Sustainable Livestock Production: Screening Analysis and Pilot Implementation of a Biofilm in Piggery Biofilters for Mitigation of Ammonia and Hydrogen Sulfide Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Selection of a Bacterial Consortium
- Literature data on the use of specific species of microorganisms in the removal of malodorous substances or published information on the metabolic characteristics of specific strains.
- Taxonomic affiliation of bacterial genera identified in samples collected from leachate water and biofilm from pig farm biofilters, as part of a previous in-house study [26].
- Environmental origin of the isolated bacteria: soil, activated sludge, wastewater treatment plant outflow water.
- Biosafety—strains classified as group BSL-1, which are non-pathogenic to humans or animals and are not phytopathogens.
- Culturing conditions and bacterial growth rate; the potential for relatively rapid proliferation of the strain to the desired quantity; composition of growth media. The list of proposed microorganisms comprises bacterial strains that can proliferate under aerobic conditions.
- Regulatory status: the use of strains in research and development is not restricted by the Nagoya Protocol.
2.2. Evaluation of Bacterial Antagonism
2.3. Pilot Implementation with Evaluation of Efficiency
2.3.1. Inoculation of Biofilter
- Dimensions: 1800 mm (width) × 10,500 mm (length) × 900 mm (height).
- Bed area: 18.9 m2.
- Flow rate: Dependent on ventilation size: 0.2 to 1.0 m/s.
- Fan capacity: 10,000 to 70,000 m3/h.
- Sprinkling rate: 5 to 15 L/min/m2.
- Pig house air temperature: 20.5 °C to 24 °C.
- Bed load: Minimum 530 m3/h per 1 m2; maximum 3650 m3/h per 1 m2 of bed.
- Tanks for the bacterial consortium suspension.
- Air supply tubes.
- Discharge tubes for the suspension of bacteria.
- Nozzles.
- Air compressor.
2.3.2. Evaluation of the Efficiency of Ammonia, Hydrogen Sulfide, and Fine Dust Removal
- Madur PGD-100 gas conditioner (Madur Electronics, Zgierz, Poland).
- Madur Photon gas analyzer (Madur Electronics, Zgierz, Poland).
- Bundling tube.
- TAD wing anemometer (Trotec, Marchtrenk, Austria).
- Silica gel scrubber set.
- P-10 ZA central dust meter unit (CJP-10) (ZAM Kęty, Kęty, Poland).
- Dehumidifier (Airpol, Poznań, Poland).
- Dust meter set with heated titanium probe (EMIO, Wrocław, Poland)
- WPT 3/6 electronic balance (Radwag, Radom, Poland).
- AWE-PW total organic carbon analyzer (LAT, Katowice, Poland).
- Vacuum pump (Busch Group, Schwarzwald, Germany).
3. Results
3.1. Selection of a Bacterial Consortium
3.2. Evaluation of Bacterial Antagonism
- Thiobacillus thioparus (too slow and weak growth on culture media).
- Thiopseudomonas denitrificans (demonstrating of antagonism).
- Xanthobacter viscosus (too slow and weak growth on culture media).
