Soybean Response to Seed Inoculation with Bradyrhizobium japonicum and/or Nitrogen Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Soil Conditions
2.3. Weather Conditions
2.4. Field and Laboratory Measurements
2.5. Chemical Analysis of Seeds
2.6. Statistical Calculations
3. Results
4. Discussion
4.1. Nodule Number and Dry Weight as Affected by Treatment and Year
4.2. Influence of Treatments and Year on Seed Yield and Yield Components
4.3. LAI and SPAD as Affected by Treatment and Year
4.4. Protein, Oil, Polyphenols, AOX Capacity as Affected by Year and Treatment
4.5. Correlation and Statistical Dependencies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Staniak, M.; Szpunar-Krok, E.; Kocira, A. Responses of soybean to selected abiotic stresses-photoperiod, temperature and water. Agriculture 2023, 13, 146. [Google Scholar] [CrossRef]
- Wenda-Piesik, A.; Ambroziak, K. The choice of soybean cultivar alters the underyielding of protein and oil under drought conditions in central Poland. Appl. Sci. 2022, 12, 7830. [Google Scholar] [CrossRef]
- Hartman, G.L.; West, E.D.; Herman, T.K. Crops that feed the World 2. Soybean-worldwide production, use, and constraints caused by pathogens and pests. Food Sec. 2011, 3, 5–17. [Google Scholar] [CrossRef]
- Prusiński, J. Cultivation, origin and use of grain legume cultivars in Poland. Pol. J. Agron. 2020, 41, 20–28. [Google Scholar] [CrossRef]
- Ghani, R.A.; Kende, Z.; Tarnawa, A.; Omar, S.; Kassai, M.K.; Jolánkai, M. The effect of nitrogen application and various means of weed control on grain yield, protein and lipid content in soybean cultivation. Acta Aliment. 2021, 50, 537–547. [Google Scholar] [CrossRef]
- Jarecki, W.; Migut, D. Comparison of yield and important seed quality traits of selected legume species. Agronomy 2022, 12, 2667. [Google Scholar] [CrossRef]
- Serafin-Andrzejewska, M.; Helios, W.; Jama-Rodzeńska, A.; Kozak, M.; Kotecki, A.; Kuchar, L. Effect of sowing date on soybean development in south-western Poland. Agriculture 2021, 11, 413. [Google Scholar] [CrossRef]
- Prusiński, J.; Baturo-Cieśniewska, A.; Borowska, M. Response of soybean (Glycine max (L.) Merrill) to mineral nitrogen fertilization and Bradyrhizobium japonicum seed inoculation. Agronomy 2020, 10, 1300. [Google Scholar] [CrossRef]
- Fordoński, G.; Okorski, A.; Olszewski, J.; Dąbrowska, J.; Pszczółkowska, A. The effect of sowing date on the growth and yield of soybeans cultivated in north-eastern Poland. Agriculture 2023, 13, 2199. [Google Scholar] [CrossRef]
- Kulig, B.; Klimek-Kopyra, A. Sowing date and fertilization level are effective elements increasing soybean productivity in rainfall deficit conditions in central Europe. Agriculture 2023, 13, 115. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Cassman, K.G.; Specht, J.E.; Walters, D.T.; Weiss, A.; Dobermann, A. Nitrogen uptake, fixation and response to fertilizer N in soybean: A review. Field Crops Res. 2008, 108, 1–13. [Google Scholar] [CrossRef]
- Hungria, M.; Franchini, J.C.; Campo, R.J.; Crispino, C.C.; Moraes, J.Z.; Sibaldelli, R.N.R.; Mendes, I.C.; Arihara, J. Nitrogen nutrition of soybean in Brazil: Contributions of biological N2 fixation and N fertilizer to grain yield. Can. J. Plant Sci. 2006, 86, 927–939. [Google Scholar] [CrossRef]
- Albareda, M.; Rodriguea-Navarro, D.N.; Temprano, F. Soybean inoculation: Dose, N fertilizer supplementation and rhizobia persistence in soil. Field Crops Res. 2009, 113, 352–356. [Google Scholar] [CrossRef]
- Zapata, F.; Danso, S.K.A.; Hardarson, G.; Fried, M. Time course of nitrogen fixation in field-grown soybean using nitrogen-15 methodology. Agron. J. 1987, 79, 172–176. [Google Scholar] [CrossRef]
