Soil Organic Carbon Dynamics in the Long-Term Field Experiments with Contrasting Crop Rotations
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Simple Crop Rotation
3.2. Multi-Crop Rotation
3.3. Effect of Crop Rotation Complexity
3.4. Carbon Sequestration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wiesmeier, M.; Poeplau, C.; Sierra, C.A.; Maier, H.; Frühauf, C.; Hübner, R.; Kühnel, A.; Spörlein, P.; Geuß, U.; Hangen, E.; et al. Projected loss of soil organic carbon in temperate agricultural soils in the 21st century: Effects of climate change and carbon input trends. Sci. Rep. 2016, 6, 32525. [Google Scholar] [CrossRef]
- Johnston, A.E.; Poulton, P.R.; Coleman, K. Soil organic matter: Its importance in sustainable agriculture and carbon dioxide fluxes. Adv. Agron. 2008, 101, 1–57. [Google Scholar]
- Jones, A.; Panagos, P.; Barcelo, S.; Bouraoui, F.; Bosco, C.; Dewitte, O.; Gardi, C.; Erhard, M.; Hervás, J.; Hiederer, R.; et al. The State of Soil in Europe: A Contribution of the JRC to the European Environment Agency’s Environment State and Outlook Report-SOER 2010; EUR 25186 EN; Publications Office of the European Union: Luxembourg, 2012; JRC68418. [Google Scholar]
- Gubler, A.; Wächter, D.; Schwab, P.; Müller, M.; Keller, A. Twenty-five years of observations of soil organic carbon in Swiss croplands showing stability overall but with some divergent trends. Environ. Monit. Assess. 2019, 191, 277. [Google Scholar] [CrossRef]
- Keel, S.G.; Anken, T.; Büchi, L.; Chervet, A.; Fliessbach, A.; Flisch, R.; Huguenin-Elie, O.; Mäder, P.; Mayer, J.; Sinaj, S.; et al. Loss of soil organic carbon in Swiss long-term agricultural experiments over a wide range of management practices. Agric. Ecosyst. Environ. 2019, 286, 106654. [Google Scholar] [CrossRef]
- Bogusz, P.; Zimnoch, U.; Brodowska, M.S.; Michalak, J. The trend of changes in soil organic carbon content in Poland over recent years. Arch. Environ. Prot. 2024, 50, 35–44. [Google Scholar] [CrossRef]
- Szatmári, G.; Pirkó, B.; Koós, S.; Laborczi, A.; Bakacsi, S.; Szabó, J.; Pásztor, L. Spatio-temporal assessment of topsoil organic carbon stock change in Hungary. Soil Till. Res. 2019, 195, 104410. [Google Scholar] [CrossRef]
- Gonzalez-Sanchez, E.J.; Ordonez-Fernandez, R.; Carbonell-Bojollo, R.; VerozGonzalez, O.; Gil-Ribes, J.A. Meta-analysis on atmospheric carbon capture in Spain through the use of conservation agriculture. Soil Till. Res. 2012, 122, 52–60. [Google Scholar] [CrossRef]
- West, T.O.; Post, W.M. Soil organic carbon sequestration rates by tillage and crop rotation. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef]
- Dimassi, B.; Mary, B.; Wylleman, R.; Labreuche, J.; Couture, D.; Piraux, F.; Cohan, J.-P. Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years. Agric. Ecosyst. Environ. 2014, 188, 134–146. [Google Scholar] [CrossRef]
- Powlson, D.S.; Stirling, C.M.; Jat, M.L.; Gerard, B.G.; Palm, C.A.; Sanchez, P.A.; Cassman, K.G. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Chang. 2014, 4, 678–683. [Google Scholar] [CrossRef]
- Shen, X.; Wang, L.; Yang, Q.; Xiu, W.; Li, G.; Zhao, J.; Zhang, G. Dynamics of soil organic carbon and labile carbon fractions in soil aggregates affected by different tillage managements. Sustainability 2021, 13, 1541. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Isberg, P.-E. How does tillage intensity affect soil organic carbon? A systematic review. Environ. Evid. 2017, 6, 30. [Google Scholar] [CrossRef]