3.3. Pilot Inoculation of Biofilter
3.4. Evaluation of the Efficiency of Ammonia, Hydrogen Sulfide, and Fine Dust Removal
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bellini, S. 7. The Pig Sector in the European Union. In Understanding and Combatting African Swine Fever; Iacolina, L., Penrith, M.-L., Bellini, S., Chenais, E., Jori, F., Montoya, M., Ståhl, K., Gavier-Widén, D., Eds.; Brill|Wageningen Academic: Vienna, Austria, 2021; pp. 183–195. ISBN 978-90-8686-910-7. [Google Scholar]
- EUROSTAT. Agricultural Production—Livestock and Meat; European Statistical Office: Luxembourg, 2023. [Google Scholar]
- Park, H.-S.; Min, B.; Oh, S.-H. Research Trends in Outdoor Pig Production—A Review. Asian-Australas J. Anim. Sci. 2017, 30, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Tzanidakis, C.; Simitzis, P.; Arvanitis, K.; Panagakis, P. An Overview of the Current Trends in Precision Pig Farming Technologies. Livest. Sci. 2021, 249, 104530. [Google Scholar] [CrossRef]
- Pirlo, G.; Carè, S.; Casa, G.D.; Marchetti, R.; Ponzoni, G.; Faeti, V.; Fantin, V.; Masoni, P.; Buttol, P.; Zerbinatti, L.; et al. Environmental Impact of Heavy Pig Production in a Sample of Italian Farms. A Cradle to Farm-Gate Analysis. Sci. Total Environ. 2016, 565, 576–585. [Google Scholar] [CrossRef]
- Wroniszewska, A.; Zwoździak, J. Odor Annoyance Assessment by Using Logistic Regression on an Example of the Municipal Sector. Sustainability 2020, 12, 6102. [Google Scholar] [CrossRef]
- Chmielowiec-Korzeniowska, A.; Tymczyna, L.; Wlazło, Ł.; Trawińska, B.; Ossowski, M. Emissions of Gaseous Pollutants from Pig Farms and Methods for Their Reduction—A Review. Ann. Anim. Sci. 2022, 22, 89–107. [Google Scholar] [CrossRef]
- Piccardo, M.T.; Geretto, M.; Pulliero, A.; Izzotti, A. Odor Emissions: A Public Health Concern for Health Risk Perception. Environ. Res. 2022, 204, 112121. [Google Scholar] [CrossRef] [PubMed]
- Wyer, K.E.; Kelleghan, D.B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T.P. Ammonia Emissions from Agriculture and Their Contribution to Fine Particulate Matter: A Review of Implications for Human Health. J. Environ. Manag. 2022, 323, 116285. [Google Scholar] [CrossRef] [PubMed]
- Austigard, Å.D.; Svendsen, K.; Heldal, K.K. Hydrogen Sulphide Exposure in Waste Water Treatment. J. Occup. Med. Toxicol. 2018, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Batterman, S.; Grant-Alfieri, A.; Seo, S.-H. Low Level Exposure to Hydrogen Sulfide: A Review of Emissions, Community Exposure, Health Effects, and Exposure Guidelines. Crit. Rev. Toxicol. 2023, 53, 244–295. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Z.; Winiwarter, W.; Bai, Z.; Wang, X.; Fan, X.; Zhu, Z.; Hu, C.; Ma, L. Strategies to Reduce Ammonia Emissions from Livestock and Their Cost-Benefit Analysis: A Case Study of Sheyang County. Environ. Pollut. 2021, 290, 118045. [Google Scholar] [CrossRef]
- Ni, J.-Q.; Heber, A.J.; Lim, T.-T. Ammonia and Hydrogen Sulfide in Swine Production. In Air Quality and Livestock Farming; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-315-73833-8. [Google Scholar]
- Jo, G.; Ha, T.; Jang, Y.N.; Hwang, O.; Seo, S.; Woo, S.E.; Lee, S.; Kim, D.; Jung, M. Ammonia Emission Characteristics of a Mechanically Ventilated Swine Finishing Facility in Korea. Atmosphere 2020, 11, 1088. [Google Scholar] [CrossRef]
- Brglez, Š. Risk Assessment of Toxic Hydrogen Sulfide Concentrations on Swine Farms. J. Clean. Prod. 2021, 312, 127746. [Google Scholar] [CrossRef]
