Behavior of Thiamethoxam and Clothianidin in Young Oilseed Rape Plants before Flowering, Monitored by QuEChERS/LC–MS/MS Protocol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Field Trials and Sampling
2.3. Sample Preparation–Sample of High Chlorophyll Content
2.4. Method Validation
2.5. Instrumentation Conditions
3. Results
3.1. Optimization of d-SPE Clean-Up Protocol
3.2. Behavior of Thiamethoxam and Clothianidin in Young Oilseed Rape Plants before the Flowering
4. Discussion
4.1. Optimization of d-SPE Clean-Up Protocol
4.2. Behavior of Thiamethoxam and Clothianidin in Young Oilseed Rape Plants before the Flowering
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT, 2016. Food and Agriculture Organization of the United Nations Statistics Division. Available online: http://faostat3.fao.org/download/Q/QD/E (accessed on 14 August 2023).
- Shahbandeh, M. Global Oilseed Production 2021/22, by Type. Statista. Available online: https://www.statista.com/statistics/267271/worldwide-oilseed-production-since-2008/ (accessed on 14 August 2023).
- FAO. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 14 August 2023).
- Halinski, R.; Dorneles, A.L.; Blochtein, B. Bee assemblage in habitats associated with Brassica napus L. Rev. Bras. Entomol. 2015, 59, 222–228. [Google Scholar] [CrossRef]
- Kathage, J.; Castañera, P.; Alonso-Prados, J.L.; Gomez-Barbero, M.; Rodríguez-Cerezo, E. The impact of restrictions on neonicotinoid and fipronil insecticides on pest management in maize, oilseed rape, and sunflower in eight European Union regions. Pest Manag. Sci. 2018, 74, 88–99. [Google Scholar] [CrossRef]
- Łozowicka, B.; Pietraszko, A.; Hrynko, I.; Rusiłowska, J.; Czerwińska, M.; Drągowski, W.; Kaczyński, P. Pesticide residues in seeds of winter oilseed rape (Brassica napus L.). Prog. Plant Prot. 2019, 59, 199–205. [Google Scholar] [CrossRef]
- Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.W.; Giorio, C.; Girolami, V.; et al. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. Int. 2015, 22, 5–34. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, P.; Nauen, R.; Schindler, M.; Elbert, A. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 2011, 59, 2897–2908. [Google Scholar] [CrossRef] [PubMed]
- Elbert, A.; Haas, M.; Springer, B.; Thielert, W.; Nauen, R. Applied aspects of neonicotinoid uses in crop protection. Pest Manag. Sci. 2008, 64, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Zuo, W.; Zhao, Y.; Qi, P.; Zhang, C.; Zhao, X.; Wu, S.; An, X.; Liu, X.; Cheng, X.; Yu, Y.; et al. Current-use pesticides monitoring and ecological risk assessment in vegetable soils at the provincial scale. Environ. Res. 2024, 246, 118023. [Google Scholar] [CrossRef] [PubMed]
- Brinco, J.; Guedes, P.; da Silva, M.G.; Mateus, E.P.; Ribeiro, A.B. Analysis of pesticide residues in soil: A review and comparison of methodologies. Microchem. J. 2023, 195, 109465. [Google Scholar] [CrossRef]
- González-Curbelo, M.Á.; Varela-Martínez, D.A.; Riaño-Herrera, D.A. Pesticide-Residue Analysis in Soils by the QuEChERS Method: A Review. Molecules 2022, 27, 4323. [Google Scholar] [CrossRef]
- Hrynko, I.; Łozowicka, B.; Kaczyński, P. Comprehensive analysis of insecticides in melliferous weeds and agricultural crops using a modified QuEChERS/LC-MS/MS protocol and of their potential risk to honey bees (Apis mellifera L.). Sci. Total Environ. 2019, 657, 16–27. [Google Scholar] [CrossRef]