- La Menza, N.C.; Monzon, J.P.; Specht, J.E.; Grassini, P. Is soybean yield limited by nitrogen supply? Field Crops Res. 2017, 213, 204–212. [Google Scholar] [CrossRef]
- Saito, A.; Tanabata, S.; Tanabata, T.; Tajima, S.; Ueno, M.; Ishikawa, S.; Ohtake, N.; Sueyoshi, K.; Ohyama, T. Effect of nitrate on nodule and root growth of soybean (Glycine max (L.) Merr.). Int. J. Mol. Sci. 2014, 15, 4464–4480. [Google Scholar] [CrossRef]
- Siqueira, A.F.; Ormeño-Orrillo, E.; Souza, R.C.; Rodrigues, E.P.; Almeida, L.G.P.; Barcellos, F.G.; Batista, J.S.S.; Nakatani, A.S.; Martínez-Romero, E.; Vasconcelos, A.T.R.; et al. Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: Elite model strains for understanding symbiotic performance with soybean. BMC Genom. 2014, 15, 420. [Google Scholar] [CrossRef]
- Kaschuk, G.; Nogueira, M.A.; de Luca, M.J.; Hungria, M. Response of determinate and indeterminate soybean cultivars to basal and topdressing N fertilization compared to sole inoculation with Bradyrhizobium. Field Crops Res. 2016, 195, 21–27. [Google Scholar] [CrossRef]
- Gaspar, A.; Laboski, C.; Naeve, S.; Conley, S. Dry matter and nitrogen uptake, partitioning, and removal across a wide range of soybean seed yield levels. Crop Sci. 2017, 57, 2170–2182. [Google Scholar] [CrossRef]
- Marinković, J.; Bjelić, D.; Tintor, B.; Ignjatov, M.; Nikolić, Z.; Đukić, V.; Balešević-Tubić, S. Molecular identification of Bradyrhizobium japonicum strains isolated from root nodules of soybean (Glycine max L.). Matica Srp. J. Nat. Sci. 2017, 132, 49–56. [Google Scholar] [CrossRef]
- Krutylo, D.V. Composition of strains Bradyrhizobium japonicum and its use for soybean inoculation. Agric. Microbiol. 2016, 24, 29–36. [Google Scholar] [CrossRef]
- Hungria, M.; Nishi, C.Y.M.; Cohn, J.; Stacey, G. Comparison between parental and variant soybean Bradyrhizobium strains with regard to the production of lipo-chitin nodulation signals, early stages of root infection, nodule occupancy, and N2 fixation rates. Plant Soil 1996, 186, 331–341. [Google Scholar] [CrossRef]
- Albareda, M.; Rodríguez-Navarro, D.N.; Camacho, M.; Temprano, F.J. Alternatives to peat as a carrier for rhizobia inoculants: Solid and liquid formulations. Soil Biol. Biochem. 2008, 40, 2771–2779. [Google Scholar] [CrossRef]
- Flajśman, M.; Šantavec, I.; Kolmanić, A.; Kocjan Aćko, D. Bacterial seed inoculation and row spacing affect the nutritional composition and agronomic performance of soybean. Int. J. Plant Prod. 2019, 13, 183–192. [Google Scholar] [CrossRef]
- Panasiewicz, K.; Faligowska, A.; Szymańska, G.; Ratajczak, K.; Sulewska, H. Optimizing the amount of nitrogen and seed inoculation to improve the quality and yield of soybean grown in the southeastern Baltic region. Agriculture 2023, 13, 798. [Google Scholar] [CrossRef]
- Ntambo, M.S.; Chilinda, I.S.; Taruvinga, A.; Hafeez, S.; Anwar, T.; Sharif, R.; Chambi, C.; Kies, L. The effect of rhizobium inoculation with nitrogen fertilizer on growth and yield of soybeans (Glycine max L.). Int. J. Biosci. 2017, 10, 163–172. [Google Scholar] [CrossRef]
- Yokoyama, A.H.; Zucareli, C.; Coelho, A.E.; Nogueira, M.A.; Franchini, J.C.; Debiasi, H.; Balbinot Junior, A.A. Precrops and N-fertilizer impacts on soybean performance in tropical regions of Brazil. Acta Sci. Agron. 2022, 44, e54650. [Google Scholar] [CrossRef]
- Mourtzinis, S.; Kaur, G.; Orlowski, J.M.; Shapiro, C.A.; Lee, C.D.; Wortmann, C.; Holshouser, D.; Nafziger, E.D.; Kandel, H.; Niekamp, J.; et al. Soybean response to nitrogen application across the United States: A synthesis-analysis. Field Crops Res. 2018, 215, 74–82. [Google Scholar] [CrossRef]