- Herzfeld, T.; Heinke, J.; Rolinski, S.; Müller, C. Soil organic carbon dynamics from agricultural management practices under climate change. Earth Syst. Dyn. 2021, 12, 1037–1055. [Google Scholar] [CrossRef]
- Bruni, E.; Guenet, B.; Clivot, H.; Kätterer, T.; Martin, M.; Virto, I.; Chenu, C. Defining quantitative targets for topsoil organic carbon stock increase in European croplands: Case studies with exogenous organic matter inputs. Front. Environ. Sci. 2022, 10, 824724. [Google Scholar] [CrossRef]
- Balík, J.; Černý, J.; Kulhánek, M.; Sedlář, O. Soil carbon transformation in long-term field experiments with different fertilization treatments. Plant Soil Environ. 2018, 64, 578–586. [Google Scholar] [CrossRef]
- Šimon, T.; Madaras, M. Chemical and spectroscopic parameters are equally sensitive in describing soil organic matter changes after decades of different fertilization. Agriculture 2020, 10, 422. [Google Scholar] [CrossRef]
- Chatterjee, A.; Cooper, K.; Klaustermeier, A.; Awale, R.; Cihacek, L.J. Does crop species diversity influence soil carbon and nitrogen pools? Agron. J. 2016, 108, 427–432. [Google Scholar] [CrossRef]
- Liu, X.; Tan, S.; Song, X.; Wu, X.; Zhao, G.; Li, S.; Liang, G. Response of soil organic carbon content to crop rotation and its controls: A global synthesis. Agric. Ecosyst. Environ. 2022, 335, 108017. [Google Scholar] [CrossRef]
- Hlisnikovský, L.; Menšík, L.; Kunzová, E. The effect of soil-climate conditions, farmyard manure and mineral fertilizers on potato yield and soil chemical parameters. Plants 2021, 10, 2473. [Google Scholar] [CrossRef] [PubMed]
- Menšík, L.; Hlisnikovský, L.; Pospíšilová, L.; Kunzová, E. The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment. J. Soils Sediments 2018, 18, 2813–2822. [Google Scholar] [CrossRef]
- Ellert, B.H.; Bettany, J.R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci. 1995, 75, 529–538. [Google Scholar] [CrossRef]
- Żelazny, W.R. Derivation of Total Soil Carbon Contents in 1955 (1.0); Zenodo: Geneva, Switzerland, 2024. [Google Scholar] [CrossRef]
- Hlisnikovský, L.; Menšík, L.; Kunzová, E. Development and the effect of weather and mineral fertilization on grain yield and stability of winter wheat following alfaalfa—Analysis of long-term field trial. Plants 2023, 12, 1392. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Smith, J.U.; Powlson, D.S.; McGill, W.B.; Arah, J.R.M.; Chertov, O.G.; Coleman, K.; Franko, U.; Frolking, S.; Jenkinson, D.S.; et al. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 1997, 81, 153–225. [Google Scholar] [CrossRef]
- Nerger, R.; Klüver, K.; Cordsen, E.; Fohrer, N. Intensive long-term monitoring of soil organic carbon and nutrients in Northern German. Nutr. Cycl. Agrosyst. 2020, 116, 57–69. [Google Scholar] [CrossRef]
- Roβ, C.L.; Baumecker, M.; Ellmer, F.; Kautz, T. Organic manure increases carbon sequestration Far beyond the “4 per 1000 initiative” goal on a sandy soil in the thyrow long-term field experiment DIV.2. Agriculture 2022, 12, 170. [Google Scholar] [CrossRef]
- Fantappiè, M.; L’Abate, G.; Costantini, E.A.C. The influence of climate change on the soil organic carbon content in Italy from 1961 to 2008. Geomorphology 2011, 135, 343–352. [Google Scholar] [CrossRef]
- Kirschbaum, M.U.F. Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 2000, 48, 21–51. [Google Scholar] [CrossRef]