- Porseryd, T.; Hellström, K.V.; Dinnétz, P. Pesticide residues in ornamental plants marketed as bee friendly: Levels in flowers, leaves, roots and soil. Environ. Pollut. 2024, 345, 123466. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y.; Wurjihu, S.; Ruan, H.; Huang, Y.; Guo, M.; Kong, D.; Luo, J.; Yang, M. Comprehensive analysis of neonicotinoids in Chinese commercial honey and pollen: A corresponding health risk assessment for non-targeted organisms. Sci. Total Environ. 2024, 919, 170937. [Google Scholar] [CrossRef] [PubMed]
- Kasiotis, K.M.; Anagnostopoulos, C.; Anastasiadou, P.; Machera, K. Pesticide residues in honeybees, honey and bee pollen by LC-MS/MS screening: Reported death incidents in honeybees. Sci. Total Environ. 2014, 485–486, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Herbst, A.; Zeng, A.; Wongsuk, S.; Qiao, B.; Qi, P.; Bonds, J.; Overbeckc, V.; Yang, Y.; Gao, W.; et al. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Sci. Total Environ. 2021, 777, 146181. [Google Scholar] [CrossRef] [PubMed]
- García-Santos, G.; Feola, G.; Nuyttens, D.; Diaz, J. Drift from the use of hand-held knapsack pesticide sprayers in Boyacá (Colombian Andes). J. Agric. Food Chem. 2015, 64, 3990–3998. [Google Scholar] [CrossRef] [PubMed]
- European Commission Report on EU Agri-Food Fraud. JANUARY 2024 REPORT ON EU AGRI-FOOD FRAUD SUSPICIONS 2024. Available online: https://food.ec.europa.eu/document/download/70e6460b-0a7c-4200-9757-77839407d903_en?filename=ff_ffn_monthly-report_202401.pdf (accessed on 11 March 2024).
- Hairston, B. The evolution of modern seed treatments. Outlooks Pest Manag. 2013, 24, 184–186. [Google Scholar] [CrossRef]
- Fan, Y.; Shi, X. Characterization of the metabolic transformation of thiamethoxam to clothianidin in Helicoverpa armigera larvae by SPE combined UPLC-MS/MS and its relationship with the toxicity of thiamethoxam to Helicoverpa armigera larvae. J. Chromatogr. B 2017, 1061, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Nauen, R.; Ebbinghaus-Kintscher, U.; Salgado, V.L.; Kaussmann, M. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic. Biochem. Physiol. 2003, 76, 55–69. [Google Scholar] [CrossRef]
- Lopez-Ruiz, R.; Romero-Gonzalez, R.; Garrido Frenich, A. Dissipation kinetics of fenamidone, propamocarb and their metabolites in ambient soil and water samples and unknown screening of metabolites. J. Environ. Manag. 2020, 254, 109818. [Google Scholar] [CrossRef]
- Kaczynski, P.; Łozowicka, B.; Wołejko, E.; Iwaniuk, P.; Konecki, R.; Dragowski, W.; Łozowicki, J.; Amanbek, N.; Rusilowska, J.; Pietraszko, A. Complex study of glyphosate and metabolites influence on enzymatic activity and microorganisms association in soil enriched with Pseudomonas fluorescens and sewage sludge. J. Hazard. Mater. 2020, 395, 122443. [Google Scholar] [CrossRef]
- Mojsak, P.; Hrynko, I.; Rutkowska, E.; Szabuńko, J.; Łozowicka, B.; Kaczyński, P. Behavior of imidacloprid contamination in fruiting vegetables and their impact to human health. Desalination Water Treat. 2018, 117, 32–41. [Google Scholar] [CrossRef]
- Farha, W.; Abd El-Aty, A.M.; Rahman, M.M.; Shin, H.C.; Shim, J.H. An overview on common aspects influencing the dissipation pattern of pesticides: A review. Environ. Monit. Assess. 2016, 188, 693. [Google Scholar] [CrossRef] [PubMed]
- Kaczyński, P.; Łozowicka, B.; Hrynko, I.; Wolejko, E. Behaviour of mesotrione in maize and soil system and its influence on soil dehydrogenase activity. Sci. Total Environ. 2016, 571, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Liu, X.; Wu, X.; Xu, J.; Dong, F.; Zheng, Y. The degradation dynamics and rapid detection of thiacloprid and its degradation products in water and soil by UHPLC-QTOF-MS. Chemosphere 2021, 263, 127960. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, D.; Kania, J.; Kmiecik, E.; Malina, G.; Wator, K. Fate of selected neonicotinoid insecticides in soilewater systems: Current state of the art and knowledge gaps. Chemosphere 2020, 255, 126981. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Jiang, H.; Zhao, M.; Suo, F.; Zhang, C.; Zheng, H.; Sun, K.; Zhang, G.; Li, F.; Li, Y. Biochar reduced Chinese chive (Allium tuberosum) uptake and dissipation of thiamethoxam in an agricultural soil. J. Hazard. Mater. 2020, 390, 121749. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Gajbhiye, V.T.; Gupta, R.K. Effect of Light on the Degradation of Two Neonicotinoids viz Acetamiprid and Thiacloprid in Soil. Bull. Environ. Contam. Toxicol. 2008, 81, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Abd-Alrahman, S.H. Residue and dissipation kinetics of thiamethoxam in a vegetable-field ecosystem using QuEChERS methodology combined with HPLC-DAD. Food Chem. 2014, 159, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Malhat, F.M.; Watanabe, H.; Loutfy, N.M.; Ahmed, M.T. Hazard assessment of the neonicotinoid insecticide thiamethoxam residues in tomato: A prelude to risk assessment profile. Environ. Toxicol. Chem. 2014, 96, 318–327. [Google Scholar] [CrossRef]
- Mohapatra, S.; Siddamallaiah, L.; Matadha, Y.N.; Udupi, V.R.; Raj, D.P.; Gadigeppa, S. Dissipation of neonicotinoid insecticides imidacloprid, indoxacarb and thiamethoxam on pomegranate (Punica granatum L.). Ecotoxicol. Environ. Saf. 2019, 171, 130–137. [Google Scholar] [CrossRef]
- He, M.; Song, D.; Jia, H.C.; Zheng, Y. Concentration and dissipation of chlorantraniliprole and thiamethoxam residues in maize straw, maize, and soil. J. Environ. Sci. Health B 2016, 51, 594–601. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Z.; Lin, J.; Liu, F.; Mu, W. The minimally effective dosages of nitenpyram and thiamethoxam seed treatments against aphids (Aphis gossypii Glover) and their potential exposure risks to honeybees (Apis mellifera). Sci. Total Environ. 2019, 666, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Bhattacherjee, A.K.; Dikshit, A. Dissipation kinetics and risk assessment of thiamethoxam and dimethoate in mango. Environ. Monit. Assess. 2016, 188, 165. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, S.; Hu, J. Dissipation behavior and dietary risk assessment of lambda-cyhalothrin, thiamethoxam and its metabolite clothianidin in apple after open field application. Regul. Toxicol. Pharmacol. 2018, 101, 135–141. [Google Scholar] [CrossRef]
- Szpyrka, E.; Słowik-Borowiec, M.; Książek, P.; Zwolak, A.; Podbielska, M. The difference in dissipation of clomazone and metazachlor in soil under field and laboratory conditions and their uptake by plants. Sci. Rep. 2020, 10, 3747. [Google Scholar] [CrossRef] [PubMed]
- Kachangoon, R.; Vichapong, J.; Santaladchaiyakit, Y.; Burakham, R.; Srijaranai, S. An Eco-Friendly Hydrophobic Deep Eutectic Solvent-Based Dispersive Liquid–Liquid Microextraction for the Determination of Neonicotinoid Insecticide Residues in Water. Soil and Egg Yolk Samples. Molecules 2020, 25, 2785. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, J.; He, X.; Wang, Z.; Wu, D.; Zheng, X.; Zheng, L.; Wang, B. Simultaneous determination of neonicotinoids and fipronil and its metabolites in environmental water from coastal bay using disk-based solid-phase extraction and high-performance liquid chromatography–tandem mass spectrometry. Chemosphere 2019, 234, 224–231. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Q.; Li, S.; Zhao, Y.; Chen, D.; Wu, Y. Simultaneous determination of neonicotinoids and fipronils in tea using a modified QuEChERS method and liquid chromatography-high resolution mass spectrometry. Food Chem. 2020, 329, 127159. [Google Scholar] [CrossRef]
