The Nutritional Year-Cycle of Italian Honey Bees (Apis mellifera ligustica) in a Southern Temperate Climate †
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Apiary
2.2. Sample Collection
2.3. Morphological Analysis
2.4. Fat Body Quantification
2.5. Data Analysis
2.5.1. Worker Bee Type
2.5.2. Effect of Sampling Date
2.5.3. Effect of Environmental Factors and Flower Diversity
2.5.4. Correlation Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacques, A.; Laurent, M.; Ribiere-Chabert, M.; Saussac, M.; Bougeard, S.; Hendrikx, P.; Chauzat, M. Statistical Analysis on the EPILOBEE Dataset: Explanatory Variables Related to Honeybee Colony Mortality in EU during a 2 Year Survey. EFSA Support. Publ. 2016, 13, 883E. [Google Scholar] [CrossRef]
- Beyer, M.; Junk, J.; Eickermann, M.; Clermont, A.; Kraus, F.; Georges, C.; Reichart, A.; Hoffmann, L. Winter Honey Bee Colony Losses, Varroa Destructor Control Strategies, and the Role of Weather Conditions: Results from a Survey among Beekeepers. Res. Vet. Sci. 2018, 118, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Uribe, M.M.; Ricigliano, V.A.; Simone-Finstrom, M. Defining Pollinator Health: A Holistic Approach Based on Ecological, Genetic, and Physiological Factors. Annu. Rev. Anim. Biosci. 2020, 8, 269–294. [Google Scholar] [CrossRef] [PubMed]
- Aurell, S.D.; Bruckner, S.; Wilson, M.; Steinhauer, N.; Williams, G. United States Honey Bee Colony Losses 2021-2022: Preliminary Results from the Bee Informed Partnership. Sci. Total Environ. 2022, 753, 12–15. [Google Scholar]
- Insolia, L.; Molinari, R.; Rogers, S.R.; Williams, G.R.; Chiaromonte, F.; Calovi, M. Author Correction: Honey Bee Colony Loss Linked to Parasites, Pesticides and Extreme Weather across the United States. Sci. Rep. 2023, 13, 41598. [Google Scholar] [CrossRef]
- Mutinelli, F.; Pinto, A.; Barzon, L.; Toson, M. Some Considerations about Winter Colony Losses in Italy According to the Coloss Questionnaire. Insects 2022, 13, 1059. [Google Scholar] [CrossRef]
- Döke, M.A.; Frazier, M.; Grozinger, C.M. Overwintering Honey Bees: Biology and Management. Curr. Opin. Insect Sci. 2015, 10, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Kunc, M.; Dobeš, P.; Hurychov, J.; Vojtek, L.; Poiani, S.B. The Year of the Honey Bee (Apis mellifera L.) with Respect to Its Physiology and Immunity: A Search for Biochemical Markers of Longevity. Insects 2019, 10, 244. [Google Scholar] [CrossRef] [PubMed]
- Gray, A.; Noureddine, A.; Arab, A.; Ballis, A.; Brusbardis, V.; Bugeja Douglas, A.; Cadahía, L.; Charrière, J.D.; Chlebo, R.; Coffey, M.F.; et al. Honey Bee Colony Loss Rates in 37 Countries Using the COLOSS Survey for Winter 2019–2020: The Combined Effects of Operation Size, Migration and Queen Replacement. J. Apic. Res. 2022, 62, 204–210. [Google Scholar] [CrossRef]
- Han, F.; Wallberg, A.; Webster, M.T. From Where Did the Western Honeybee (Apis mellifera) Originate? Ecol. Evol. 2012, 2, 1949–1957. [Google Scholar] [CrossRef]
- Wallberg, A.; Han, F.; Wellhagen, G.; Dahle, B.; Kawata, M.; Haddad, N.; Simões, Z.L.P.; Allsopp, M.H.; Kandemir, I.; De La Rúa, P.; et al. A Worldwide Survey of Genome Sequence Variation Provides Insight into the Evolutionary History of the Honeybee Apis mellifera. Nat. Genet. 2014, 46, 1081–1088. [Google Scholar] [CrossRef]
- Amdam, G.V.; Norberg, K.; Omholt, S.W.; Kryger, P.; Lourenço, A.P.; Bitondi, M.M.G.; Simões, Z.L.P. Higher Vitellogenin Concentrations in Honey Bee Workers May Be an Adaptation to Life in Temperate Climates. Insectes Soc. 2005, 52, 316–319. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Z.; Pan, Q.; Chen, X.; Wang, H.; Guo, H.; Liu, S.; Lu, H.; Tian, S.; Li, R.; et al. Genomic Analyses Reveal Demographic History and Temperate Adaptation of the Newly Discovered Honey Bee Subspecies Apis mellifera Sinisxinyuan n. Ssp. Mol. Biol. Evol. 2016, 33, 1337–1348. [Google Scholar] [CrossRef] [PubMed]
- Mattila, H.R.; Harris, J.L.; Otis, G.W. Timing of Production of Winter Bees in Honey Bee (Apis mellifera) Colonies. Insectes Soc. 2001, 48, 88–93. [Google Scholar] [CrossRef]
- Knoll, S.; Pinna, W.; Varcasia, A.; Scala, A.; Cappai, M.G. The Honey Bee (Apis mellifera L., 1758) and the Seasonal Adaptation of Productions. Highlights on Summer to Winter Transition and Back to Summer Metabolic Activity. A Review. Livest. Sci. 2020, 235, 104011. [Google Scholar] [CrossRef]
- Nürnberger, F.; Härtel, S.; Steffan-Dewenter, I. The Influence of Temperature and Photoperiod on the Timing of Brood Onset in Hibernating Honey Bee Colonies. PeerJ 2018, 6, e4801. [Google Scholar] [CrossRef]
- Amdam, G.V.; Omholt, S.W. The Regulatory Anatomy of Honeybee Lifespan. J. Theor. Biol. 2002, 216, 209–228. [Google Scholar] [CrossRef] [PubMed]
