratio. Field Crops Res. 2021, 274, 108338. [Google Scholar] [CrossRef]
- Long, Y.; Ma, M.J. Recognition of Drought Stress State of Tomato Seedling Based on Chlorophyll Fluorescence Imaging. IEEE Access 2022, 10, 48633–48642. [Google Scholar] [CrossRef]
- Ye, J.L.; Song, J.Y.; Gao, Y.; Lu, X.; Pei, W.Y.; Li, F.; Yang, W.N. An automatic fluorescence phenotyping platform to evaluate dynamic infection process of Tobacco mosaic virus-green fluorescent protein in tobacco leaves. Front. Plant Sci. 2022, 13, 968855. [Google Scholar] [CrossRef] [PubMed]
- Jay, S.; Rabatel, G.; Hadoux, X.; Moura, D.; Gorretta, N. In-field crop row phenotyping from 3D modeling performed using Structure from Motion. Comput. Electron. Agric. 2015, 110, 70–77. [Google Scholar] [CrossRef]
- Sun, S.P.; Li, C.Y.; Paterson, A. In-field high-throughput phenotyping of cotton plant height using LiDAR. Remote Sens. 2017, 9, 377. [Google Scholar] [CrossRef]
- Sun, S.P.; Li, C.Y.; Chee, P.W.; Paterson, A.H.; Meng, C.; Zhang, J.Y.; Ma, P.; Robertson, J.S.; Adhikari, J. High resolution 3D terrestrial LiDAR for cotton plant main stalk and node detection. Comput. Electron. Agric. 2021, 187, 106276. [Google Scholar] [CrossRef]
- Shoa, P.; Hemmat, A.; Amirfattahi, R.; Gheysari, M. Automatic extraction of canopy and artificial reference temperatures for determination of crop water stress indices by using thermal imaging technique and a fuzzy-based image-processing algorithm. Qunatitative Infrared Thermogr. J. 2020, 19, 85–96. [Google Scholar] [CrossRef]
- Mulero, G.; Jiang, D.; Bonfil, D.J.; Helman, D. Use of thermal imaging and the photochemical reflectance index (PRI) to detect wheat response to elevated CO2 and drought. Plant Cell Environ. 2023, 46, 76–92. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.N.; Shariff, A.R.M.; Moslim, R. Monitoring insect pest infestation via different spectroscopic techniques. Appl. Spectrosc. Rev. 2018, 53, 836–853. [Google Scholar] [CrossRef]
- Duarte-Carvajalino, J.M.; Silva-Arero, E.A.; Góez-Vinasco, G.A.; Torres-Delgado, L.M.; Ocampo-Paez, O.D.; Castaño-Marín, A.M. Estimation of Water Stress in Potato Plants Using Hyperspectral Imagery and Machine Learning Algorithms. Horticulturae 2021, 7, 176. [Google Scholar] [CrossRef]
- Zhao, J.S.; Kechasov, D.; Rewald, B.; Bodner, G.; Verheul, M.; Clarke, N.; Clarke, J.H.L. Deep Learning in Hyperspectral Image Reconstruction from Single RGB images—A Case Study on Tomato Quality Parameters. Remote Sens. 2020, 12, 3258. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, J.C.; Deng, Q.; Dong, Y.Y.; Wang, H.L.; Du, X.K. Differentiation of Wheat Diseases and Pests Based on Hyperspectral Imaging Technology with a Few Specific Bands. Phyton-Int. J. Exp. Bot. 2023, 92, 611–628. [Google Scholar] [CrossRef]
- Karthikeyan, B.; Mohan, V.; Chamundeeswari, G.; RUBA, M. Deep Learning Driven Crop Classification and Chlorophyll Content Estimation for the Nexus Food higher Productions using Multi-spectral Remote Sensing Images. Glob. NEST J. 2022, 25, 164–173. [Google Scholar] [CrossRef]