- Głowacka, A.; Jariene, E.; Flis-Olszewska, E.; Kiełtyka-Dadasiewicz, A. The effect of nitrogen and sulphur application on soybean productivity traits in temperate climates conditions. Agronomy 2023, 13, 780. [Google Scholar] [CrossRef]
- Kubar, M.S.; Shar, A.H.; Kubar, K.A.; Rind, N.A.; Ullah, H.; Kalhoro, S.A.; Wang, C.; Feng, M.; Gujar, A.; Sun, H.; et al. Optimizing nitrogen supply promotes biomass, physiological characteristics and yield components of soybean (Glycine max L. Merr.). Saudi J. Biol. Sci. 2021, 28, 6209–6217. [Google Scholar] [CrossRef]
- Zuffo, A.M.; Steiner, F.; Busch, A.; Júnior, J.M.Z.; Mendes, A.E.S.; De Oliveira, N.T.; Zambiazzi, E.V. Quality of soybean seeds in response to nitrogen fertilization and inoculation with Bradyrhizobium japonicum1. Pesq. Agropec. Trop. 2018, 48, 261–270. [Google Scholar] [CrossRef]
- Księżak, J.; Bojarszczuk, J. The seed yield of soybean cultivars and their quantity depending on sowing term. Agronomy 2022, 12, 1066. [Google Scholar] [CrossRef]
- Ferreira, M.C.; Hungria, M. Recovery of soybean inoculants strains from uncropped soils in Brazil. Field Crops Res. 2002, 79, 139–152. [Google Scholar] [CrossRef]
- Duzan, H.M.; Zhou, X.; Souleimanov, A.; Smith, D.L. Perception of Bradyrhizobium japonicum Nod factor by soybean [Glycine max (L.) Merr.] root hairs under abiotic stress conditions. J. Exp. Bot. 2004, 55, 2641–2646. [Google Scholar] [CrossRef]
- Dolatabadian, A.; Sanavy, S.A.M.M.; Ghanati, F.; Gresshoff, P.M. Morphological and physiological response of soybean treated with the microsymbiont Bradyrhizobium japonicum pre-incubated with genistein. S. Afr. J. Bot. 2012, 79, 9–18. [Google Scholar] [CrossRef]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Grossman, J.M.; Schipanski, M.E.; Sooksanguan, T.; Seehaver, S.; Drinkwater, L.E. Diversity of rhizobia in soybean [Glycine max (Vinton)] nodules varies under organic and conventional management. Appl. Soil Ecol. 2011, 50, 14–20. [Google Scholar] [CrossRef]
- Martyniuk, S.; Kozieł, M.; Gałązka, A. Survival of rhizobia on seeds, nodulation and growth of soybean as influenced by synthetic and natural seed-applied fungicides. Polish J. Agron. 2016, 27, 96–99. [Google Scholar] [CrossRef]
- Vieira Neto, S.A.; Pires, F.R.; Madalao, J.C.; Viana, D.G.; de Menezes, C.C.E.; de Assis, R.L. Growth and yield performance of soybean with the application of Bradyrhyzobium inoculant via furrow and seed. Semin. Ciênc. Agrár. 2017, 38, 2387–2397. [Google Scholar] [CrossRef]
- Kim, I.S.; Kim, C.H.; Yang, W.S. Physiologically active molecules and functional properties of soybeans in human health—A current perspective. Int. J. Mol. Sci. 2021, 22, 4054. [Google Scholar] [CrossRef]
- Król-Grzymała, A.; Amarowicz, R. Phenolic compounds of soybean seeds from two European countries and their antioxidant properties. Molecules 2020, 25, 2075. [Google Scholar] [CrossRef] [PubMed]
- Soedarjo, M.; Suhartina, S.; Nugrahaeni, N.; Wijanarko, A.; Putri, D.A.; Fatmawati, S. The antioxidant activities and phenolic content of improved soybean seeds cultivars of different grain sizes. IPTEK J. Technol. Sci. 2020, 31, 83–90. [Google Scholar] [CrossRef]
- Choi, Y.M.; Yoon, H.; Shin, M.J.; Lee, Y.; Hur, O.S.; Lee, B.C.; Ha, B.K.; Wang, X.; Desta, K.T. Metabolite contents and antioxidant activities of soybean (Glycine max (L.) Merrill) seeds of different seed coat colors. Antioxidants 2021, 10, 1210. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Meier, U. Growth Stages of Mono-and Dicotyledonous Plants; BBCH Monograph; Federal Biological Research Centre for Agriculture and Forestry: Berlin, Germany; Braunschweig, Germany. 2001, p. 158. Available online: https://www.yumpu.com/en/document/view/16359822/growth-stages-of-mono-and-dicotyledonous-plants-regione (accessed on 29 March 2024).