- Amdam, G.V.; Norberg, K.; Hagen, A.; Omholt, S.W. Social Exploitation of Vitellogenin. Proc. Natl. Acad. Sci. USA 2003, 100, 1799–1802. [Google Scholar] [CrossRef]
- Münch, D.; Ihle, K.E.; Salmela, H.; Amdam, G.V. Vitellogenin in the Honey Bee Brain: Atypical Localization of a Reproductive Protein That Promotes Longevity. Exp. Gerontol. 2015, 71, 103–108. [Google Scholar] [CrossRef]
- Amdam, G.V.; Simões, Z.L.P.; Hagen, A.; Norberg, K.; Schrøder, K.; Mikkelsen, Ø.; Kirkwood, T.B.L.; Omholt, S.W. Hormonal Control of the Yolk Precursor Vitellogenin Regulates Immune Function and Longevity in Honeybees. Exp. Gerontol. 2004, 39, 767–773. [Google Scholar] [CrossRef]
- Seehuus, S.C.; Norberg, K.; Gimsa, U.; Krekling, T.; Amdam, G.V. Reproductive Protein Protects Functionally Sterile Honey Bee Workers from Oxidative Stress. Proc. Natl. Acad. Sci. USA 2006, 103, 962–967. [Google Scholar] [CrossRef]
- Corona, M.; Velarde, R.A.; Remolina, S.; Moran-lauter, A.; Wang, Y.; Hughes, K.A.; Robinson, G.E. And Queen Honey Bee Longevity. Proc. Natl. Acad. Sci. USA 2007, 104, 7128–7133. [Google Scholar] [CrossRef]
- Mattila, H.R.; Otis, G.W. Dwindling Pollen Resources Trigger the Transition to Broodless Populations of Long-Lived Honeybees. Ecol. Entomol. 2007, 32, 496–505. [Google Scholar] [CrossRef]
- Van Der Steen, J.J.M.; Martel, A.; Hendrickx, P. The Fraction Haemolymph Vitellogenin of a Honey Bee Colony, Derived from a Pooled Haemolymph Sample, a Colony Vitality Parameter. J. Apic. Res. 2015, 54, 55–58. [Google Scholar] [CrossRef]
- Koubová, J.; Sábová, M.; Brejcha, M.; Kodrík, D.; Čapková Frydrychová, R. Seasonality in Telomerase Activity in Relation to Cell Size, DNA Replication, and Nutrients in the Fat Body of Apis mellifera. Sci. Rep. 2021, 11, 592. [Google Scholar] [CrossRef]
- Ruttner, F. Biogeography and Taxonomy of Honeybees; Springer: New York, NY, USA, 1988; pp. 66–78. [Google Scholar] [CrossRef]
- Keller, I.; Fluri, P.; Imdorf, A. Pollen Nutrition and Colony Development in Honey Bees—Part II. Bee World 2005, 86, 27–34. [Google Scholar] [CrossRef]
- Ricigliano, V.A.; Mott, B.M.; Floyd, A.S.; Copeland, D.C.; Carroll, M.J.; Anderson, K.E. Honey Bees Overwintering in a Southern Climate: Longitudinal Effects of Nutrition and Queen Age on Colony-Level Molecular Physiology and Performance. Sci. Rep. 2018, 8, 10475. [Google Scholar] [CrossRef] [PubMed]
- Maes, P.W.; Floyd, A.S.; Mott, B.M.; Anderson, K.E. Overwintering Honey Bee Colonies: Effect of Worker Age and Climate on the Hindgut Microbiota. Insects 2021, 12, 224. [Google Scholar] [CrossRef]
- Le Conte, Y.; Navajas, M. Climate Change: Impact on Honey Bee Populations and Diseases. Rev. Sci. Tech-Off. Intern. Epiz 2008, 27, 485–510. [Google Scholar] [CrossRef]
- Russell, S.; Barron, A.B.; Harris, D. Dynamic Modelling of Honey Bee (Apis mellifera) Colony Growth and Failure. Ecol. Model. 2013, 265, 158–169. [Google Scholar] [CrossRef]
- Hristov, P.; Shumkova, R.; Palova, N.; Neov, B. Honey Bee Colony Losses: Why Are Honey Bees Disappearing? Sociobiology 2021, 68, e5851. [Google Scholar] [CrossRef]
- Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee Declines Driven by Combined Stress from Parasites, Pesticides, and Lack of Flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Seo, G.-B.; Ullah, Z.; Kwon, H.-W. Nutrition for Honey Bee to Prevent Colony Collapse. J. Apic. 2022, 37, 397–404. [Google Scholar] [CrossRef]
- Keller, I.; Fluri, P.; Imdorf, A. Pollen Nutrition and Colony Development in Honey Bees: Part I. Bee World 2005, 86, 3–10. [Google Scholar] [CrossRef]
- Naug, D. Nutritional Stress Due to Habitat Loss May Explain Recent Honeybee Colony Collapses. Biol. Conserv. 2009, 142, 2369–2372. [Google Scholar] [CrossRef]
- Alaux, C.; Ducloz, F.; Crauser, D.; Le Conte, Y. Diet Effects on Honeybee Immunocompetence. Biol. Lett. 2010, 6, 562–565. [Google Scholar] [CrossRef] [PubMed]
- Brodschneider, R.; Crailsheim, K. Nutrition and Health in Honey Bees. Apidologie 2010, 41, 278–294. [Google Scholar] [CrossRef]
- Huang, Z. Pollen Nutrition Affects Honey Bee Stress Resistance. Terr. Arthropod Rev. 2012, 5, 175–189. [Google Scholar] [CrossRef]
- Di Pasquale, G.; Alaux, C.; Le Conte, Y.; Odoux, J.F.; Pioz, M.; Vaissière, B.E.; Belzunces, L.P.; Decourtye, A. Variations in the Availability of Pollen Resources Affect Honey Bee Health. PLoS ONE 2016, 11, e0162818. [Google Scholar] [CrossRef]
- Filipiak, M.; Kuszewska, K.; Asselman, M.; Denisow, B.; Stawiarz, E.; Woyciechowski, M.; Weiner, J. Ecological Stoichiometry of the Honeybee: Pollen Diversity and Adequate Species Composition Are Needed to Mitigate Limitations Imposed on the Growth and Development of Bees by Pollen Quality. PLoS ONE 2017, 12, e0183236. [Google Scholar] [CrossRef]