- Hussain, S.; Gao, K.X.; Din, M.; Gao, Y.K.; Shi, Z.H.; Wang, S.Q. Assessment of UAV-Onboard Multispectral Sensor for Non-Destructive Site-Specific Rapeseed Crop Phenotype Variable at Different Phenological Stages and Resolutions. Remote Sens. 2020, 12, 397. [Google Scholar] [CrossRef]
- Javornik, T.; Carovic-Stanko, K.; Gunjaca, J.; Vidak, M.; Lazarevic, B. Monitoring Drought Stress in Common Bean Using Chlorophyll Fluorescence and Multispectral Imaging. Plants 2023, 12, 1386. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Yin, Z.Q. Research on visual imaging quality evaluation. Comput. Inf. Technol. 2018, 26, 46–49. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Y.C.; Lou, X. Accuracy analysis of three-dimensional object detection based on binocular point cloud. J. Univ. Chin. Acad. Sci. 2022, 39, 677–683. (In Chinese) [Google Scholar]
- Wang, X.T. Research on Infrared and Visible Image Fusion Algorithm Based on Multi-Scale Decomposition. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2023. (In Chinese) [Google Scholar] [CrossRef]
- Chen, L.L.; Wang, W.B.; Li, Y.Y. Three-dimensional extraction of infrared image features. Laser J. 2019, 40, 118–122. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, J.L.; Wang, G.L.; Zhou, B.; Ying, J.J.; Wang, Q.H.; Deng, L. Research progress of hyperspectral image target detection under deep learning. Laser J. 2022, 43, 2016–2024. (In Chinese) [Google Scholar] [CrossRef]
- Cao, P.F. Research on Crop Feature Band Extraction and Classification Based on Spectral Imaging Technology. Master’s Thesis, Yunnan Normal University, Kunming, China, 2015. (In Chinese). [Google Scholar]
- Peng, X.D.; He, J.; Shi, L.; Zhao, W.F.; Lan, Y.B. Single wood 3D reconstruction based on point cloud fusion of lidar and Kinect camera. J. Huazhong Agric. Univ. 2023, 42, 224–232. (In Chinese) [Google Scholar] [CrossRef]
- Rawat, W.; Wang, Z.H. Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput. 2017, 29, 2352–2449. [Google Scholar] [CrossRef] [PubMed]
- Bosilj, P.; Aptoula, E.; Duckett, T.; Cielniak, G. Transfer learning between crop types for semantic segmentation of crops versus weeds in precision agriculture. J. Field Robot. 2019, 37, 7–19. [Google Scholar] [CrossRef]
- Richardson, G.A.; Lohani, H.K.; Potnuru, C.; Donepudi, L.P.; Pankajakshan, P. PhenoBot: An automated system for leaf area analysis using deep learning. Planta 2023, 257, 36. [Google Scholar] [CrossRef] [PubMed]
- Braguy, J.; Ramazanova, M.; Giancola, S.; Jamil, M.; Kountche, B.A.; Zarban, R.; Felemban, A.; Wang, J.Y.; Lin, P.Y.; Haider, I.; et al. SeedQuant: A deep learning-based tool for assessing stimulant and inhibitor activity on root parasitic seeds. Plants Physiol. 2021, 186, 1632–1644. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, Y.; Zhu, X.L.; Zhang, Y.D. Deep learning optimization method for counting overlapping rice seeds. J. Food Process Eng. 2021, 44, e13787. [Google Scholar] [CrossRef]