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Oxidants and Antioxidants Part A; Elsevier: Amsterdam, The Netherlands, 1999; pp. 152–178. [Google Scholar] [CrossRef]
- Miere (Groza), F.; Teusdea, A.C.; Laslo, V.; Fritea, L.; Moldovan, L.; Costea, T.; Uivaroșan, D.; Vicas, S.I.; Pallag, A. Natural polymeric beads for encapsulation of Stellaria media extract with antioxidant properties. Mater. Plast. 2019, 56, 671–679. [Google Scholar] [CrossRef]
- Budau, R.; Memete, A.R.; Timofte, A.; Vicas, S.I. Phytochemical screening and antioxidant capacity of two berry cultivars, ‘Ruben’ and ‘Duke’, depending on their harvesting time. B. Univer. Agr. Sci. Veter. Medic. Cluj-Napoca. Food Sci. Technol. 2022, 79, 27–35. [Google Scholar] [CrossRef]
- Tirla, A.; Timar, A.V.; Becze, A.; Memete, A.R.; Vicas, S.I.; Popoviciu, M.S.; Cavalu, S. Designing new sport supplements based on aronia melanocarpa and bee pollen to enhance antioxidant capacity and nutritional value. Molecules 2023, 28, 6944. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Vicas, S.; Cavalu, S.; Laslo, V.; Tocai, M.; Costea, T.; Moldovan, L. Growth, photosynthetic pigments, phenolic, glucosinolates content and antioxidant capacity of broccoli sprouts in response to nanoselenium particles supply. Not. Bot. Horti. Agrobo. Cluj-Napoca 2019, 47, 821–828. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef]
- Innosensia, N.L.P.C.; Suputra, I.P.W.; Wirya, G.N.A.S.; Narisawa, K. First report of tripartite symbiosis potential among soybean, Bradyrhizobium japonicum, and dark septate endophytes. Agronomy 2023, 13, 1788. [Google Scholar] [CrossRef]
- Bais, J.; Kandel, H.; DeSutter, T.; Deckard, E.; Keene, C. Soybean response to N fertilization compared with co-inoculation of Bradyrhizobium japonicum and Azospirillum brasilense. Agronomy 2023, 13, 2022. [Google Scholar] [CrossRef]
- Appunu, C.; Sen, D.; Singh, M.K.; Dhar, B. Variation in symbiotic performance of Bradyrhizobium japonicum strains and soybean cultivars under field conditions. J. Centr. Eur. Agric. 2008, 9, 169–174. [Google Scholar]
- Torres, A.R.; Kaschuk, G.; Saridakis, G.P.; Hungria, M. Genetic variability in Bradyrhizobium japonicum strains nodulating soybean [Glycine max (L.) Merrill]. World J. Microbiol. Biotechnol. 2012, 28, 1831–1835. [Google Scholar] [CrossRef] [PubMed]
- Hungria, M.; Nogueira, M.A.; Araujo, R.S. Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: A new biotechnological tool to improve yield and sustainability. Am. J. Plant Sci. 2015, 6, 811–817. [Google Scholar] [CrossRef]
- Zimmer, S.; Messmer, M.; Haase, T.; Piepho, H.P.; Mindermann, A.; Schulz, H.; Habekuß, A.; Ordon, F.; Wilbois, K.P.; Heß, J. Effects of soybean cultivar and Bradyrhizobium strains on yield, protein content and biological nitrogen fixation under cool growing conditions in Germany. Eur. J. Agron. 2016, 72, 38–46. [Google Scholar] [CrossRef]