- Dolezal, A.G.; Toth, A.L. Feedbacks between Nutrition and Disease in Honey Bee Health. Curr. Opin. Insect Sci. 2018, 26, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Ptaszyńska, A.A.; Latoch, P.; Hurd, P.J.; Polaszek, A.; Michalska-Madej, J.; Grochowalski, Ł.; Strapagiel, D.; Gnat, S.; Załuski, D.; Gancarz, M.; et al. Amplicon Sequencing of Variable 16s Rrna from Bacteria and Its2 Regions from Fungi and Plants, Reveals Honeybee Susceptibility to Diseases Results from Their Forage Availability under Anthropogenic Landscapes. Pathogens 2021, 10, 381. [Google Scholar] [CrossRef]
- Retschnig, G.; Rich, J.; Crailsheim, K.; Pfister, J.; Perreten, V.; Neumann, P. You Are What You Eat: Relative Importance of Diet, Gut Microbiota and Nestmates for Honey Bee, Apis mellifera, Worker Health. Apidologie 2021, 52, 632–646. [Google Scholar] [CrossRef]
- De la Rúa, P.; Jaffé, R.; Dall’Olio, R.; Muñoz, I.; Serrano, J. Biodiversity, Conservation and Current Threats to European Honeybees. Apidologie 2009, 40, 263–284. [Google Scholar] [CrossRef]
- Neumann, P.; Carreck, N.L. Honey Bee Colony Losses. J. Apic. Res. 2010, 49, 1–6. [Google Scholar] [CrossRef]
- Scofield, H.N.; Mattila, H.R. Honey Bee Workers That Are Pollen Stressed as Larvae Become Poor Foragers and Waggle Dancers as Adults. PLoS ONE 2015, 10, e0121731. [Google Scholar] [CrossRef] [PubMed]
- Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T.; Aizen, M.A.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J.; et al. Safeguarding Pollinators and Their Values to Human Well-Being. Nature 2016, 540, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Steinhauer, N.; Kulhanek, K.; Antúnez, K.; Human, H.; Chantawannakul, P.; Chauzat, M.P.; vanEngelsdorp, D. Drivers of Colony Losses. Curr. Opin. Insect Sci. 2018, 26, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Watkins de Jong, E.; DeGrandi-Hoffman, G.; Chen, Y.; Graham, H.; Ziolkowski, N. Effects of Diets Containing Different Concentrations of Pollen and Pollen Substitutes on Physiology, Nosema Burden, and Virus Titers in the Honey Bee (Apis mellifera L.). Apidologie 2019, 50, 845–858. [Google Scholar] [CrossRef]
- Castle, D.; Alkassab, A.T.; Steffan-Dewenter, I.; Pistorius, J. Nutritional resources modulate the responses of three bee species to pesticide exposure. J. Haz Mat. 2023, 443, 130304. [Google Scholar] [CrossRef]
- Meixner, M.D.; Kryger, P.; Costa, C. Effects of Genotype, Environment, and Their Interactions on Honey Bee Health in Europe. Curr. Opin. Insect Sci. 2015, 10, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Büchler, R.; Costa, C.; Hatjina, F.; Andonov, S.; Meixner, M.D.; Le Conte, Y.; Uzunov, A.; Berg, S.; Bienkowska, M.; Bouga, M.; et al. The Influence of Genetic Origin and Its Interaction with Environmental Effects on the Survival of Apis mellifera L. Colonies in Europe. J. Apic. Res. 2014, 53, 205–214. [Google Scholar] [CrossRef]
- Dražić, M.M.; Filipi, J.; Prdun, S.; Bubalo, D.; Špehar, M.; Cvitković, D.; Kezić, D.; Pechhacker, H.; Kezić, N. Colony Development of Two Carniolan Genotypes (Apis mellifera Carnica) in Relation to Environment. J. Apic. Res. 2014, 53, 261–268. [Google Scholar] [CrossRef]
- Kovac, H.K.; Äfer, H.K.; Tabentheiner, A.S.; Osta, C.C. Metabolism and Upper Thermal Limits of Apis mellifera Carnica and A. m. Ligustica. Apidologie 2014, 45, 664–677. [Google Scholar] [CrossRef] [PubMed]
- Espregueira Themudo, G.; Rey-Iglesia, A.; Robles Tascón, L.; Bruun Jensen, A.; da Fonseca, R.R.; Campos, P.F. Declining Genetic Diversity of European Honeybees along the Twentieth Century. Sci. Rep. 2020, 10, 10520. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Khan, M.S.; Srivastava, R.M.; Goswami, V. History of beekeeping in developing world. In Beekeeping for poverty Alleviation and Livelihood Security; Springer: Dordrecht, The Netherlands, 2014; pp. 3–62. [Google Scholar]
- Wilson-Rich, N.; Dres, S.T.; Starks, P.T. The Ontogeny of Immunity: Development of Innate Immune Strength in the Honey Bee (Apis mellifera). J. Insect Physiol. 2008, 54, 1392–1399. [Google Scholar] [CrossRef] [PubMed]
- Strachecka, A.; Olszewski, K.; Kuszewska, K.; Chobotow, J.; Wójcik, Ł.; Paleolog, J.; Woyciechowski, M. Segmentation of the Subcuticular Fat Body in Apis mellifera Females with Different Reproductive Potentials. Sci. Rep. 2021, 11, 13887. [Google Scholar] [CrossRef] [PubMed]
- Ratner, B. The correlation coefficient: Its values range between +1/−1, or do they? J. Target. Meas. Anal. Mark. 2009, 17, 139–142. [Google Scholar] [CrossRef]