- Lu, Y.W.; Wang, J.H.; Fu, L.; Yu, L.J.; Liu, Q. High-throughput and separating-free phenotyping method for on-panicle rice grains based on deep learning. Frotiers Plant Sci. 2023, 14, 1219584. [Google Scholar] [CrossRef] [PubMed]
- Fraiwan, M.; Faori, E.; Khasawneh, N. Classification of Corn Diseases from Leaf Images Using Deep Transfer Learning. Plants 2022, 11, 2668. [Google Scholar] [CrossRef] [PubMed]
- Hua, S.; Xu, M.J.; Xu, Z.F.; Ye, H.B.; Zhou, C.Q. Kinect-Based Real-Time Acquisition Algorithm of Crop Growth Depth Images. Math. Probl. Eng. 2021, 2021, 3913575. [Google Scholar] [CrossRef]
- Gong, L.; Du, X.F.; Zhu, K.; Lin, K.; Lou, Q.J.; Yuan, Z.; Huang, G.Q.; Liu, C.L. Panicle-3D: Efficient Phenotyping Tool for Precise Semantic Segmentation of Rice Panicle Point Cloud. Plant Phenomics 2021, 2021, 9838929. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.L.; Saadat, M.; Jubery, T.; Jignasu, A.; Balu, A.; Li, Y.W.; Attigala, L.; Schnable, P.S.; Sarkar, S.; Ganapathysubramanian, B.; et al. 3D reconstruction of plants using probabilistic voxel carving. Comput. Electron. Agric. 2023, 213, 108248. [Google Scholar] [CrossRef]
- Xu, H.X. Research on Crop 3D Reconstruction Method Based on Multi-View Images. Master’s Thesis, Sichuan Agricultural University, Yaan, China, 2022. (In Chinese) [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Liu, H.; Xin, C.; Lai, M.Z.; He, H.F.; Wang, Y.Z.; Wang, M.T.; Li, J. RepC-MVSNet: A Reparameterized Self-Supervised 3D Reconstruction Algorithm for Wheat 3D Reconstruction. Agronomy 2023, 13, 1975. [Google Scholar] [CrossRef]
- Li, X.M.; He, X.R.; Bai, H.; Sun, J.M.; Miao, Y.W. Single image 3D reconstruction based on deep learning. J. Hangzhou Norm. Univ. 2023, 22, 397–410. (In Chinese) [Google Scholar] [CrossRef]
- Priyadharshini, R.A.; Arivazhagan, S.; Arun, M.; Mirnalini, A. Maize leaf disease classification using deep convolutional neural networks. Neural Comput. Appl. 2019, 31, 8887–8895. [Google Scholar] [CrossRef]
- Hasan, M.M.; Chopin, J.P.; Laga, H.; Miklavcic, S.J. Correction to: Detection and analysis of wheat spikes using Convolutional Neural Networks. Plant Methods 2018, 15, 27. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, X.; Xiang, S.; Chen, M.G.; He, S.Y.; Wang, W.Y.; Xu, M.; Liu, C.Y.; Liu, W.G.; Yang, W.Y. Soybean leaf estimation based on RGB images and machine learning methods. Plant Methods 2023, 19, 59. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.L.; Guo, X.Y.; Zhang, Y.; Gu, S.H.; Zhao, C.J. Technology and equipment of big data on crop phenomics. Strateg. Study CAE 2023, 25, 227–238. (In Chinese) [Google Scholar] [CrossRef]
- Walter, A.; Liebisch, F.; Hund, A. Plant phenotyping: From bean weighing to image analysis. Plant Methods 2015, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Ao, Z.R.; Wu, F.F.; Hu, S.H.; Sun, Y.; Su, Y.J.; Guo, Q.H.; Xin, Q.C. Automatic segmentation of stem and leaf components and individual maize plants in field terrestrial LiDAR data using convolutional neural networks. Crop J. 2022, 10, 1239–1250. [Google Scholar] [CrossRef]