- Narożna, D.; Pudełko, K.; Króliczek, J.; Golińska, B.; Sugawara, M.; Mądrzak, C.J.; Sadowsky, M.J. Survival and competitiveness of Bradyrhizobium japonicum strains 20 years after introduction into field locations in Poland. Appl. Environ. Microbiol. 2015, 81, 5552–5559. [Google Scholar] [CrossRef] [PubMed]
- Cigelske, B.D.; Kandel, H.; DeSutter, T.M. Soybean nodulation and plant response to nitrogen and sulfur fertilization in the Northern US. Agric. Sci. 2020, 11, 592–607. [Google Scholar] [CrossRef]
- Lyu, X.; Xia, X.; Wang, C.; Ma, C.; Dong, S.; Gong, Z. Effects of changes in applied nitrogen concentrations on nodulation, nitrogen fixation and nitrogen accumulation during the soybean growth period. Soil Sci. Plant Nutr. 2019, 65, 479–489. [Google Scholar] [CrossRef]
- Kakabouki, I.; Mavroeidis, A.; Kouneli, V.; Karydogianni, S.; Folina, A.; Triantafyllidis, V.; Efthimiadou, A.; Roussis, I.; Zotos, A.; Kosma, C.; et al. Effects of nitrogen fertilization on weed flora and productivity of soybean [Glycine max (L.) Merr.] Crop. Nitrogen 2022, 3, 284–297. [Google Scholar] [CrossRef]
- Capatana, N.; Bolohan, C.; Marin, D.I. Research regarding the influence of mineral fertilization along with Bradyrhizobium japonicum on soybean grain yield (Glycine max (L.) Merrill) under the conditions of south-east Romania. Sci. Pap. Agron. 2017, 60, 207–214. [Google Scholar]
- Latifnia, E.; Eisvand, H.R. Soybean physiological properties and grain quality responses to nutrients, and predicting nutrient defciency using chlorophyll fluorescence. J. Soil Sci. Plant Nutr. 2022, 22, 1942–1954. [Google Scholar] [CrossRef]
- Welch, L.F.; Boone, L.V.; Chambliss, C.G.; Christiansen, A.T.; Mulvaney, D.L.; Oldham, M.G.; Pendleton, J.W. Soybean yields with direct and residual nitrogen fertilization. Agron. J. 1973, 65, 547–550. [Google Scholar] [CrossRef]
- Khaledian, M.S.; Mohammadi, K.; Javaheri, M. Grain yield and yield components of soybean affected by integrated fertilization methods. Int. J. Agric. Forest. 2014, 4, 1–3. [Google Scholar] [CrossRef]
- Deaker, R.; Roughley, R.J.; Kennedy, I.R. Legume seed inoculation technology—A review. Soil Biol. Biochem. 2004, 36, 1275–1288. [Google Scholar] [CrossRef]
- Rahangdale, N.; Kumawat, N.; Jadav, M.L.; Bhagat, D.V.; Singh, M.; Yadav, R.K. Symbiotic efficiency, productivity and profitability of soybean as influenced by liquid bio-inoculants and straw mulch. Int. J. Bio-resource Stress Manag. 2022, 13, 9–16. [Google Scholar] [CrossRef]
- Cordeiro, C.F.d.S.; Echer, F.R. Interactive effects of nitrogen-fixing bacteria inoculation and nitrogen fertilization on soybean yield in unfavorable edaphoclimatic environments. Sci. Rep. 2019, 9, 15606. [Google Scholar] [CrossRef] [PubMed]
- Zerpa, M.; Mayz, J.; Mendez, J. Effects of Bradyrhizobium japonicum inoculants on soybean (Glycine max (L.) Merr.) growth and nodulation. Ann. Biol. Res. 2013, 4, 193–199. [Google Scholar]