- Branchiccela, B.; Castelli, L.; Corona, M.; Díaz-Cetti, S.; Invernizzi, C.; Martínez de la Escalera, G.; Mendoza, Y.; Santos, E.; Silva, C.; Zunino, P.; et al. Impact of Nutritional Stress on the Honeybee Colony Health. Sci. Rep. 2019, 9, 10156. [Google Scholar] [CrossRef]
- Bocquet, M.; Tosi, S. A New COLOSS Task Force: Bee Nutrition. Bee World 2022, 99, 35–36. [Google Scholar] [CrossRef]
- Toth, A.L.; Kantarovich, S.; Meisel, A.F.; Robinson, G.E. Nutritional Status Influences Socially Regulated Foraging Ontogeny in Honey Bees. J. Exp. Biol. 2005, 208, 4641–4649. [Google Scholar] [CrossRef] [PubMed]
- Toth, A.L.; Robinson, G.E. Worker Nutrition and Division of Labour in Honeybees. Anim. Behav. 2005, 69, 427–435. [Google Scholar] [CrossRef]
- Ament, S.A.; Wang, Y.; Robinson, G.E. Nutritional Regulation of Division of Labor in Honey Bees: Toward a Systems Biology Perspective. Wiley Interdiscip. Rev. Syst. Biol. Med. 2010, 2, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Ament, S.A.; Chan, Q.W.; Wheeler, M.M.; Nixon, S.E.; Johnson, S.P.; Rodriguez-Zas, S.L.; Foster, L.J.; Robinson, G.E. Mechanisms of Stable Lipid Loss in a Social Insect. J. Exp. Biol. 2011, 214, 3808–3821. [Google Scholar] [CrossRef] [PubMed]
- Alaux, C.; Soubeyrand, S.; Prado, A.; Peruzzi, M.; Maisonnasse, A.; Vallon, J.; Hernandez, J.; Jourdan, P.; Le, Y. Measuring Biological Age to Assess Colony Demographics in Honeybees. PLoS ONE 2018, 13, e0209192. [Google Scholar] [CrossRef] [PubMed]
- Harwood, G.; Amdam, G. Vitellogenin in the Honey Bee Midgut. Apidologie 2021, 52, 837–847. [Google Scholar] [CrossRef]
- Sarioğlu-Bozkurt, A.; Topal, E.; Güneş, N.; Üçeş, E.; Cornea-Cipcigan, M.; Coşkun, İ.; Cuibus, L.; Mărgăoan, R. Changes in Vitellogenin (Vg) and Stress Protein (HSP 70) in honey bee (Apis mellifera anatolica) groups under different diets linked with physico-chemical, antioxidant and fatty and amino acid profiles. Insects 2022, 13, 985. [Google Scholar] [CrossRef] [PubMed]
- Kunert, K.; Crailsheim, K. Seasonal Changes in Carbohydrate, Lipid and Protein Content in Emerging Worker Honeybees and Their Mortality. J. Apic. Res. 1988, 27, 13–21. [Google Scholar] [CrossRef]
- Hoover, S.E.R.; Higo, Æ.H.A.; Winston, M.L. Worker Honey Bee Ovary Development: Seasonal Variation and the Influence of Larval and Adult Nutrition. J. Comp. Physiol. B 2006, 176, 55–63. [Google Scholar] [CrossRef]
- Wang, Y.; Kaftanoglu, O.; Brent, C.S.; Page, R.E.; Amdam, G.V. Starvation Stress during Larval Development Facilitates an Adaptive Response in Adult Worker Honey Bees (Apis mellifera L.). J. Exp. Biol. 2016, 219, 949–959. [Google Scholar] [CrossRef]
- Schilcher, F.; Hilsmann, L.; Ankenbrand, M.J.; Krischke, M.; Mueller, M.J.; Steffan-dewenter, I.; Scheiner, R. Honeybees Are Buffered against Undernourishment during Larval Stages. Front. Insect Sci. 2022, 2, 951317. [Google Scholar] [CrossRef] [PubMed]
- Kerr, W.E.; Hebling, N.J. Influence of the Weight of Worker Bees on Division of Labor. Evolution 1964, 18, 267–270. Available online: http://www.jstor.org/stable/2406400 (accessed on 7 April 2024). [CrossRef]
- Roulston, T.H.; Cane, J.H. The Effect of Diet Breadth and Nesting Ecology on Body Size Variation in Bees (Apiformes). J. Kans. Entomol. Soc. 2000, 73, 129–142. [Google Scholar]
- Chole, H.; Woodard, S.H.; Bloch, G. Body Size Variation in Bees: Regulation, Mechanisms, and Relationship to Social Organization. Curr. Opin. Insect Sci. 2019, 35, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Smart, M.; Pettis, J.; Rice, N.; Browning, Z.; Spivak, M. Linking Measures of Colony and Individual Honey Bee Health to Survival among Apiaries Exposed to Varying Agricultural Land Use. PLoS ONE 2016, 11, e0152685. [Google Scholar] [CrossRef]
- Fluri, P.; Lüscher, M.; Wille, H.; Gerig, L. Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone, protein and vitellogenin in worker honey bees. J. Insect Physiol. 1982, 28, 61–68. [Google Scholar] [CrossRef]
- Crailsheim, K. The protein balance of the honey bee worker. Apidologie 1990, 21, 417–429. [Google Scholar] [CrossRef]
- Ali, H.; Alqarni, A.S.; Iqbal, J.; Owayss, A.A. Effect of Season and Behavioral Activity on the Hypopharyngeal Glands of Three Honey Bee Apis mellifera L. Races under Stressful Climatic Conditions of Central Saudi Arabia. J. Hymenopt. Res. 2019, 68, 85–101. [Google Scholar] [CrossRef]
- Seehuus, S.-C.; Norberg, K.; Krekling, T.; Fondrk, K.; Amdam, G.V. Immunogold Localization of Vitellogenin in the Ovaries, Hypopharyngeal Glands and Head Fat Bodies of Honeybee Workers, Apis mellifera. J. Insect Sci. 2007, 7, 52. [Google Scholar] [CrossRef]