- Liu, S.; Ni, J.-Q.; Radcliffe, J.S.; Vonderohe, C. Hydrogen Sulfide Emissions from a Swine Building Affected by Dietary Crude Protein. J. Environ. Manag. 2017, 204, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cho, J.H.; Chen, Y.J.; Yoo, J.S.; Huang, Y.; Kim, H.J.; Kim, I.H. The Effect of Probiotic BioPlus 2B® on Growth Performance, Dry Matter and Nitrogen Digestibility and Slurry Noxious Gas Emission in Growing Pigs. Livest. Sci. 2009, 120, 35–42. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, X.; Yuan, Y.; Liao, Y.; Li, X. Deodorization Study of the Swine Manure with Two Yeast Strains. Biotechnol. Bioproc. E 2013, 18, 135–143. [Google Scholar] [CrossRef]
- Ma, H.; Li, F.; Niyitanga, E.; Chai, X.; Wang, S.; Liu, Y. The Odor Release Regularity of Livestock and Poultry Manure and the Screening of Deodorizing Strains. Microorganisms 2021, 9, 2488. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, B.; Jia, Y.; He, F.; Chen, W. Mitigation Strategies of Air Pollutants for Mechanical Ventilated Livestock and Poultry Housing—A Review. Atmosphere 2022, 13, 452. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Han, M.-F.; Jia, T.-P.; Hu, X.-R.; Zhu, H.-Q.; Tong, Z.; Lin, Y.-T.; Wang, C.; Liu, D.-Z.; Peng, Y.-Z.; et al. Emissions, Measurement, and Control of Odor in Livestock Farms: A Review. Sci. Total Environ. 2021, 776, 145735. [Google Scholar] [CrossRef]
- Bujny, J.; Maśliński, M. Zwalczanie uciążliwości zapachowych w świetle aktualnie obowiązujących przepisów prawnych. Finans. Komunal. 2018, 23–40. [Google Scholar]
- Barbusiński, K.; Parzentna-Gabor, A.; Kasperczyk, D. Removal of Odors (Mainly H2S and NH3) Using Biological Treatment Methods. Clean Technol. 2021, 3, 138–155. [Google Scholar] [CrossRef]
- Kwarciak-Kozłowska, A.; Gałwa-Widera, M. Chapter 11—Biofiltration as an Ecological Method of Removing Sewage Sludge Odors by Solar Drying. In Sustainable and Circular Management of Resources and Waste towards a Green Deal; Vara Prasad, M.N., Smol, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 151–161. ISBN 978-0-323-95278-1. [Google Scholar]
- Bezner Kerr, R.; Liebert, J.; Kansanga, M.; Kpienbaareh, D. Human and Social Values in Agroecology: A Review. Elem. Sci. Anthr. 2022, 10, 00090. [Google Scholar] [CrossRef]
- Paluszak, Z.; Kanarek, P.; Gryń, G.; Breza-Boruta, B. Deodorizing Bacterial Consortium: Community Analysis of Biofilms and Leachate Water Collected from an Air Biofiltration System in a Piggery. Environ. Sci. Pollut. Res. Int. 2024, 31, 18993–19001. [Google Scholar] [CrossRef] [PubMed]
- PN-ISO 7150-1:1984; Determination of Ammonium Part 1: Manual Spectrometric Method. International Organization for Standardization: Geneva, Switzerland, 1984.
- PN-Z-04015-13:1996; Protection of Air Purity—Tests of Sulfur and Its Compounds—Determination of Hydrogen Sulfide at Workplaces by Spectrophotometric Method. Polish Committee for Standardization: Warsaw, Poland, 1996.
- PN-EN 13284-1:2018-02; Stationary Source Emissions—Determination of Low Range Mass Concentration of Dust—Part 1: Manual Gravimetric Method. German Institute for Standardisation: Berlin, Germany, 2018.
- PN-EN 15259:2007; Jakość Powietrza—Pomiary Emisji Ze Źródeł Stacjonarnych—Wymagania Dotyczące Miejsc Pomiaru i Odcinków Pomiarowych, Celu i Planowania Pomiaru Oraz Sprawozdania. Comité Européen de Normalisation: Brussels, Belgium, 2007.
- PN-EN 14790:2017-04; Emisja Ze Źródeł Stacjonarnych—Oznaczanie Pary Wodnej w Przewodach—Standardowa Metoda Odniesienia. Polish Committee for Standardization: Warsaw, Poland, 2017.
- PN-EN ISO 16911-1:2013; Emisja Ze Źródeł Stacjonarnych—Manualne i Automatyczne Wyznaczanie Prędkości i Strumienia Objętości w Przewodach—Część 2: Automatyczne Systemy Pomiarowe. UNI: Rome, Italy, 2013.