- Pérez-Mayán, L.; Cobo-Golpe, M.; Ramil, M.; Cela, R.; Rodríguez, I. Evaluation of supercritical fluid chromatography accurate mass spectrometry for neonicotinoid compounds determination in wine samples. J. Chromatogr. A 2020, 1620, 460963. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Y.; Li, H.; Peng, F.; Qiu, B.; Yang, Z. Development of QuEChERS-DLLME method for determination of neonicotinoid pesticide residues in grains by liquid chromatography-tandem mass spectrometry. Food Chem. 2020, 331, 127190. [Google Scholar] [CrossRef]
- Suganthi, A.; Bhuvaneswari, K.; Ramya, M. Determination of neonicotinoid insecticide residues in sugarcane juice using LC–MS/MS. Food Chem. 2018, 241, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Ghany, M.F.; Hussein, L.A.; El Azab, N.F.; El-Khatib, A.H.; Linscheid, M.W. Simultaneous determination of eight neonicotinoid insecticide residues and two primary metabolites in cucumbers and soil by liquid chromatography–tandem mass spectrometry coupled with QuEChERS. J. Chromatogr. B 2016, 1031, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Iwafune, T.O.T.; Watanabe, E. Water-based extraction and liquid chromatography–tandem mass spectrometry analysis of neonicotinoid insecticides and their metabolites in green pepper/tomato samples. J. Agric. Food Chem. 2014, 62, 2790–2796. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.F.; Yu, C.; Pan, C. Determination of six neonicotinoid insecticides residues in spinach, cucumber apple and pomelo by QuEChERS method and LC–MS/MS. Bull. Environ. Contam. Toxicol. 2012, 88, 885–890. [Google Scholar] [CrossRef]
- Xie, W.; Han, C.; Qian, Y.; Ding, H.; Chen, X.; Xi, J. Determination of neonicotinoid pesticides residues in agricultural samples by solid-phase extraction combined with liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 4426–4433. [Google Scholar] [CrossRef] [PubMed]
- Hrynko, I. Optimization of the methods for the determination of 7 neonicotinoids in honey bees, honeys, melliferous weeds and guttation fluids. Prog. Plant Prot. 2021, 61, 82–92. [Google Scholar] [CrossRef]
- Gbylik-Sikorska, M.; Sniegocki, T.; Posyniak, A. Determination of neonicotinoid insecticides and their metabolites in honeybee and honey by liquid chromatography tandem mass spectrometry. J. Chromatogr. B 2015, 990, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Gaweł, M.; Kiljanek, T.; Niewiadowska, A.; Semeniuk, S.; Goliszek, M.; Burek, O.; Posyniak, A. Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry. Food Chem. 2019, 282, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Xie, W.; Hong, D.; Zhang, W.; Li, F.; Qian, Y.; Han, C. Simultaneous determination of ten neonicotinoid insecticides and two metabolites in honey and Royal-jelly by solid−phase extraction and liquid chromatography−tandem mass spectrometry. Food Chem. 2019, 270, 204–213. [Google Scholar] [CrossRef]
- Valverde, S.; Ares, A.M.; Arribas, M.; Bernal, J.L.; Nozal, M.J.; Bernal, J. Development and validation of UHPLC–MS/MS methods for determination of neonicotinoid insecticides in royal jelly-based products. J. Food Compos. Anal. 2018, 70, 105–113. [Google Scholar] [CrossRef]
- Valverde, S.; María, A.; José, A.; Bernal, L.; Nozal, M.J.; Bernal, J. Fast determination of neonicotinoid insecticides in beeswax by ultra-high performance liquid chromatography-tandem mass spectrometry using an enhanced matrix removal-lipid sorbent for clean-up. Microchem. J. 2018, 142, 70–77. [Google Scholar] [CrossRef]
- SANTE 11312/2021. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. 2021. Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf (accessed on 4 April 2024).