- Yamada, Y.; Yamada, T.; Yamada, K. OPEN A Mathematical Model to Estimate the Seasonal Change in Apparent Longevity of Bee Colony. Sci. Rep. 2019, 9, 4102. [Google Scholar] [CrossRef]
- Ricigliano, V.A.; Mott, B.M.; Maes, P.W.; Floyd, A.S.; Fitz, W.; Copeland, D.C.; Meikle, W.G.; Anderson, K.E. Honey Bee Colony Performance and Health Are Enhanced by Apiary Proximity to US Conservation Reserve Program (CRP) Lands. Sci. Rep. 2019, 9, 4894. [Google Scholar] [CrossRef] [PubMed]
- Ricigliano, V.A.; Ihle, K.E.; Williams, S.T. Nutrigenetic Comparison of Two Varroa-Resistant Honey Bee Stocks Fed Pollen and Spirulina Microalgae. Apidologie 2021, 52, 873–886. [Google Scholar] [CrossRef]
- Dolezal, A.G.; Clair, A.L.S.; Zhang, G.; Toth, A.L.; O’Neal, M.E. Native Habitat Mitigates Feast–Famine Conditions Faced by Honey Bees in an Agricultural Landscape. Proc. Natl. Acad. Sci. USA 2019, 116, 25147–25155. [Google Scholar] [CrossRef]
- Sauthier, R.; I’Anson Price, R.; Grüter, C. Worker Size in Honeybees and Its Relationship with Season and Foraging Distance. Apidologie 2017, 48, 234–246. [Google Scholar] [CrossRef]
- Abou-Shaara, H.F.; Owayss, A.A.; Ibrahim, Y.Y.; Basuny, N.K. A Review of Impacts of Temperature and Relative Humidity on Various Activities of Honey Bees. Insectes Soc. 2017, 64, 455–463. [Google Scholar] [CrossRef]
- Zhao, H.; Li, G.; Guo, D.; Li, H.; Liu, Q.; Xu, B.; Guo, X. Response Mechanisms to Heat Stress in Bees. Apidologie 2021, 52, 388–399. [Google Scholar] [CrossRef]
- Knoll, S.; Fadda, V.; Ahmed, F.; Pinna, W.; Varcasia, A.; Scala, A.; Cappai, M.G. Seasonal variation in morphological parameters of Apis mellifera ligustica foragers in a southern temperate climate. In Congress Proceedings; ESVCN: Basel, Switzerland, 2022; p. 140. [Google Scholar]
- Calovi, M.; Grozinger, C.M.; Miller, D.A.; Goslee, S.C. Summer Weather Conditions Influence Winter Survival of Honey Bees (Apis mellifera) in the Northeastern United States. Sci. Rep. 2021, 11, 1553. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Robinson, G.E. Seasonal Changes in Juvenile Hormone Titers and Rates of Biosynthesis in Honey Bees. J. Comp. Physiol. B 1995, 165, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.Y.; Robinson, G.E. Regulation of Honey Bee Division of Labor by Colony Age Demography. Behav. Ecol. Sociobiol. 1996, 39, 147–158. [Google Scholar] [CrossRef]
- Fluri, P.; Bogdanov, S. Age Dependence of Fat Body Protein in Summer and Winter Bees (Apis mellifera); Chemistry and Biology of Social Insects; Verlag J. Peperny: Munich, Germany, 1987; pp. 170–171. [Google Scholar]
- Huang, Z.Y.; Robinson, G.E. Honeybee Colony Integration: Worker-Worker Interactions Mediate Hormonally Regulated Plasticity in Division of Labor. Proc. Natl. Acad. Sci. USA 1992, 89, 11726–11729. [Google Scholar] [CrossRef]
- Leoncini, I.; Le Conte, Y.; Costagliola, G.; Plettner, E.; Toth, A.L.; Wang, M.; Huang, Z.; Bécard, J.M.; Crauser, D.; Slessor, K.N.; et al. Regulation of Behavioral Maturation by a Primer Pheromone Produced by Adult Worker Honey Bees. Proc. Natl. Acad. Sci. USA 2004, 101, 17559–17564. [Google Scholar] [CrossRef] [PubMed]
- Amdam, G.V.; Rueppell, O.; Fondrk, M.K.; Page, R.E.; Nelson, C.M. The Nurse’s Load: Early-Life Exposure to Brood-Rearing Affects Behavior and Lifespan in Honey Bees (Apis mellifera). Exp. Gerontol. 2009, 44, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.E.; Mott, B.M. Ecology of Pollen Storage in Honey Bees: Sugar Tolerant Yeast and the Aerobic Social Microbiota. Insects 2023, 14, 265. [Google Scholar] [CrossRef] [PubMed]
- Wood, T.J.; Kaplan, I.; Szendrei, Z.; Hall, M.A. Wild Bee Pollen Diets Reveal Patterns of Seasonal Foraging Resources for Honey Bees. Front. Ecol. Evol. 2018, 6, 210. [Google Scholar] [CrossRef]
- Di Pasquale, G.; Salignon, M.; Le Conte, Y.; Belzunces, L.P.; Decourtye, A.; Kretzschmar, A.; Suchail, S.; Brunet, J.L.; Alaux, C. Influence of Pollen Nutrition on Honey Bee Health: Do Pollen Quality and Diversity Matter? PLoS ONE 2013, 8, e72016. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, G.M.; Isaacs, R.; Otto, C.R.V.; Smart, A.H.; Milbrath, M.O. Association of Excessive Precipitation and Agricultural Land Use with Honey Bee Colony Performance. Landsc. Ecol. 2023, 38, 1555–1569. [Google Scholar] [CrossRef]
- VanEngelsdorp, D.; Meixner, M.D. A Historical Review of Managed Honey Bee Populations in Europe and the United States and the Factors That May Affect Them. J. Invertebr. Pathol. 2010, 103 (Suppl. 1), S80–S95. [Google Scholar] [CrossRef]
- Vaudo, A.D.; Tooker, J.F.; Grozinger, C.M.; Patch, H.M. Bee Nutrition and Floral Resource Restoration. Curr. Opin. Insect Sci. 2015, 10, 133–141. [Google Scholar] [CrossRef]