- Heylen, K.; Lebbe, L.; De Vos, P. Acidovorax Caeni Sp. Nov., a Denitrifying Species with Genetically Diverse Isolates from Activated Sludge. Int. J. Syst. Evol. Microbiol. 2008, 58, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Bourque, D.; Bisaillon, J.-G.; Beaudet, R.; Sylvestre, M.; Ishaque, M.; Morin, A. Microbiological Degradation of Malodorous Substances of Swine Waste under Aerobic Conditions. Appl. Environ. Microbiol. 1987, 53, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Jolicoeur, P.; Morin, A. Isolation of Acinetobacter calcoaceticus Strains Degrading the Volatile Fatty Acids of Swine Wastes. Biol. Wastes 1987, 19, 133–140. [Google Scholar] [CrossRef]
- Walden, C.; Zhang, W. Bioaccumulation of Silver Nanoparticles in Model Wastewater Biofilms. Environ. Sci. Water Res. Technol. 2018, 4, 1163–1171. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Islam, M.; Mun, H.-S.; Sim, H.-J.; Kim, Y.-J.; Yang, C.-J. Effects of Bacillus Amyloliquefaciens as a Probiotic Strain on Growth Performance, Cecal Microflora, and Fecal Noxious Gas Emissions of Broiler Chickens. Poult. Sci. 2014, 93, 1963–1971. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Ahmed, S.T.; Islam, M.M.; Yang, C.J. Evaluation of Bacillus Amyloliquefaciens as Manure Additive for Control of Odorous Gas Emissions from Pig Slurry. Afr. J. Microbiol. Res. 2014, 8, 2540–2546. [Google Scholar] [CrossRef]
- Qi, W.; Mei, S.; Yuan, Y.; Li, X.; Tang, T.; Zhao, Q.; Wu, M.; Wei, W.; Sun, Y. Enhancing Fermentation Wastewater Treatment by Co-Culture of Microalgae with Volatile Fatty Acid- and Alcohol-Degrading Bacteria. Algal Res. 2018, 31, 31–39. [Google Scholar] [CrossRef]
- Patureau, D.; Helloin, E.; Rustrian, E.; Bouchez, T.; Delgenes, J.P.; Moletta, R. Combined Phosphate and Nitrogen Removal in a Sequencing Batch Reactor Using the Aerobic Denitrifier, Microvirgula Aerodenitrificans. Water Res. 2001, 35, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Kämpfer, P.; Müller, C.; Mau, M.; Neef, A.; Auling, G.; Busse, H.J.; Stolz, A. Description of Pseudaminobacter Gen. Nov. with Two New Species, Pseudaminobacter salicylatoxidans sp. Nov. and Pseudaminobacter defluvii sp. Nov. Int. J. Syst. Bacteriol. 1999, 49, 887–897. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, P.; Hao, B.; Yu, Z. Heterotrophic Nitrification and Aerobic Denitrification by the Bacterium Pseudomonas stutzeri YZN-001. Bioresour. Technol. 2011, 102, 9866–9869. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, M.; Jones, A.L.; Maldonado, L.A.; Salanitro, J. Rhodococcus aetherivorans sp. Nov., A New Species That Contains Methyl t-Butyl Ether-Degrading Actinomycetes. Syst. Appl. Microbiol. 2004, 27, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Ohta, Y.; Ikeda, M. Deodorization of Pig Feces by Actinomycetes. Appl. Environ. Microbiol. 1978, 36, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J. A Review of Microbiology in Swine Manure Odor Control. Agric. Ecosyst. Environ. 2000, 78, 93–106. [Google Scholar] [CrossRef]
- Nicolai, R.; Leffer, R. Biofilters Used to Reduce Emissions from Livestock Housing—A Literature Review. In Proceedings of the Workshop on Agricultural Air Quality: State of the Science, Potomac, MA, USA, 5–8 June 2006; pp. 5–8. [Google Scholar]
- Cao, T.; Zheng, Y.; Dong, H. Control of Odor Emissions from Livestock Farms: A Review. Environ. Res. 2023, 225, 115545. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, F.; Bodraya, T.; Lackner, M. Methane Biofiltration Processes: A Summary of Biotic and Abiotic Factors. Methane 2024, 3, 122–148. [Google Scholar] [CrossRef]