- Ruimin, Q.; Juan, L.; Zhian, L.; Zhijie, L.; Yanting, L.; Xiangdong, Y.; Jianjun, Z.; Binggiang, Z. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Appl. Soil Ecol. 2013, 102, 36–45. [Google Scholar]
- Balík, J.; Suran, P.; Sedlář, O.; Černý, J.; Kulhánek, M.; Procházková, S.; Asrade, D.A.; Smatanová, M. The effect of long-term farmyard manure and mineral fertilizer application on the increase in soil organic matter quality of cambisols. Agronomy 2023, 13, 2960. [Google Scholar] [CrossRef]
- Grunwald, D.; Götze, P.; Koch, H.J. Soil organic carbon stocks in sugar beet rotations differing in residue management and associated rotational crop species. J. Plant Nutr. Soil Sci. 2021, 184, 556–561. [Google Scholar] [CrossRef]
- Buysse, P.; Roisin, C.; Aubinet, M. Fifty years of contrasted residue management of an agricultural crop: Impacts on the soil carbon budget and on soil heterotrophic respiration. Agric. Ecosyst. Environ. 2013, 167, 52–59. [Google Scholar] [CrossRef]
- Lipavský, J.; Kubát, J.; Zobač, J. Long-term effects of straw and farmyard manure on crop yields and soil properties. Arch. Agron. Soil Sci. 2008, 54, 369–379. [Google Scholar] [CrossRef]
- Koga, N.; Tsuji, H. Effects of reduced tillage, crop residue management and manure application practices on crop yields and soil carbon sequestration on an Andisol in northern Japan. Soil Sci. Plant Nutr. 2009, 55, 546–557. [Google Scholar] [CrossRef]
- Prudil, J.; Pospíšilová, L.; Dryšlová, T.; Barančíková, G.; Smutný, V.; Sedlák, L.; Ryant, P.; Hlavinka, P.; Trnka, M.; Halas, J.; et al. Assessment of carbon sequestration as affected by different management practices using the RothC model. Plant Soil Environ. 2023, 69, 532–544. [Google Scholar] [CrossRef]
- Triberti, L.; Nastri, A.; Baldoni, D. Long-term effects of crop rotation, manure and mineral fertilisation on carbon sequestration and soil fertility. Eur. J. Agron. 2016, 74, 47–55. [Google Scholar] [CrossRef]
- Gocke, M.I.; Gaigue, J.; Bauke, S.L.; Barkusky, D.; Baumecker, M.; Berns, A.E.; Hobley, E.; Honermeier, B.; Kögel-Knabner, I.; Koszinski, S.; et al. Interactive effects of agricultural management on soil organic carbon accrual: A synthesis of long-term field experiment in Germany. Geoderma 2023, 438, 116616. [Google Scholar] [CrossRef]
- Dechow, R.; Franko, U.; Kätterer, T.; Kolbe, H. Evaluation of the RothC model as a prognostic tool for the prediction of SOC trends in response to management practices on arable land. Geoderma 2019, 337, 463–478. [Google Scholar] [CrossRef]
- Wust-Galey, C.; Keel, C.G.; Leifeld, J. A model based carbon inventory for Switzerland’s mineral agricultural soils using RothC. Agroscope Sci. 2020, 105, 115. [Google Scholar]
- Chartin, C.; Stevens, A.; Goidts, E.; Krüger, I.; Carnol, M.; van Wesemael, B. Mapping soil organic carbon stocks and estimating uncertainties at the regional scale following a legacy sampling strategy (Southern Belgium, Wallonia). Geoderma 2017, 9, 73–86. [Google Scholar] [CrossRef]
- McDaniel, M.D.; Tiemann, L.K.; Grandy, A.S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 2014, 24, 560–570. [Google Scholar] [CrossRef]
- Martyniuk, S.; Pikuła, D.; Kozieł, M. Soil properties and productivity in two long-term crop rotations differing with respect to organic matter management on an Albic Luvisol. Sci. Rep. 2019, 9, 1878. [Google Scholar] [CrossRef] [PubMed]