- Danner, N.; Keller, A.; Härtel, S.; Steffan-Dewenter, I. Honey Bee Foraging Ecology: Season but Not Landscape Diversity Shapes the Amount and Diversity of Collected Pollen. PLoS ONE 2017, 12, e0183716. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Zhang, X.; Llorens, L.; Ogaya, R.; Lloret, F.; Comas, P.; Estiarte, M.; Terradas, J. Complex Spatiotemporal Phenological Shifts as a Response to Rainfall Changes. New Phytol. 2004, 161, 837–846. [Google Scholar] [CrossRef]
- Schweiger, O.; Biesmeijer, J.C.; Bommarco, R.; Hickler, T.; Hulme, P.E.; Klotz, S.; Kühn, I.; Moora, M.; Nielsen, A.; Ohlemüller, R.; et al. Multiple Stressors on Biotic Interactions: How Climate Change and Alien Species Interact to Affect Pollination. Biol. Rev. 2010, 85, 777–795. [Google Scholar] [CrossRef]
- Gordo, O.; Sanz, J.J. Phenology and Climate Change: A Long-Term Study in a Mediterranean Locality. Oecologia 2005, 146, 484–495. [Google Scholar] [CrossRef]
- Hegland, S.J.; Nielsen, A.; Lázaro, A.; Bjerknes, A.L.; Totland, Ø. How Does Climate Warming Affect Plant-Pollinator Interactions? Ecol. Lett. 2009, 12, 184–195. [Google Scholar] [CrossRef]
- Switanek, M.; Crailsheim, K.; Truhetz, H.; Brodschneider, R. Modelling Seasonal Effects of Temperature and Precipitation on Honey Bee Winter Mortality in a Temperate Climate. Sci. Total Environ. 2017, 579, 1581–1587. [Google Scholar] [CrossRef] [PubMed]
- Flores, J.M.; Gil-Lebrero, S.; Gámiz, V.; Rodríguez, M.I.; Ortiz, M.A.; Quiles, F.J. Effect of the Climate Change on Honey Bee Colonies in a Temperate Mediterranean Zone Assessed through Remote Hive Weight Monitoring System in Conjunction with Exhaustive Colonies Assessment. Sci. Total Environ. 2019, 653, 1111–1119. [Google Scholar] [CrossRef]
- Stanimirović, Z.; Glavinić, U.; Ristanić, M.; Aleksić, N.; Jovanović, N.; Vejnović, B.; Stevanović, J. Looking for the Causes of and Solutions to the Issue of Honey Bee Colony Losses. Acta Vet. Brno 2019, 69, 1–31. [Google Scholar] [CrossRef]
- Kiraç, A.; Birer, S. Climate Change Will Cause a Pollination Crisis in the Mediterranean Basin. Bilge Int. J. Sci. Technol. Res. 2023, 7, 33–37. [Google Scholar] [CrossRef]
- Carvalho, D.; Pereira, S.C.; Silva, R.; Rocha, A. Aridity and Desertification in the Mediterranean under EURO-CORDEX Future Climate Change Scenarios. Clim. Change 2022, 174, 28. [Google Scholar] [CrossRef]
- Gordo, O.; Sanz, J.J. Temporal Trends in Phenology of the Honey Bee Apis mellifera (L.) and the Small White Pieris Rapae (L.) in the Iberian Peninsula (1952-2004). Ecol. Entomol. 2006, 31, 261–268. [Google Scholar] [CrossRef]
- Nath, R.; Singh, H.; Mukherjee, S. Insect Pollinators Decline: An Emerging Concern of Anthropocene Epoch. J. Apic. Res. 2022, 62, 23–38. [Google Scholar] [CrossRef]
Temperature (°C) | Precipitation (mm) | Precipitation (Days) | Wind (Km/h) | Humidity (%) | Daylength (min) | ||||
---|---|---|---|---|---|---|---|---|---|
Month * | Category *** Category *** Category *** | ||||||||
Jan ** | 10.4 | Ta | 83.4 | Pb | 17 | 11.0 | 82 | 575 | Oa |
range | −1.0–21.0 | / | / | 0–45.0 | 60–98 | / | |||
Feb | 10.3 | Ta | 19.3 | Pa | 4 | 11 | 77 | 641 | Oa |
range | −2.0–18.0 | / | / | 0–40.0 | 53–96 | / | |||
Mar | 10.8 | Ta | 33.7 | Pa | 12 | 11.2 | 71 | 728 | Ob |
range | −1.0–22.0 | / | / | 0–33.8 | 46–93 | / | |||
Apr | 14.2 | Ta | 61.5 | Pb | 8 | 14.0 | 70 | 813 | Oc |
range | 3.0–25.0 | / | / | 0–45.0 | 44–95 | / | |||
May | 19.6 | Tb | 89.7 | Pb | 6 | 9.0 | 74 | 877 | Od |
Jun | 25.0 | Tc | 3.8 | Pa | 4 | 9.9 | 66 | 903 | Od |
Jul | 26.7 | Td | 0.3 | Pa | 0 | 8.9 | 66 | 893 | Od |
Aug | 26.8 | Td | 12.9 | Pa | 3 | 10.0 | 72 | 822 | Oc |
Sep | 23.3 | Tc | 108.6 | Pc | 9 | 7.0 | 75 | 730 | Ob |
Oct | 19.5 | Tb | 46.6 | Pa | 6 | 7.5 | 81 | 654 | Ob |
range | 9.0–29.0 | / | / | 0–29.0 | 50–100 | / | |||
Nov | 15.5 | Tb | 148.4 | Pc | 16 | 9.9 | 82 | 597 | Oa |
Dec | 13.2 | Ta | 144.5 | Pc | 11 | 10.7 | 88 | 559 | Oa |
Month * | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan ** | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
Species | ||||||||||||
Acacia dealbata | X | X | ||||||||||
Anthemis arvensis | X | X | X | |||||||||
Asphodelus ramosus | X | X | ||||||||||
Bellis perennis | X | X | X | X | X | |||||||
Borago officinalis | X | X | X | |||||||||
Calendula arvensis | X | X | X | X | X | X | X | X | X | |||
Centaurea | X | |||||||||||
Chrysanthemum croronarium | X | X | ||||||||||
Convolvulus arvensis | X | |||||||||||
Crepis vesicaria | X | X | X | X | X | X | X | X | X | |||
Cynara cardunculus | X | X | ||||||||||
Dittrichia viscosa | X | X | X | |||||||||
Echium plantagineum | X | X | X | X | ||||||||
Eucalyptussp. | X | X | X | X | X | X | X | |||||