- Song, Q.F.; Qu, M.N.; Xu, J.L.; Zhu, X.G. Theory, molecular pathway and prospect of improving canopy light use efficiency. Chin. Bull. Life Sci. 2018, 30, 1044–1050. (In Chinese) [Google Scholar] [CrossRef]
- Ma, X.D.; Zhu, K.X.; Guan, H.O.; Feng, J.R.; Yu, S.; Liu, G. High-Throughput Phenotyping Analysis of Potted Soybean Plants Using Colorized Depth Images Based on A Proximal Platform. Remote Sens. 2019, 11, 1085. [Google Scholar] [CrossRef]
- Wan, L.; Zhu, J.P.; Du, X.Y.; Zhang, J.F.; Han, X.Z.; Zhou, W.J.; Li, X.P.; Liu, J.L.; Liang, F.; He, Y.; et al. A model for phenotyping crop fractional vegetation cover using imagery from unmanned aerial vehicles. J. Exp. Bot. 2021, 72, 4691–4707. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Li, X.R.; Guo, T.T.; Dzievit, M.J.; Yu, X.Q.; Liu, P.; Price, K.P.; Yu, J.M. Genetic dissection of seasonal vegetation index dynamics in maize through aerial based high-throughput phenotyping. Plant Genome 2021, 14, e20155. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, A.J.; Craft, J.C.; Barker, D.J. Modeling canopy senescence to calculate soybean maturity date using NDVI. Crop Sci. 2020, 60, 172–180. [Google Scholar] [CrossRef]
- Guo, S.J.; Lv, L.J.; Zhao, Y.X.; Wang, J.L.; Lu, X.J.; Zhang, M.G.; Wang, R.H.; Zhang, Y.; Guo, X.Y. Using High-Throughput Phenotyping Analysis to Decipher the Phenotypic Components and Genetic Architecture of Maize Seedling Salt Tolerance. Genes 2023, 14, 1771. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.Y.S.; Jones, T.; McHugh, D.P.; Gilbert, M.E.; Gepts, P.; Palkovic, A.; Buckley, T.N.; Magney, T.S. TSWIFT: Tower Spectrometer on Wheels for Investigating Frequent Timeseries for high-throughput phenotyping of vegetation physiology. Plant Methods 2023, 19, 29. [Google Scholar] [CrossRef] [PubMed]
- Zermas, D.; Morellas, V.; Mulla, D.; Papanikolopoulos, N. 3D model processing for high throughput phenotype extraction—The case of corn. Comput. Electron. Agric. 2020, 172, 105047. [Google Scholar] [CrossRef]
- Thorp, K.R.; Gore, M.A.; Andrade-Sanchez, P.; Carmo-Silva, A.E.; Welch, S.M.; White, J.W.; French, A.N. Proximal hyperspectral sensing and data analysis approaches for field-based plant phenomics. Comput. Electron. Agric. 2015, 118, 225–236. [Google Scholar] [CrossRef]
- Wan, L.; Zhang, J.F.; Dong, X.Y.; Du, X.Y.; Zhu, J.P.; Sun, D.W.; Liu, Y.F.; He, Y.; Cen, H.Y. Unmanned aerial vehicle-based field phenotyping of crop biomass using growth traits retrieved from PROSAIL model. Comput. Electron. Agric. 2021, 187, 106304. [Google Scholar] [CrossRef]
- Zheng, F.X.; Wang, X.F.; Ji, J.T.; Ma, H.; Cui, H.W.; Shi, Y.; Zhao, S.S. Synchronous Retrieval of LAI and Cab from UAV Remote Sensing: Development of Optimal Estimation Inversion Framework. Agronomy 2023, 13, 1119. [Google Scholar] [CrossRef]