Block/Crop Rotation | N | P | K | Farmyard Manure |
---|---|---|---|---|
kg ha−1 year−1 | t ha−1 year−1 | |||
Field B—simple crop rotation (SCR) | 100 | 26 | 75 | 10.5 |
Field IV—multi-crop rotation (MCR) | 63 | 24 | 109 | 6.5 |
Treatment | r2 | r | m | p-Value | CI − 95% | CI + 95% |
---|---|---|---|---|---|---|
Control | 0.314 | −0.561 ** | −0.003 | 0.001 | 1.15 | 1.207 |
NPK | 0.108 | −0.329 * | −0.002 | 0.032 | 1.215 | 1.27 |
FYM | 0.0116 | 0.341 * | 0.002 | 0.027 | 1.384 | 1.451 |
FYM + NPK | 0.001 | −0.021 ns | −0.000 | 0.893 | 1.345 | 1.421 |
Statistic | Control | NPK | FYM | FYM + NPK | ||||
---|---|---|---|---|---|---|---|---|
I. | II. | I. | II. | I. | II. | I. | II. | |
r2 | 0.108 | 0.152 | 0.004 | 0.471 | 0.069 | 0.002 | 0.231 | 0.236 |
r | −0.328 ns | −0.39 * | −0.06 ns | −0.686 ** | 0.262 ns | −0.043 ns | 0.481 * | −0.486 * |
m | −0.003 | −0.004 | −0.001 | −0.006 | 0.0032 | −0.001 | 0.008 | −0.006 |
p-value | 0.184 | 0.049 | 0.813 | 0.000 | 0.293 | 0.84 | 0.043 | 0.014 |
CI − 95% | 1.183 | 1.114 | 1.209 | 1.201 | 1.319 | 1.407 | 1.319 | 1.339 |
CI + 95% | 1.274 | 1.174 | 1.314 | 1.261 | 1.429 | 1.487 | 1.463 | 1.426 |
Treatment | r2 | r | m | p-Value | CI − 95% | CI + 95% |
---|---|---|---|---|---|---|
Control | 0.077 | 0.277 ns | 0.002 | 0.131 | 1.213 | 1.271 |
NPK | 0.022 | 0.147 ns | 0.001 | 0.431 | 1.299 | 1.348 |
FYM | 0.035 | 0.187 ns | 0.002 | 0.315 | 1.364 | 1.424 |
FYM + NPK | 0.11 | 0.332 ns | 0.003 | 0.068 | 1.473 | 1.526 |
Crop Rotation | Period | C Sequestration Since 1955 (t C ha−1, Average for the Decade) | |||
---|---|---|---|---|---|
Control | NPK | FYM | NPK + FYM | ||
SCR | 1971–1980 | −2.10 | −1.56 | 0.79 | 2.07 |
1991–2000 | −4.37 | −1.57 | 3.14 | 4.71 | |
2011–2020 | −5.11 | −3.70 | 4.86 | 0.92 | |
MCR | 1991–2000 | −1.82 | 1.01 | 2.84 | 5.58 |
2011–2020 | −0.33 | 1.55 | 4.67 | 7.55 |
Crop Rotation | C Sequestration Rate (t C ha−1 Year−1) | |||||
---|---|---|---|---|---|---|
1971–1980 | 1991–2000 | 2011–2020 | ||||
m | r2 | m | r2 | m | r2 | |
SCR | ||||||
Control | 0.079 | 0.010 | −0.014 | 0.001 | −0.257 | 0.289 |
NPK | −0.277 | 0.046 | 0.371 | 0.341 | −0.141 | 0.320 |
FYM | −0.086 | 0.006 | 0.465 | 0.161 | −0.261 | 0.161 |
FYM + NPK | 0.611 | 0.317 | 0.244 | 0.054 | −0.191 | 0.174 |
MCR | ||||||
Control | 0.249 | 0.117 | −0.068 | 0.004 | ||
NPK | 0.498 | 0.376 | 0.157 | 0.048 | ||
FYM | 0.179 | 0.061 | 0.025 | 0.001 | ||
FYM + NPK | 0.416 | 0.290 | −0.032 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šimon, T.; Madaras, M.; Mayerová, M.; Kunzová, E. Soil Organic Carbon Dynamics in the Long-Term Field Experiments with Contrasting Crop Rotations. Agriculture 2024, 14, 818. https://doi.org/10.3390/agriculture14060818
Šimon T, Madaras M, Mayerová M, Kunzová E. Soil Organic Carbon Dynamics in the Long-Term Field Experiments with Contrasting Crop Rotations. Agriculture. 2024; 14(6):818. https://doi.org/10.3390/agriculture14060818
Chicago/Turabian StyleŠimon, Tomáš, Mikuláš Madaras, Markéta Mayerová, and Eva Kunzová. 2024. "Soil Organic Carbon Dynamics in the Long-Term Field Experiments with Contrasting Crop Rotations" Agriculture 14, no. 6: 818. https://doi.org/10.3390/agriculture14060818
APA StyleŠimon, T., Madaras, M., Mayerová, M., & Kunzová, E. (2024). Soil Organic Carbon Dynamics in the Long-Term Field Experiments with Contrasting Crop Rotations. Agriculture, 14(6), 818. https://doi.org/10.3390/agriculture14060818