- Shang, B.; Zhou, T.; Tao, X.; Chen, Y. Greenhouse Gas Emissions from Biofilters for Composting Exhaust Ammonia Removal. Front. Bioeng. Biotechnol. 2022, 10, 918365. [Google Scholar] [CrossRef]
- Yang, N.; Wang, C.; Han, M.-F.; Li, Y.-F.; Hsi, H. Performance Improvement of a Biofilter by Using Gel-Encapsulated Microorganisms Assembled in a 3D Mesh Material. Chemosphere 2020, 251, 126618. [Google Scholar] [CrossRef]
- Tymczyna, L.; Chmielowiec-Korzeniowska, A.; Saba, L. Biological Treatment of Laying House Air with Open Biofilter Use. Pol. J. Environ. Stud. 2004, 13, 425–428. [Google Scholar]
- Rolewicz-Kalińska, A.; Lelicińska-Serafin, K.; Manczarski, P. Volatile Organic Compounds, Ammonia and Hydrogen Sulphide Removal Using a Two-Stage Membrane Biofiltration Process. Chem. Eng. Res. Des. 2021, 165, 69–80. [Google Scholar] [CrossRef]
- Melse, R.W.; Ploegaert, J.P.M.; Ogink, N.W.M. Biotrickling Filter for the Treatment of Exhaust Air from a Pig Rearing Building: Ammonia Removal Performance and Its Fluctuations. Biosyst. Eng. 2012, 113, 242–252. [Google Scholar] [CrossRef]
- Baltrėnas, P.; Januševičius, T.; Zagorskis, A.; Baltrėnaitė-Gedienė, E. Removal of Ammonia by Biofilters with Straight and Wavy Lamellar Plates. Int. J. Environ. Sci. Technol. 2021, 18, 1181–1190. [Google Scholar] [CrossRef]
- Marycz, M.; Brillowska-Dąbrowska, A.; Cantera, S.; Gębicki, J.; Muñoz, R. Fungal Co-Culture Improves the Biodegradation of Hydrophobic VOCs Gas Mixtures in Conventional Biofilters and Biotrickling Filters. Chemosphere 2023, 313, 137609. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, R.; Golbabaei, F.; Rezaei, S.; Pourmand, M.R.; Nabizadeh, R.; Jafari, M.J.; Masoorian, E. A Comparison of Biofiltration Performance Based on Bacteria and Fungi for Treating Toluene Vapors from Airflow. AMB Expr. 2020, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Akdeniz, N.; Janni, K.A. Full-Scale Biofilter Reduction Efficiencies Assessed Using Portable 24-Hour Sampling Units. J. Air Waste Manag. Assoc. 2012, 62, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Kumdhitiahutsawakul, L.; Jirachaisakdeacha, D.; Kantha, U.; Pholchan, P.; Sattayawat, P.; Chitov, T.; Tragoolpua, Y.; Bovonsombut, S. Removal of Hydrogen Sulfide from Swine-Waste Biogas on a Pilot Scale Using Immobilized Paracoccus Versutus CM1. Microorganisms 2022, 10, 2148. [Google Scholar] [CrossRef] [PubMed]
- Omri, I.; Bouallagui, H.; Aouidi, F.; Godon, J.-J.; Hamdi, M. H2S Gas Biological Removal Efficiency and Bacterial Community Diversity in Biofilter Treating Wastewater Odor. Bioresour. Technol. 2011, 102, 10202–10209. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Li, L.; Chai, F.; Wang, Y. Factors Impacting the Performance and Microbial Populations of Three Biofilters for Co-Treatment of H2S and NH3 in a Domestic Waste Landfill Site. Process Saf. Environ. Prot. 2021, 149, 410–421. [Google Scholar] [CrossRef]
- Bist, R.B.; Chai, L. Advanced Strategies for Mitigating Particulate Matter Generations in Poultry Houses. Appl. Sci. 2022, 12, 11323. [Google Scholar] [CrossRef]
- Tang, Q.; Huang, K.; Liu, J.; Jin, X.; Li, C. Distribution Characteristics of Bioaerosols inside Pig Houses and the Respiratory Tract of Pigs. Ecotoxicol. Environ. Saf. 2021, 212, 112006. [Google Scholar] [CrossRef]