- Jeudy, C.; Adrian, M.; Baussard, C.; Bernard, C.; Bernaud, E.; Bourion, V.; Busset, H.; Cabrera-Bosquet, L.; Cointault, F.; Han, S.; et al. RhizoTubes as a new tool for high throughput imaging of plant root development and architecture: Test, comparison with pot grown plants and validation. Plant Methods 2016, 12, 31. [Google Scholar] [CrossRef] [PubMed]
- Delory, B.M.; Weidlich, E.W.A.; Van, D.R.; Duijnen, R.V.; Pagès, L.; Temperton, V.M. Measuring plant root traits under controlled and field conditions: Step-by-step procedures. Methods Mol. Biol. 2018, 1761, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Bodner, G.; Alsalem, M.; Nakhforoosh, A. Root system phenotying of soil-grown plants via RGB and hyperspectral imaging. Methods Mol. Biol. 2021, 2264, 245–268. [Google Scholar] [CrossRef] [PubMed]
- Pflugfelder, D.; Metzner, R.; Dusschoten, D.V.; Reichel, R.; Jahnke, S.; Koller, R. Non-invasive imaging of plant roots in different soils using magnetic resonance imaging (MRI). Plant Methods 2017, 13, 102. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.P.; Liu, H.T.; Yao, Q.X.; Gillbanks, J.; Zhao, X. Research on high-throughput crop root phenotype 3D reconstruction using X-ray CT in 5G era. Electronics 2023, 12, 276. [Google Scholar] [CrossRef]
- Mitchell, P.J.; Waldner, F.; Horan, H.; Brown, J.N.; Hochman, Z. Data fusion using climatology and seasonal climate forecasts improves estimates of Australian national wheat yields. Agric. For. Meteorol. 2022, 320, 108932. [Google Scholar] [CrossRef]
- Tu, K.L.; Wu, W.F.; Cheng, Y.; Zhang, H.; Xu, Y.N.; Dong, X.H.; Wang, M.; Sun, Q. AIseed: An automated image analysis software for high-throughput phenotyping and quality non-destructive testing of individual plant seeds. Comput. Electron. Agric. 2023, 207, 107740. [Google Scholar] [CrossRef]
- Trevisan, R.; Pérez, O.; Schmitz, N.; Diers, B.; Martin, N. High-throughput phenotyping of soybean maturity using time series UAV imagery and convolutional neural networks. Remote Sens. 2020, 12, 3617. [Google Scholar] [CrossRef]
- Yang, B.H.; Gao, Z.W.; Gao, Y.; Zhu, Y. Rapid detection and counting of wheat ears in the field using YOLOv4 with attention module. Agronomy 2021, 11, 1202. [Google Scholar] [CrossRef]
- Wang, X.F.; Wu, Z.W.; Jia, M.; Xu, T.; Pan, C.; Qi, X.B.; Zhao, M.F. Lightweight SM-YOLOv5 Tomato Fruit Detection Algorithm for Plant Factory. Sensors 2023, 23, 3336. [Google Scholar] [CrossRef] [PubMed]
- Solimani, F.; Cardellicchio, A.; Dimauro, G.; Petrozza, A.; Summerer, S.; Cellini, F.; Renò, V. Optimizing tomato plant phenotyping detection: Boosting YOLOv8 architecture to tackle data complexity. Comput. Electron. Agric. 2024, 218, 108728. [Google Scholar] [CrossRef]
- Ge, Z.; Liu, S.T.; Wang, F.; Li, Z.M.; Sun, J. YOLOX: Exceeding YOLO series in 2021[EB/OL]. arXiv 2021, arXiv:2107.08430. Available online: http://arxiv.org/abs/2107.08430 (accessed on 20 January 2023).