- Ma, J.F.; Ryan, P.R.; Delhaize, E. Aluminum tolerance in plants and the complexion role of organic acids. Trends Plant Sci. 2001, 6, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Srivastava, A.; Chauhan, S.; Srivastava, P. Studies on dissipation of thiamethoxam insecticide in two different soils and its residue in potato crop. Plant Soil Environ. 2024, 60, 332–335. [Google Scholar] [CrossRef]
- Anastassiades, M.; Scherbaum, E.; Taşdelen, B.; Štajnbaher, D. Recent Developments in QuEChERS Methodology for Pesticide Multiresidue Analysis. In Pesticide Chemistry: Crop Protection, Public Health, Environmental Safety, 1st ed.; Ohkawa, H., Miyagawa, H., Hisashi, Lee, P.W., Eds.; Wiley-VCH: Weinheim, Germany, 2007; pp. 439–458. [Google Scholar] [CrossRef]
- Walorczyk, S. Application of gas chromatography/tandem quadrupole mass spectrometry to the multi-residue analysis of pesticides in green leafy vegetables. Rapid Commun. Mass Spectrom. 2008, 22, 3791–3801. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Duan, Y.; Ge, H.; Zhang, Y.; Wu, X. Multiresidue analysis of 113 pesticides in different maturity levels of mangoes using an optimized QuEChERS method with GC-MS/MS and UHPLC-MS/MS. Food Anal. Methods 2018, 11, 2742–2757. [Google Scholar] [CrossRef]
- Lehotay, S.J. QuEChERS sample preparation approach for mass spectrometric analysis of pesticide residues in foods. Methods Mol. Biol. 2011, 747, 65–91. [Google Scholar] [CrossRef] [PubMed]
- Rutkowska, E.; Łozowicka, B.; Kaczyński, P. Modification of multiresidue QuEChERS protocol to minimize matrix effect and improve recoveries for determination of pesticide residues in dried herbs followed by GC-MS/MS. Food Anal. Methods 2018, 11, 709–724. [Google Scholar] [CrossRef]
- Huang, Y.; Shi, T.; Luo, X.; Xiong, H.; Min, F.; Chen, Y.; Nie, S.; Xie, M. Determination of multi-pesticide residues in green tea with a modified QuEChERS protocol coupled to HPLC-MS/MS. Food Chem. 2019, 275, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Rejczak, T.; Tuzimski, T. Recent trends in sample preparation and liquid chromatography/mass spectrometry for pesticide residue analysis in food and related matrixes. J. AOAC Int. 2015, 98, 1143–1162. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, X.; Liu, F.; Ge, J.; You, X. Determination of monosulfuron-ester residues in grains, straw, green plants and soil of wheat by modified QuEChERS and LC-MS/MS. Anal. Methods 2013, 5, 2267. [Google Scholar] [CrossRef]
- Liu, X.; Guan, W.; Hao, X.; Wu, X.; Ma, Y.; Pan, C. Pesticide multi-residue analysis in tea using d-SPE sample cleanup with graphene mixed with primary secondary amine and graphitized carbon black prior to LC–MS/MS. Chromatographia 2013, 77, 31–37. [Google Scholar] [CrossRef]
- Lozano, A.; Rajski, Ł.; Belmonte-Valles, N.; Uclés, A.; Uclés, S.; Mezcua, M.; Fernández- Alba, A.R. Pesticide analysis in teas and chamomile by liquid chromatography and gas chromatography tandem mass spectrometry using a modified QuEChERS method: Validation and pilot survey in real samples. J. Chromatogr. A 2012, 1268, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Ly, T.K.; Ho, T.D.; Behra, P.; Nhu-Trang, T.T. Determination of 400 pesticide residues in green tea leaves by UPLC-MS/MS and GC-MS/MS combined with QuEChERS extraction and mixed-mode SPE clean-up method. Food Chem. 2020, 326, 126928. [Google Scholar] [CrossRef] [PubMed]