- Vollmann, J.; Walter, H.; Sato, T.; Schweiger, P. Digital image analysis and chlorophyll metering for phenotyping the effects of nodulation in soybean. Comput. Electron. Agr. 2011, 75, 190–195. [Google Scholar] [CrossRef]
- Basal, O.; Szabó, A. The Combined Effect of Drought Stress and Nitrogen Fertilization on Soybean. Agronomy 2020, 10, 384. [Google Scholar] [CrossRef]
- Jarecki, W. Effect of soybean seed inoculation with symbiotic bacteria. Legume Res. 2024, 7, 242–248. [Google Scholar] [CrossRef]
- Szostak, B.; Głowacka, A.; Kasiczak, A.; Kiełtyka-Dadasiewicz, A.; Bąkowski, M. Nutritional value of soybeans and the yield of protein and fat depending on a cultivar and the level of nitrogen application. J. Elem. 2020, 25, 45–57. [Google Scholar] [CrossRef]
- Wood, C.W.; Torbert, H.A.; Weaver, D.B. Nitrogen fertilizer effects on soybean growth, yield, and seed composition. J. Prod. Agric. 1993, 6, 354–360. [Google Scholar] [CrossRef]
- Malenčić, D.; Maksimović, Z.; Popović, M.; Miladinović, J. Polyphenol contents and antioxidant activity of soybean seed extracts. Bioresour. Technol. 2008, 99, 6688–6691. [Google Scholar] [CrossRef] [PubMed]
- Zilic, S.; Sukalovic, V.H.; Maksimovic, V.; Maksimovic, M.; Basic, Z.; Peric, V.; Maksimovic, J.D. Antioxidant properties of soybean with black and yellow kernel coat. In Proceedings of the 46th Croatian and 6th International Symposium on Agriculture, Opatija, Croatia, 1 June 2013; pp. 686–689. [Google Scholar]
- Sessitsch, A.; Howieson, J.G.; Perret, X.; Antoun, H.; Martínez-Romero, E. Advances in rhizobium research. Crit. Rev. Plant Sci. 2002, 21, 323–378. [Google Scholar] [CrossRef]
- Bellaloui, N.; Reddy, K.N.; Bruns, H.A.; Gillen, A.M.; Mengistu, A.; Zobiole, L.H.; Fisher, D.K.; Abbas, H.K.; Zablotowicz, R.M.; Kremer, R.J. Soybean seed composition and quality: Interactions of environment, genotype, and management practices. In Soybean: Cultivation, Uses and Nutrition, 1st ed.; Gillen, A., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2011; pp. 1–42. [Google Scholar]
- Nget, R.; Aguilar, E.A.; Cruz, P.C.S.; Reaño, C.E.; Sanchez, P.B.; Reyes, M.R.; Prasad, P.V.V. Responses of soybean genotypes to different nitrogen and phosphorus sources: Impacts on yield components, seed yield, and seed protein. Plants 2022, 11, 298. [Google Scholar] [CrossRef]
- Hong, H.; Yoosefzadeh-Najafabadi, M.; Rajcan, I. Correlations between soybean seed quality traits using a genome-wideassociation study panel grown in Canadian and Ukrainian mega-environments. Can. J. Plant Sci. 2022, 102, 1040–1052. [Google Scholar] [CrossRef]
Parameter | Unit | Year | ||
---|---|---|---|---|
2021 | 2022 | 2023 | ||
pH in 1 mol/L KCl | - | 6.2 | 6.0 | 5.9 |
Nmin | kg ha−1 | 78 | 72 | 65 |
Humus | % | 1.5 | 1.3 | 1.2 |
K2O | mg kg−1 soil | 209 | 204 | 197 |
P2O5 | mg kg−1 soil | 189 | 176 | 170 |
Factor | SPAD Value | Leaf Area Index (m2/m2) | Plant Density before Harvest (1 m2) | ||