Foeniculum vulgare | X | X | X | X | X | X | ||||||
Fumaria officinalis | X | X | X | |||||||||
Galactites tomentosus | X | X | X | |||||||||
Geranium molle | X | X | ||||||||||
Glebionis coronaria | X | X | ||||||||||
Helminthotheca echioidessp. | X | X | X | |||||||||
Hypochaeris achyrophorus | X | X | X | |||||||||
Malva sylvestris | X | X | ||||||||||
Onopordum horridum | X | X | X | |||||||||
Oxalis pes-caprae | X | X | X | X | X | X | X | |||||
Prunus amygdalus | X | X | ||||||||||
Rafanus sativus | X | |||||||||||
Raphanus raphanistrum | X | X | ||||||||||
Reichardia picroides | X | X | X | X | X | X | X | X | ||||
Salvia rosmarinus | X | X | X | X | X | X | X | X | X | |||
Senecio vulgaris | X | |||||||||||
Sinapis alba | X | X | X | X | ||||||||
Trifolium nigrescens | X | X | X | |||||||||
Count | 2 | 7 | 15 | 20 | 23 | 14 | 8 | 3 | 9 | 7 | 6 | 3 |
Category *** | Fa | Fb | Fc | Fc | Fc | Fc | Fb | Fa | Fb | Fb | Fb | Fa |
Overall * | Nurse bee | Forager bee | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD ** | Range | Mean | SD ** | Range | Mean | SD ** | Range | |
Weight (g) | 0.10 | 0.02 | 0.06–0.17 | 0.12 | 0.02 | 0.08–0.17 | 0.08 | 0.01 | 0.06–0.12 |
Head width (mm) | 3.74 | 0.06 | 3.56–3.88 | 3.76 | 0.05 | 3.62–3.88 | 3.71 | 0.05 | 3.56–3.86 |
Thoracal width (mm) | 3.77 | 0.05 | 3.56–3.93 | 3.77 | 0.05 | 3.56–3.92 | 3.77 | 0.05 | 3.58–3.93 |
Thoracal length (mm) | 3.76 | 0.05 | 3.48–4.01 | 3.76 | 0.05 | 3.48–3.97 | 3.76 | 0.05 | 3.50–4.01 |
Abdominal width (mm) | 4.27 | 0.15 | 3.82–4.79 | 4.35 | 0.14 | 4.00–4.79 | 4.18 | 0.11 | 3.82–4.50 |
Abdominal length (mm) | 6.4 | 0.85 | 4.91–8.89 | 7.08 | 0.61 | 5.62–8.89 | 5.72 | 0.39 | 4.91–7.28 |
Total body length (mm) | 11.84 | 0.79 | 10.21–14.43 | 12.42 | 0.66 | 10.41–14.43 | 11.27 | 0.38 | 10.21–12.78 |
Fat body weight (mg) | 7.7 | 7.6 | 0–38.0 | 13.2 | 6.7 | 0–38.0 | 2.1 | 3.3 | 0.0–20.7 |
Fat body size (%) | 29 | 20 | 0- 92 | 42 | 13 | 12–88 | 16 | 16 | 0- 92 |
Effect of Hive | Effect of Month | Interaction | |||||||
---|---|---|---|---|---|---|---|---|---|
p-Value a | F-Value | df * | p-Value a | F-Value | df * | p-Value a | F-Value | df * | |
Nurse bees | |||||||||
Weight | 0.016 | 3.09 | (4540) | <0.001 | 50.02 | (11,540) | 0.220 | 0.64 | (44,540) |
Head width | 0.637 | 0.64 | (4540) | <0.001 | 12.91 | (11,540) | 0.999 | 0.64 | (44,540) |
Abdominal width | 0.299 | 1.23 | (4540) | <0.001 | 23.99 | (11,540) | 0.795 | 0.82 | (44,540) |
Abdominal length | 0.213 | 1.46 | (4540) | <0.001 | 19.07 | (11,540) | 0.439 | 1.02 | (44,540) |
Total body length | 0.009 | 3.42 | (4540) | <0.001 | 26.47 | (11,540) | 0.338 | 1.08 | (44,540) |
Fat body weight | 0.602 | 0.69 | (4540) | <0.001 | 38.51 | (11,540) | 0.076 | 1.34 | (44,540) |
Proportional fat body size | 0.744 | 0.49 | (4540) | <0.001 | 31.22 | (11,540) | 0.100 | 1.3 | (44,540) |
Forager bees | |||||||||
Weight | 0.568 | 0.74 | (4540) | <0.001 | 15.93 | (11,540) | 0.673 | 0.89 | (44,540) |
head width | 0.483 | 0.87 | (4540) | <0.001 | 17.57 | (11,540) | 0.999 | 0.45 | (44,540) |
Abdominal width | 0.846 | 0.35 | (4540) | <0.001 | 6.76 | (11,540) | 0.553 | 0.96 | (44,540) |
Abdominal length | 0.023 | 2.85 | (4540) | <0.001 | 15.83 | (11,540) | 0.773 | 0.83 | (44,540) |
Total body length | 0.401 | 1.01 | (4540) | <0.001 | 11.02 | (11,540) | 0.339 | 1.08 | (44,540) |
Fat body weight | 0.709 | 0.54 | (4540) | <0.001 | 10.77 | (11,540) | 0.999 | 0.45 | (44,540) |
Proportional fat body size | 0.621 | 0.66 | (4540) | <0.001 | 9.84 | (11,540) | 0.919 | 0.71 | (44,540) |
Temperature | Precipitation | Hours of Daylight | Diversity of Flowering Plants | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F-Value | df * | p-Value a | Post Hoc ** | F-Value | df * | p-Value a | Post Hoc ** | F-Value | df * | p-Value a | Post Hoc ** | F-Value | df * | p-Value a | Post Hoc ** | |
Nurse bee | ||||||||||||||||
Head width | 8.25 | (3589) | <0.001 | Tb,Tc,Td > Ta | 7.17 | (2589) | 0.001 | Pc > Pb,Pa | 2.20 | (3589) | 0.087 | X | 7.10 | (2589) | 0.001 | Fa,Fb > Fc |
Abdominal width | 28.41 | (3589) | <0.001 | Tb > Ta,Tc > Td | 5.20 | (2589) | 0.006 | Pc > Pb > Pa | 8.83 | (3589) | <0.001 | Oa,Ob > Oc,Od | 3.01 | (2589) | 0.05 | Fa,Fb > Fc |
abdominal length | 29.45 | (3589) | <0.001 | Tb > Ta,Tc > Td | 10.22 | (2589) | <0.001 | Pc > Pb,Pa | 3.41 | (3589) | 0.017 | Oa,Ob,Oc,Od | 1.70 | (2589) | 0.183 | X |
Fat body weight | 39.14 | (3589) | <0.001 | Tb > Ta > Tc > Td | 18.82 | (2589) | <0.001 | Pc > Pb > Pa | 3.29 | (3589) | 0.021 | Oa > Ob,Oc,Od | 2.21 | (2589) | 0.111 | Fa,Fb,Fc |
Fat body size | 40.36 | (3589) | <0.001 | Tb > Ta,Tc > Td | 39.31 | (2589) | <0.001 | Pc > Pb,Pa | 3.67 | (3589) | 0.012 | Oa,Ob > Oc,Od | 2.26 | (2589) | 0.105 | Fa,Fb,Fc |