- Hem, L.; Choi, J.H.; Park, J.H.; Mamun, M.I.; Cho, S.K.; Abd El-Aty, A.M.; Shim, J.H. Residual pattern of fenhexamid on pepper fruits grown under greenhouse conditions using HPLC and confirmation via tandem mass spectrometry. Food Chem. 2011, 126, 1533–1538. [Google Scholar] [CrossRef] [PubMed]
- Bonmatin, J.M.; Giorio, C.; Girolami, V.; Goulson, D.; Kreutzweiser, D.P.; Krupke, C.; Liess, M.; Long, E.; Marzaro, M.; Mitchell, E.A. Environmental fate and exposure; neonicotinoids and fipronil. Environ. Sci. Pollut. Res. 2015, 22, 35–67. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Qin, S.; Wang, X.; Cao, J.; Li, J. Dissipation Behavior and Acute Dietary Risk Assessment of Thiamethoxam and Its Metabolite Clothianidin on Spinach. Molecules 2022, 27, 2209. [Google Scholar] [CrossRef] [PubMed]
- Hilton, M.J.; Emburey, S.N.; Edward, P.A.; Dougan, C.; Ricketts, D.C. The route and rate of thiamethoxam soil degradation in laboratory and outdoor incubated tests, and field studies following seed treatments or spray application. Pest. Manag. Sci. 2019, 75, 63–78. [Google Scholar] [CrossRef]
- Hilton, M.J.; Jarvis, T.D.; Ricketts, D.C. The degradation rate of thiamethoxam in European field studies. Pest Manag. Sci. 2015, 72, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Cui, K.; Yan, H.; Li, Y.; Chai, Y.; Liu, X.; Cheng, J.; Yu, X. Uptake and translocation of imidacloprid, thiamethoxam and difenoconazole in rice plants. Environ. Pollut. 2017, 226, 479–485. [Google Scholar] [CrossRef]
- Barik, S.R.; Ganguly, P.; Kunda, S.K.; Kole, R.K.; Bhattacharyya, A. Persistence behaviour of thiamethoxam and lambda cyhalothrin in transplanted paddy. Bull. Environ. Contam. Toxicol. 2010, 85, 419–422. [Google Scholar] [CrossRef]
- Gupta, S.; Gajbhiye, V.T.; Gupta, R.K. Soil Dissipation and Leaching Behavior of a Neonicotinoid Insecticide Thiamethoxam. Bull. Environ. Contam. Toxicol. 2008, 80, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Moertl, M.; Kereki, O.; Darvas, B.; Klatyik, S.; Vehovszky, A.; Gyori, J.; Szekacs, A. Study on Soil Mobility of Two Neonicotinoid Insecticides. J. Chem. 2016, 2016, 4546584. [Google Scholar] [CrossRef]
- El-Aswad, A.F.; Mohamed, A.E.; Fouad, M.R. Investigation of dissipation kinetics and half-lives of fipronil and thiamethoxam in soil under various conditions using experimental modeling design by Minitab software. Sci. Rep. 2024, 14, 5717. [Google Scholar] [CrossRef] [PubMed]
- Ramasubramanian, T.; Paramasivam, M. Dissipation kinetics and environmental risk assessment of thiamethoxam in the sandy clay loam soil of tropical sugarcane crop ecosystem. Bull. Environ. Contam. Toxicol. 2020, 105, 474–480. [Google Scholar] [CrossRef]
- Liu, B.; Guo, D.L.; Mao, J.S.; Zhao, S.C.; Wang, Y.T. Residue detection and degradation of thiamethoxam in spinach. Agrochemicals 2009, 48, 667–668. [Google Scholar]
- Chen, L.; Li, F.; Jia, C.; Yu, P.; Zhao, E.; He, M.; Jing, J. Determination of thiamethoxam and its metabolite clothianidin residue and dissipation in cowpea by QuEChERS combining with ultrahigh-performance liquid chromatography–tandem mass spectrometry. Environ. Sci. Pollut. Res. 2021, 28, 8844–8852. [Google Scholar] [CrossRef]