- Xiang, S.; Wang, S.Y.; Xu, M.; Wang, W.Y.; Liu, W.G. YOLO POD: A fast and accurate multi-task model for dense Soybean Pod counting. Plant Methods 2023, 19, 8. [Google Scholar] [CrossRef]
- Hu, W.J.; Zhang, C.; Jiang, Y.Q.; Huang, C.L.; Liu, Q.; Yang, W.N.; Chen, F. Nondestructive 3D image analysis pipeline to extract rice grain traits using X-ray computed tomography. Plant Phenom. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.S.; Kaga, A.; Yamada, T.; Komatsu, K.; Hirata, K.; Kikuchi, A.; Hirafuji, M.; Ninomiya, S.; Guo, W. Improved field-based soybean seed counting and localization with feature level considered. Plant Phenom. 2023, 5, 0026. [Google Scholar] [CrossRef] [PubMed]
- Shete, S.; Srinivasan, S.; Gonsalves, T.A. TasselGAN: An application of the generative adversarial model for creating field-based maize tassel data. Plant Phenom. 2020, 2020, 8309605. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Sun, K.Q.; Guo, A. Wheat ear detection using anchor-free ObjectBox model with attention mechanism. Signal Image Video Process. 2023, 17, 3425–3432. [Google Scholar] [CrossRef]
- Guo, Z.L.; Yang, W.N.; Chang, Y.; Ma, X.S.; Tu, H.F.; Xiong, F.; Jiang, N.; Feng, H.; Huang, C.L.; Yang, P.; et al. Genome-wide association studies of image traits reveal genetic architecture of drought resistance in rice. Mol. Plant 2018, 11, 789–805. [Google Scholar] [CrossRef] [PubMed]
- Sagan, V.; Maimaitijiang, M.; Sidike, P.; Eblimit, K.; Peterson, K.T.; Hartling, S.; Esposito, F.; Khanal, K.; Newcomb, M.; Pauli, D.; et al. UAV-Based High Resolution Thermal Imaging for Vegetation Monitoring, and Plant Phenotyping Using ICI 8640 P, FLIR Vue Pro R 640, and thermoMap Cameras. Remote Sens. 2019, 11, 330. [Google Scholar] [CrossRef]
- Halperin, O.; Gebremedhin, A.; Wallach, R.; Moshelion, M. High-throughput physiological phenotyping and screening system for the characterization of plant–environment interactions. Plant J. 2016, 89, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.H.U.; Wang, S.D.; Wang, J.; Ahmar, S.; Saeed, S.; Khan, S.U.; Xu, X.G.; Chen, H.Y.; Bhat, J.A.; Feng, X.Z. Applications of Artificial Intelligence in Climate-Resilient Smart-Crop Breeding. Int. J. Mol. Sci. 2022, 23, 11156. [Google Scholar] [CrossRef] [PubMed]
- Thorp, K.; Thompson, A.; Harders, S.; French, A.N.; Ward, R.W. High-throughput phenotyping of crop water use efficiency via multispectral drone imagery and a daily soil water balance model. Remote Sens. 2018, 10, 1682. [Google Scholar] [CrossRef]
- Naik, H.S.; Zhang, J.P.; Lofquist, A.; Assefa, T.; Sarkar, S.; Ackerman, D.; Singh, A.; Singh, A.K.; Ganpathysubramanian, B. A real-time phenotyping framework using machine learning for plant stress severity rating in soybean. Plant Methods 2017, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.D.; Saand, M.A.; Huang, L.Y.; Abdelaal, W.B.; Zhang, J.; Wu, Y.; Li, J.; Sirohi, M.H.; Wang, F. Applications of Multi-Omics Technologies for Crop Improvement. Front. Plant Sci. 2021, 12, 563953. [Google Scholar] [CrossRef]