---|---|---|---|---|---|
BBCH 55 | BBCH 65 | BBCH 55 | BBCH 65 | ||
Inoculation/Fertilization (IF) | |||||
A | 30.29 ± 1.89 b | 29.13 ± 2.13 e | 2.49 ± 0.13 b | 3.61 ± 0.14 c | 51.38 ± 4.43 a |
B | 36.20 ± 2.16 a | 34.52 ± 2.14 d | 2.65 ± 0.14 a | 3.77 ± 0.15 b | 50.28 ± 2.71 a |
C | 36.65 ± 2.03 a | 38.05 ± 1.97 abc | 2.69 ± 0.14 a | 3.85 ± 0.16 ab | 49.92 ± 3.96 a |
D | 37.25 ± 2.15 a | 38.78 ± 1.86 a | 2.72 ± 0.13 a | 3.90 ± 0.17 a | 49.63 ± 5.05 a |
E | 37.39 ± 1.98 a | 37.24 ± 2.07 bc | 2.75 ± 0.15 a | 3.81 ± 0.18 ab | 51.20 ± 2.90 a |
F | 36.18 ± 1.96 a | 37.89 ± 1.55 abc | 2.63 ± 0.13 a | 3.79 ± 0.16 ab | 50.75 ± 5.74 a |
G | 36.69 ± 2.02 a | 38.42 ± 1.33 ab | 2.68 ± 0.14 a | 3.86 ± 0.16 ab | 50.74 ± 5.19 a |
H | 36.71 ± 1.89 a | 36.80 ± 1.62 c | 2.71 ± 0.15 a | 3.76 ± 0.17 b | 51.22 ± 4.47 a |
Year (Y) | |||||
2021 | 37.64 ± 2.60 a | 37.66 ± 3.24 a | 2.67 ± 0.09 b | 3.78 ± 0.11 b | 52.93 ± 2.47 a |
2022 | 33.79 ± 2.35 c | 34.44 ± 3.47 b | 2.52 ± 0.12 c | 3.63 ± 0.12 c | 45.62 ± 2.70 b |
2023 | 36.32 ± 2.41 b | 36.95 ± 3.02 a | 2.80 ± 0.11 a | 3.97 ± 0.12 a | 53.36 ± 1.57 a |
ANOVA p value | |||||
IF | *** | *** | *** | *** | n.s. |
Y | *** | *** | *** | *** | *** |
IF × Y | n.s. | n.s. | n.s. | n.s. | n.s. |
Factor | Protein (% DM) | Fat (% DM) | Polyphenols (mg GAE/g dw) | Flavonoids (mg QE/g) |
---|---|---|---|---|
Inoculation/Fertilization (IF) | ||||
A | 26.8 ± 1.01 d | 25.8 ± 1.15 a | 2.49 ± 0.01 a | 2.40 ± 0.07 bc |
B | 29.0 ± 1.61 c | 24.5 ± 1.16 b | 2.41 ± 0.07 a | 2.75 ± 0.47 a |
C | 36.5 ± 1.54 b | 22.5 ± 1.25 cd | 2.39 ± 0.05 a | 2.17 ± 0.04 c |
D | 39.6 ± 1.56 a | 21.8 ± 0.96 d | 2.10 ± 0.01 b | 2.50 ± 0.43 ab |
E | 34.1 ± 1.66 b | 23.7 ± 1.02 c | 2.42 ± 0.01 a | 2.63 ± 0.56 ab |
F | 39.6 ± 2.06 a | 21.8 ± 1.23 d | 2.19 ± 0.09 ab | 2.42 ± 0.27 bc |
G | 40.0 ± 0.96 a | 22.0 ± 0.96 cd | 2.20 ± 0.03 ab | 2.53 ± 0.43 ab |
H | 38.1 ± 0.91 a | 22.4 ± 1.41 cd | 2.16 ± 0.01 ab | 2.08 ± 0.12 c |
Year (Y) | ||||
2021 | 36.41 ± 2.91 a | 22.52 ± 1.78 b | 2.32 ± 0.14 ab | 2.44 ± 2.42 ab |
2022 | 33.11 ± 2.56 b | 23.92 ± 1.63 a | 2.18 ± 0.23 b | 2.38 ± 2.10 b |
2023 | 34.92 ± 3.74 ab | 22.74 ± 1.80 ab | 2.41 ± 0.21 a | 2.51 ± 2.81 a |
ANOVA p value | ||||
IF | *** | ** | * | ** |
Y | *** | * | *** | *** |
IF × Y | n.s. | n.s. | n.s. | n.s. |
Factor | DPPH (2,2-Diphenyl-1-picryl-hydrazyl-hydrate) Assay | FRAP (Ferric Reducing Antioxidant Power) Assay | CUPRAC (Cupric Reducing Antioxidant Capacity) Assay | TEAC (Trolox Equivalent Antioxidant Capacity) Assay |
---|---|---|---|---|
Inoculation/Fertilization (IF) | ||||
A | 5.27 ± 0.04 a | 4.76 ± 0.32 c | 10.39 ± 0.11 b | 5.72 ± 0.34 a |
B | 5.78 ± 0.77 a | 5.91 ± 0.95 a | 13.50 ± 0.43 a | 5.92 ± 0.25 a |
C | 4.18 ± 0.37 b | 4.42 ± 0.04 cd | 11.16 ± 0.43 b | 4.74 ± 0.27 b |
D | 3.57 ± 0.31 c | 3.77 ± 0.41 f | 10.41 ± 0.58 b | 4.16 ± 0.28 cd |
E | 4.38 ± 0.08 b | 3.81 ± 0.04 ef | 14.10 ± 0.53 a | 4.71 ± 0.14 b |