- Melse, R.W.; Hol, J.M.G. Biofiltration of Exhaust Air from Animal Houses: Evaluation of Removal Efficiencies and Practical Experiences with Biobeds at Three Field Sites. Biosyst. Eng. 2017, 159, 59–69. [Google Scholar] [CrossRef]
- Lamprea Pineda, P.A.; Demeestere, K.; González-Cortés, J.J.; Alvarado-Alvarado, A.A.; Boon, N.; Devlieghere, F.; Van Langenhove, H.; Walgraeve, C. Effect of Inoculum Type, Packing Material and Operational Conditions on the Biofiltration of a Mixture of Hydrophobic Volatile Organic Compounds in Air. Sci. Total Environ. 2023, 904, 167326. [Google Scholar] [CrossRef] [PubMed]
- Roalkvam, I.; Drønen, K.; Dahle, H.; Wergeland, H.I. Comparison of Active Biofilm Carriers and Commercially Available Inoculum for Activation of Biofilters in Marine Recirculating Aquaculture Systems (RAS). Aquaculture 2020, 514, 734480. [Google Scholar] [CrossRef]
- Chaghouri, M.; Gennequin, C.; Tidahy, L.H.; Cazier, F.; Abi–Aad, E.; Veignie, E.; Rafin, C. Low Cost and Renewable H2S-Biofilter Inoculated with Trichoderma Harzianum. Environ. Technol. 2024, 45, 1508–1521. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.-H.; Park, S.-W.; Lee, E.-J. Effect of Temperature on the Performance of a Biofilter Inoculated WithPseudomonas Putida to Treat Waste-Air Containing Ethanol. Korean J. Chem. Eng. 2005, 22, 922–926. [Google Scholar] [CrossRef]
- Jang, J.H.; Hirai, M.; Shoda, M. Performance of a Styrene-Degrading Biofilter Inoculated with Pseudomonas Sp. SR-5. J. Biosci. Bioeng. 2005, 100, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Allievi, M.J.; Silveira, D.D.; Cantão, M.E.; Filho, P.B. Bacterial Community Diversity in a Full Scale Biofilter Treating Wastewater Odor. Water Sci. Technol. 2018, 77, 2014–2022. [Google Scholar] [CrossRef]
- Ni, J.; Yang, H.; Chen, L.; Xu, J.; Zheng, L.; Xie, G.; Shen, C.; Li, W.; Liu, Q. Metagenomic Analysis of Microbial Community Structure and Function in a Improved Biofilter with Odorous Gases. Sci. Rep. 2022, 12, 1731. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Lv, Y.-H.; Wang, C.; Jiang, G.-Y.; Han, M.-F.; Deng, J.-G.; Hsi, H.-C. Microbial Community Evolution and Functional Trade-Offs of Biofilm in Odor Treatment Biofilters. Water Res. 2023, 235, 119917. [Google Scholar] [CrossRef]
- Repečkienė, J.; Švedienė, J.; Paškevičius, A.; Tekorienė, R.; Raudonienė, V.; Gudeliūnaitė, E.; Baltrėnas, P.; Misevičius, A. Succession of Microorganisms in a Plate-Type Air Treatment Biofilter during Filtration of Various Volatile Compounds. Environ. Technol. 2015, 36, 881–889. [Google Scholar] [CrossRef]
- Jiang, W.; Tian, X.; Li, L.; Dong, S.; Zhao, K.; Li, H.; Cai, Y. Temporal Bacterial Community Succession during the Start-up Process of Biofilters in a Cold-Freshwater Recirculating Aquaculture System. Bioresour. Technol. 2019, 287, 121441. [Google Scholar] [CrossRef] [PubMed]
Species | Reference |
---|---|
Acidovorax caeni | [33] |
Acinetobacter baylyi | [34,35,36] |
Acinetobacter tjernbergiae | [36] |
Bacillus amyloliquefaciens | [37,38] |
Pseudochelatococcus lubricantis | * |
Comamonas denitrificans | [36] |
Delftia acidovorans | [36] |
Devosia limi | * |
Exiguobacterium aurantiacum | [39] |
Leadbetterella byssophila | * |
Microbacterium flavescens | [34] |
Microvirgula aerodenitrificans | [40] |
Pseudaminobacter defluvii | [41] |
Pseudomonas stutzeri | [42] |
Rhodococcus aetherivorans | [43] |
Stenotrophomonas acidaminiphila | [39] |
Streptomyces antibioticus | [44,45] |