- Bose, S.; Banerjee, S.; Kumar, S.; Saha, A.; Nandy, D.; Hazra, S. Review of applications of artificial intelligence (AI) methods in crop research. J. Appl. Genet. 2024, 65, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Montesinos-Lopez, O.A.; Montesinos-Lopez, A.; Tuberosa, R.; Maccaferri, M.; Sciara, G.; Ammar, K.; Crossa, J. Multi-Trait, Multi-Environment Genomic Prediction of Durum Wheat With Genomic Best Linear Unbiased Predictor and Deep Learning Methods. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Cantelmo, N.F.; Marcio, R.G.V.; Balestre, M. Genome-wide prediction for maize single-cross hybrids using the GBLUP model and validation in different crop seasons. Mol. Breed. 2017, 37, 51. [Google Scholar] [CrossRef]
- Matei, G.; Woyann, L.G.; Milioli, A.S.; Oliveira, I.D.B.; Zdziarski, D.; Zanella, R.; Coelho, A.S.G.; Finatto, T.; Benin, G. Genomic selection in soybean: Accuracy and time gain in relation to phenotypic selection. Mol. Breed. 2018, 38, 117. [Google Scholar] [CrossRef] [PubMed]
- Gui, S.T.; Yang, L.F.; Li, J.B.; Luo, J.Y.; Xu, X.K.; Yuan, J.Y.; Chen, L.; Li, W.Q.; Yang, X.; Wu, S.S.; et al. ZEAMAP, a Comprehensive Database Adapted to the Maize Multi-Omics Era. iScience 2020, 23, 101241. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.Q.; Wang, S.B.; Wei, L.L.; Huang, Y.M.; Liu, D.X.; Jia, Y.P.; Luo, C.F.; Lin, Y.C.; Liang, C.Y.; Hu, Y.; et al. BnIR: A multi-omics database with various tools for Brassica napus research and breeding. Mol. Plant 2023, 16, 775–789. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Lou, Q.J.; Yu, C.R.; Chen, Y.Y.; Hong, J.; Wu, W.; Fan, S.Z.; Chen, L.; Liu, C.L. GpemDB: A Scalable Database Architecture with the Multi-omics Entity-relationship Model to Integrate Heterogeneous Big-data for Precise Crop Breeding. Front. Biosci. 2022, 27, 159. [Google Scholar] [CrossRef] [PubMed]
- Chao, H.Y.; Zhang, S.L.; Hu, Y.M.; Ni, Q.Y.; Xin, S.; Zhao, L.; Ivanisenko, V.A.; Orlov, Y.L.; Chen, M. Integrating omics databases for enhanced crop breeding. J. Integr. Bioinform. 2023, 20. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.N.; Feng, H.; Zhang, X.H.; Zhang, J.; Doonan, J.H.; Batchelor, W.D.; Xiong, L.Z.; Yan, J.B. Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Mol. Plant 2020, 13, 187–214. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Wang, J.L.; Guo, X.Y.; Yang, W.N.; Zhao, C.J. High-throughput phenotyping: Breaking through the bottleneck in future crop breeding. Crop J. 2021, 9, 633–645. [Google Scholar] [CrossRef]
- Montesinos-López, O.A.; Martín-Vallejo, J.; Crossa, J.; Gianola, D.; Hernández-Suárez, C.M.; Montesinos-López, A.; Juliana, P. New Deep Learning Genomic-Based Prediction Model for Multiple Traits with Binary, Ordinal, and Continuous Phenotypes. G3 Genes Genomes Genet. 2019, 9, 1545–1556. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, D.; Ball, J.; Bauer, A.; Davey, R.; Griffiths, S.; Zhou, J. CropSight: A scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management. GigaScience 2019, 8, giz009. [Google Scholar] [CrossRef] [PubMed]
- Neveu, P.; Tireau, A.; Hilgert, N.; Nègre, V.; Mineau-Cesari, J.; Brichet, N.; Chapuis, R.; Sanchez, I.; Pommier, C.; Charnomordic, B.; et al. Dealing with multi-source and multi-scale information in plant phenomics: The ontology-driven Phenotyping Hybrid Information System. New Phytol. 2019, 221, 588–601. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.Q.; Liu, T.X.; Tang, X.P.; Xu, G.F.; MA, Z.; Yang, H.K.; Wu, W.D. Research progress of plant phenomics in the context of smart agriculture. J. Henan Agric. Sci. 2022, 51, 1–12. (In Chinese) [Google Scholar] [CrossRef]