Forager bee | ||||||||||||||||
Weight | 9.14 | (3589) | <0.001 | Tb > Tc > Ta > Td | 7.8 | (2589) | <0.001 | Pc > Pb,Pa | 1.3 | (3589) | 0.272 | X | 6.9 | (2589) | 0.001 | Fb > Fc > Fa |
Head width | 18.2 | (3589) | <0.001 | X | 5.84 | (2589) | 0.003 | Pc > Pa > Pb | 3.56 | (3589) | 0.014 | Oa,Ob,Oc,Od | 0.65 | (2589) | 0.520 | X |
Abdominal width | 5.84 | (3589) | 0.001 | X | 1.44 | (2589) | 0.239 | X | 4.1 | (3589) | 0.007 | Oa,Ob,Oc,Od | 1.93 | (2589) | 0.146 | X |
abdominal length | 10.57 | (3589) | <0.001 | Tb,Td > Ta,Tc | 9.83 | (2589) | <0.001 | Pc > Pa > Pb | 5.48 | (3589) | 0.001 | Oa > Ob,Oc,Od | 14.16 | (2589) | < 0.001 | Fb > Fa,Fc |
total body length | 8.09 | (3589) | <0.001 | Tb,Td,Ta,Tc | 7.82 | (2589) | <0.001 | Pc > Pb,Pa | 7.36 | (3589) | <0.001 | Oa,Od > Ob,Oc | 9.69 | (2589) | < 0.001 | Fb > Fa,Fc |
Fat body weight | 9.07 | (3589) | <0.001 | Tb,Td,Ta,Tc | 6.34 | (2589) | 0.002 | Pc > Pb,Pa | 6.56 | (3589) | <0.001 | Oa,Ob,Oc,Od | 6.44 | (2589) | 0.002 | Fb > Fa,Fc |
Fat body size | 8.28 | (3589) | <0.001 | Tb,Td,Ta,Tc | 4.01 | (2589) | 0.019 | Pc > Pb,Pa | 5.85 | (3589) | 0.001 | Oa,Ob,Oc,Od | 2.75 | (2589) | 0.065 | X |
Weight | Head Width | Thoracal Width | Thoracal Length | Abdominal Width | Abdominal Length | Total Body Length | Fat Body Weight | |
---|---|---|---|---|---|---|---|---|
Nurse bees | ||||||||
Head width | 0.578 ** | / | / | / | / | / | / | / |
p-value | <0.001 | / | / | / | / | / | / | / |
Thoracal width | 0.241 * | 0.224 * | / | / | / | / | / | / |
p-value | <0.001 | <0.001 | / | / | / | / | / | / |
Thoracal length | 0.272 * | 0.216 * | 0.557 ** | / | / | / | / | / |
p-value | <0.001 | <0.001 | <0.001 | / | / | / | / | / |
Abdominal width | 0.638 *** | 0.457 ** | 0.323 ** | 0.330 ** | / | / | / | / |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | / | / | / | / |
Abdominal length | 0.796 *** | 0.768 *** | 0.205 * | 0.244 * | 0.572 ** | / | / | / |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | / | / | / |
Total body length | 0.770 *** | 0.636 *** | 0.213 * | 0.259 * | 0.529 ** | 0.794 *** | / | / |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | / | / |
Fat body weight | 0.753 *** | 0.424 ** | 0.104 * | 0.144 * | 0.493 ** | 0.675 *** | 0.666 *** | / |
p-value | <0.001 | <0.001 | 0.024 | 0.002 | <0.001 | <0.001 | <0.001 | / |
Fat body size | 0.310 ** | 0.133 * | 0.045 | 0.069 | 0.183 * | 0.257 * | 0.293 * | 0.498 ** |
p-value | <0.001 | 0.004 | 0.324 | 0.131 | <0.001 | <0.001 | <0.001 | <0.001 |
Forager bees | ||||||||
Head width | 0.214 * | / | / | / | / | / | / | / |
p-value | <0.001 | / | / | / | / | / | / | / |
Thoracal width | 0.117 * | 0.780 *** | / | / | / | / | / | / |
p-value | <0.001 | <0.001 | / | / | / | / | / | / |
Thoracal length | 0.072 | 0.692 *** | 0.830 *** | / | / | / | / | / |
p-value | 0.079 | <0.001 | <0.001 | / | / | / | / | / |
Abdominal width | 0.614 *** | 0.317 ** | 0.286 * | 0.219 * | / | / | / | / |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | / | / | / | / |
Abdominal length | 0.731 *** | 0.212 * | 0.095 * | 0.035 | 0.639 *** | / | / | / |
p-value | <0.001 | <0.001 | 0.020 | 0.396 | < 0.001 | / | / | / |
Total body length | 0.735 *** | 0.218 * | 0.102 * | 0.063 | 0.636 *** | 0.871 *** | / | / |
p-value | <0.001 | <0.001 | 0.012 | 0.125 | <0.001 | <0.001 | / | / |
Fat body weight | 0.669 *** | 0.204 * | 0.088 | 0.064 | 0.471 ** | 0.649 *** | 0.643 *** | / |
p-value | <0.001 | <0.001 | 0.053 | 0.160 | <0.001 | <0.001 | <0.001 | / |
Fat body size | 0.662 *** | 0.212 * | 0.097 * | 0.071 | 0.458 ** | 0.645 *** | 0.652 *** | 0.907 *** |
p-value | <0.001 | <0.001 | 0.034 | 0.121 | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knoll, S.; Fadda, V.; Ahmed, F.; Cappai, M.G. The Nutritional Year-Cycle of Italian Honey Bees (Apis mellifera ligustica) in a Southern Temperate Climate. Agriculture 2024, 14, 730. https://doi.org/10.3390/agriculture14050730
Knoll S, Fadda V, Ahmed F, Cappai MG. The Nutritional Year-Cycle of Italian Honey Bees (Apis mellifera ligustica) in a Southern Temperate Climate. Agriculture. 2024; 14(5):730. https://doi.org/10.3390/agriculture14050730
Chicago/Turabian StyleKnoll, Stephane, Valeria Fadda, Fahad Ahmed, and Maria Grazia Cappai. 2024. "The Nutritional Year-Cycle of Italian Honey Bees (Apis mellifera ligustica) in a Southern Temperate Climate" Agriculture 14, no. 5: 730. https://doi.org/10.3390/agriculture14050730
APA StyleKnoll, S., Fadda, V., Ahmed, F., & Cappai, M. G. (2024). The Nutritional Year-Cycle of Italian Honey Bees (Apis mellifera ligustica) in a Southern Temperate Climate. Agriculture, 14(5), 730. https://doi.org/10.3390/agriculture14050730