Streptomyces griseus | [44,45] |
Thiobacillus thioparus | * |
Thiopseudomonas denitrificans | * |
Xanthobacter viscosus | * |
ID | Species Name |
---|---|
1 | Acidovorax caeni |
2 | Acinetobacter baylyi |
3 | Acinetobacter tjernbergiae |
4 | Bacillus amyloliquefaciens |
5 | Comamonas denitrificans |
6 | Delftia acidovorans |
7 | Devosia limi |
8 | Exiguobacterium aurantiacum |
9 | Leadbetterella byssophila |
10 | Microbacterium flavescens |
11 | Microvirgula aerodenitrificans |
12 | Pseudaminobacter defluvii |
13 | Pseudochelatococcus lubricantis |
14 | Pseudomonas stutzeri |
15 | Rhodococcus aetherivorans |
16 | Stenotrophomonas acidaminiphila |
17 | Streptomyces antibioticus |
18 | Streptomyces griseus |
19 | Tessaracoccus bendigoensi |
20 | Thiopseudomonas denitrificans |
21 | Xanthobacter viscosus |
Inoculated Medium | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bacterial colonies in agar slabs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | |
1 | ||||||||||||||||||||||
2 | ||||||||||||||||||||||
3 | ||||||||||||||||||||||
4 | ||||||||||||||||||||||
5 | ||||||||||||||||||||||
6 | ||||||||||||||||||||||
7 | ||||||||||||||||||||||
8 | ||||||||||||||||||||||
9 | ||||||||||||||||||||||
10 | ||||||||||||||||||||||
11 | ||||||||||||||||||||||
12 | ||||||||||||||||||||||
13 | ||||||||||||||||||||||
14 | ||||||||||||||||||||||
15 | ||||||||||||||||||||||
16 | ||||||||||||||||||||||
17 | ||||||||||||||||||||||
18 | ||||||||||||||||||||||
19 | ||||||||||||||||||||||
20 | ||||||||||||||||||||||
21 |
Effectiveness Calculation | ||||
---|---|---|---|---|
Emitter Number | Tested Parameter | Piggery Air [mg/m3] | Emitted Air [mg/m3] | Effectiveness [%] |
Emitter 1 | Ammonia | 13.45 | 3.60 | 73.23 |
Hydrogen sulfide | 2.65 | <0.74 | >72.08 | |
Fine dust (PM10) | 3.75 | 1.09 | 70.93 | |
Emitter 2 | Ammonia | 13.45 | 3.94 | 70.71 |
Hydrogen sulfide | 2.65 | <0.74 | >72.08 | |
Fine dust (PM10) | 3.75 | 1.08 | 71.20 | |
Emitter 3 | Ammonia | 13.45 | 3.51 | 73.90 |
Hydrogen sulfide | 2.65 | <0.74 | >72.08 | |
Fine dust (PM10) | 3.75 | 1.06 | 71.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breza-Boruta, B.; Kanarek, P.; Paluszak, Z.; Kaczorowska, A.-K.; Gryń, G. Sustainable Livestock Production: Screening Analysis and Pilot Implementation of a Biofilm in Piggery Biofilters for Mitigation of Ammonia and Hydrogen Sulfide Emissions. Agriculture 2024, 14, 806. https://doi.org/10.3390/agriculture14060806
Breza-Boruta B, Kanarek P, Paluszak Z, Kaczorowska A-K, Gryń G. Sustainable Livestock Production: Screening Analysis and Pilot Implementation of a Biofilm in Piggery Biofilters for Mitigation of Ammonia and Hydrogen Sulfide Emissions. Agriculture. 2024; 14(6):806. https://doi.org/10.3390/agriculture14060806
Chicago/Turabian StyleBreza-Boruta, Barbara, Piotr Kanarek, Zbigniew Paluszak, Anna-Karina Kaczorowska, and Grzegorz Gryń. 2024. "Sustainable Livestock Production: Screening Analysis and Pilot Implementation of a Biofilm in Piggery Biofilters for Mitigation of Ammonia and Hydrogen Sulfide Emissions" Agriculture 14, no. 6: 806. https://doi.org/10.3390/agriculture14060806
APA StyleBreza-Boruta, B., Kanarek, P., Paluszak, Z., Kaczorowska, A.-K., & Gryń, G. (2024). Sustainable Livestock Production: Screening Analysis and Pilot Implementation of a Biofilm in Piggery Biofilters for Mitigation of Ammonia and Hydrogen Sulfide Emissions. Agriculture, 14(6), 806. https://doi.org/10.3390/agriculture14060806