- Dhondt, S.; Wuyts, N.; Inzé, D. Cell to whole-plant phenotyping: The best is yet to come. Trends Plants Sci. 2013, 18, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Lobos, G.A.; Camargo, A.V.; Pozo, A.D.; Araus, J.L.; Ortiz, R.; Doonan, J.H. Editorial: Plant Phenotyping and Phenomics for Plant Breeding. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.J.; Zhang, Y.; Du, J.J.; Guo, X.Y.; Wen, W.L.; Gu, S.H.; Wang, J.L.; Fan, J.C. Crop Phenomics: Current Status and Perspectives. Front. Plant Sci. 2019, 10, 714. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cimen, E.; Singh, N.; Buckler, E. Deep learning for plant genomics and crop improvement. Curr. Opin. Plant Biol. 2020, 54, 34–41. [Google Scholar] [CrossRef] [PubMed]
Imaging Technology | Phenotypic Information | Application | Scenario | References |
---|---|---|---|---|
Visible light imaging | RGB images | Plant height, canopy coverage, leaf to ear ratio | Field/Indoor | [14,15,16,17] |
Fluorescence imaging | Sensitive bands | Drought stress, disease monitoring | Indoor | [18,19] |
Three-dimensional imaging | Depth maps, point clouds, voxel data, grids, implicit data | Height, main stem length, leaf area | Field/Indoor | [13,20,21,22] |
Infrared imaging | The continuous or discrete spectrum of each pixel | Stress monitoring, pest monitoring | Field/Indoor | [23,24,25] |
Hyperspectral imaging | Continuous or discrete | Moisture monitoring, quality monitoring, pest monitoring | Field/Indoor | [26,27,28] |
Multispectral imaging | Multiple bands of the spectrum | Chlorophyll, leaf area index, drought stress | Field/Indoor | [29,30,31] |
Model | Number of Study | Ratio (%) |
---|---|---|
Deep learning | 5967 | - |
CNN | 3905 | 65.44 |
RNN | 389 | 6.52 |
GAN | 230 | 3.85 |
Others | 1443 | 24.18 |
System Model | Sensor | Algorithm | Application Area | Accuracy (%) | R2 | References |
---|---|---|---|---|---|---|
YOLO-v4 | RGB | CNN | Wheat | 96.04% | - | [78] |
YOLO-v5 | RGB | SM-YOLOv5 | Tomato | 97.8% | - | [79] |
YOLO-v8 | NIR, UV, RGB | YOLO-v8n | Tomato | 65.08% | - | [80] |
YOLO X | - | - | Technological update | Increased to 45.0% AP | - | [81] |
YOLO POD | RGB | CBAM | Soybean | - | 0.967 | [82] |
X-rayCT | X ray CT scanning system | MATLAB | Rice | - | 0.98 | [83] |
P2PNet-Soy | RGB | Unsupervised clustering | Soybean | - | 0.87 | [84] |
TasselGAN | RGB | DC-GAN variant | Maize | 72.36% | - | [85] |
Anchor-free ObjectBox | RGB | CBAM | Wheat | 94.5% | - | [86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Li, X.; Chen, M.; Xu, X.; Tang, F.; Gong, T.; Xu, M.; Yang, W.; Liu, W. Crop HTP Technologies: Applications and Prospects. Agriculture 2024, 14, 723. https://doi.org/10.3390/agriculture14050723
He S, Li X, Chen M, Xu X, Tang F, Gong T, Xu M, Yang W, Liu W. Crop HTP Technologies: Applications and Prospects. Agriculture. 2024; 14(5):723. https://doi.org/10.3390/agriculture14050723
Chicago/Turabian StyleHe, Shuyuan, Xiuni Li, Menggen Chen, Xiangyao Xu, Fenda Tang, Tao Gong, Mei Xu, Wenyu Yang, and Weiguo Liu. 2024. "Crop HTP Technologies: Applications and Prospects" Agriculture 14, no. 5: 723. https://doi.org/10.3390/agriculture14050723
APA StyleHe, S., Li, X., Chen, M., Xu, X., Tang, F., Gong, T., Xu, M., Yang, W., & Liu, W. (2024). Crop HTP Technologies: Applications and Prospects. Agriculture, 14(5), 723. https://doi.org/10.3390/agriculture14050723