Compound | Thiamethoxam (TMX) | Clothianidin (CLO) |
---|---|---|
Chemical structure | ||
Molecular formula | C8H10ClN5O3S | C6H8ClN5O2S |
Molecular weight (g mol−1) | 291.71 | 249.7 |
Melting point (°C) | 139.1 | 176.8 |
Water solubility (mg L−1) 1 | 4100 | 340 |
Octanol–water partition coefficient (log Kow) | −0.13 | 0.905 |
Dissociation constant (pKa) at 25 °C | no dissociation | 11.1 |
Parameter | Location 1 | Location 2 |
---|---|---|
pH | 4.9 | 6.3 |
organic matter parameters | 1.7 | 1.6 |
granulometric composition | clay < 0.002 mm—4.46%; | clay < 0.002 mm—6.05%; |
silt 0.002–0.02 mm—17.62%; | silt 0.002–0.02 mm—24.6%; | |
sand 0.02–0.05 mm—5.17%; | sand 0.02–0.05 mm—8.24%; | |
clay 0.05–2.00 mm—72.75% | clay 0.05–2.0 mm—61.12% |
Compound | Precursorion (m/z) | Quantification | Confirmation | ||||||
---|---|---|---|---|---|---|---|---|---|
MRM Transition (m/z) | DP (V) | CE (V) | CXP (V) | MRM Transition (m/z) | DP (V) | CE (V) | CXP (V) | ||
Clothianidin | 250.0 | 169.0 | 6 | 19 | 10 | 132.1 | 6 | 21 | 6 |
Thiamethoxam | 292.0 | 211.0 | 61 | 17 | 12 | 181.0 | 61 | 31 | 10 |
Analytes | Thiamethoxam | Clothianidin |
---|---|---|
R2 | 0.99989 | 0.99988 |
Matrix effects 1 | 10 | 8 |
LOQ (mg kg−1) | 0.001 | 0.001 |
Linearity range (mg kg−1) | 0.001–1.0 | 0.001–1.0 |
Recovery (%) | 92 | 98 |
RSD (%) | 5.2 | 3.9 |
Days after Sawing | TMX | CLO | TMX | CLO |
---|---|---|---|---|
pH = 4.9 | pH = 6.3 | |||
16 | - | - | - | - |
17 | 34.6 | 66.7 | 40.3 | 23.0 |
18 | 58.2 | 77.2 | 66.4 | 68.3 |
19 | 81.3 | 98.4 | 76.2 | 87.0 |
20 | 85.6 | 99.2 | 77.7 | 93.2 |
21 | 92.4 | 99.6 | 90.4 | 99.4 |
22 | 99.2 | 99.6 | 98.7 | 100.0 |
23 | 99.6 | 99.6 | 99.8 | 100.0 |
24 | 99.9 | 99.6 | 99.8 | 100.0 |
25 | 100.0 | 100.0 | 100.0 | 100.0 |
26 | 100.0 | 100.0 | 100.0 | 100.0 |
27 | 100.0 | 100.0 | 100.0 | 100.0 |
28 | 100.0 | 100.0 | 100.0 | 100.0 |
29 | 100.0 | 100.0 | 100.0 | 100.0 |
30 | 100.0 | 100.0 | 100.0 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrynko, I.; Ilyasova, G.; Jankowska, M.; Rutkowska, E.; Kaczyński, P.; Łozowicka, B. Behavior of Thiamethoxam and Clothianidin in Young Oilseed Rape Plants before Flowering, Monitored by QuEChERS/LC–MS/MS Protocol. Agriculture 2024, 14, 759. https://doi.org/10.3390/agriculture14050759
Hrynko I, Ilyasova G, Jankowska M, Rutkowska E, Kaczyński P, Łozowicka B. Behavior of Thiamethoxam and Clothianidin in Young Oilseed Rape Plants before Flowering, Monitored by QuEChERS/LC–MS/MS Protocol. Agriculture. 2024; 14(5):759. https://doi.org/10.3390/agriculture14050759
Chicago/Turabian StyleHrynko, Izabela, Gulzhakhan Ilyasova, Magdalena Jankowska, Ewa Rutkowska, Piotr Kaczyński, and Bożena Łozowicka. 2024. "Behavior of Thiamethoxam and Clothianidin in Young Oilseed Rape Plants before Flowering, Monitored by QuEChERS/LC–MS/MS Protocol" Agriculture 14, no. 5: 759. https://doi.org/10.3390/agriculture14050759
APA StyleHrynko, I., Ilyasova, G., Jankowska, M., Rutkowska, E., Kaczyński, P., & Łozowicka, B. (2024). Behavior of Thiamethoxam and Clothianidin in Young Oilseed Rape Plants before Flowering, Monitored by QuEChERS/LC–MS/MS Protocol. Agriculture, 14(5), 759. https://doi.org/10.3390/agriculture14050759