F | 3.86 ± 0.12 bc | 4.15 ± 0.08 de | 10.47 ± 0.11 b | 4.06 ± 0.33 d |
G | 3.62 ± 0.20 c | 5.19 ± 0.07 b | 12.94 ± 0.29 a | 3.89 ± 0.33 d |
H | 3.62 ± 0.11 c | 4.05 ± 0.24 de | 10.42 ± 1.23 b | 4.21 ± 0.02 c |
Year (Y) | ||||
2021 | 4.28 ± 0.78 ab | 4.38 ± 0.73 b | 11.71 ± 1.84 a | 4.58 ± 0.78 b |
2022 | 4.21 ± 0.90 b | 4.48 ± 0.93 b | 11.50 ± 1.76 a | 4.69 ± 0.70 ab |
2023 | 4.38 ± 0.91 a | 4.66 ± 0.94 a | 11.81 ± 1.48 a | 4.78 ± 1.04 a |
ANOVA p value | ||||
IF | *** | *** | *** | *** |
Y | *** | *** | *** | *** |
IF × Y | n.s. | n.s. | n.s. | n.s. |
Factor | Year | Number of Pods per Plant | Number of Seeds in the Pod | Mass of a Thousand Seeds (g) | MHL—Bulk Density (kg/hl) |
---|---|---|---|---|---|
A | 2021 | 13.75 ± 0.38 ij | 2.14 ± 0.10 de | 136.00 ± 4.59 defgh | 73.37 ± 0.80 b |
2022 | 12.77 ± 0.95 j | 2.01 ± 0.17 e | 126.25 ± 4.43 gh | 62.85 ± 1.07 c | |
2023 | 14.25 ± 0.85 ij | 2.24 ± 0.12 cde | 130.10 ± 5.76 gh | 82.82 ± 0.95 a | |
B | 2021 | 16.57 ± 0.84 hi | 2.37 ± 0.08 abcd | 136.27 ± 3.17 defgh | 72.47 ± 0.94 b |
2022 | 14.17 ± 0.56 ij | 2.19 ± 0.05 cde | 123.62 ± 5.84 h | 71.40 ± 0.90 b | |
2023 | 16.82 ± 0.95 ghi | 2.40 ± 0.04 abcd | 122.37 ± 2.76 h | 74.75 ± 1.01 b | |
C | 2021 | 20.17 ± 0.88 cdef | 2.46 ± 0.10 abc | 148.85 ± 4.71 abcde | 74.30 ± 1.47 b |
2022 | 19.97 ± 1.15 cdef | 2.23 ± 0.07 cde | 132.15 ± 5.97 fgh | 73.45 ± 1.26 b | |
2023 | 22.05 ± 0.97 abcd | 2.64 ± 0.04 a | 147.6 ± 3.00 abcde | 75.43 ± 0.65 b | |
D | 2021 | 23.77 ± 0.78 ab | 2.32 ± 0.07 bcd | 152.37 ± 8.43 abc | 72.77 ± 1.55 b |
2022 | 21.95 ± 1.49 abcde | 2.32 ± 0.10 bcd | 141.00 ± 6.97 bcdefg | 73.90 ± 1.63 b | |
2023 | 24.3 ± 1.25 a | 2.57 ± 0.10 ab | 142.00 ± 2.16 bcdefg | 74.70 ± 1.58 b | |
E | 2021 | 21.30 ± 1.01 abcde | 2.43 ± 0.09 abc | 150.57 ± 7.92 abcd | 73.30 ± 2.26 b |
2022 | 18.19 ± 1.99 efgh | 2.36 ± 0.11 bcd | 138.37 ± 8.98 cdefgh | 72.45 ± 2.29 b | |
2023 | 24.17 ± 1.37 a | 2.47 ± 0.16 abc | 143.92 ± 8.44 abcdef | 74.35 ± 2.21 b | |
F | 2021 | 19.17 ± 1.28 defgh | 2.36 ± 0.10 bcd | 148.85 ± 4.71 abcde | 73.35 ± 2.02 b |
2022 | 17.90 ± 1.15 fgh | 2.26 ± 0.07 cde | 138.37 ± 5.97 cdefgh | 72.38 ± 1.33 b | |
2023 | 22.77 ± 0.97 abc | 2.37 ± 0.08 abcd | 141.00 ± 6.47 bcdefg | 74.36 ± 2.11 b | |
G | 2021 | 20.85 ± 1.49 bcdef | 2.36 ± 0.06 bcd | 159.15 ± 8.86 a | 73.17 ± 2.32 b |
2022 | 19.77 ± 1.26 cdefg | 2.30 ± 0.15 bcd | 142.60 ± 6.73 bcdefg | 72.22 ± 2.09 b | |
2023 | 22.17 ± 1.10 abcd | 2.44 ± 0.10 abc | 154.32 ± 9.67 ab | 74.15 ± 2.19 b | |
H | 2021 | 21.30 ± 0.78 abcde | 2.26 ± 0.08 cde | 152.37 ± 7.92 abc | 72.35 ± 2.05 b |
2022 | 20.95 ± 1.99 bcdef | 2.22 ± 0.09 cde | 134.65 ± 4.24 efgh | 71.27 ± 1.46 b | |
2023 | 23.30 ± 1.01 ab | 2.37 ± 0.16 abcd | 148.50 ± 8.98 abcde | 73.40 ± 2.08 b | |
ANOVA p value | |||||
IF × Y | *** | *** | *** | *** |
A | 1 | |||||||||||||||||
B | 0.43 | 1 | ||||||||||||||||
C | 0.88 | −0.7 | 1 | |||||||||||||||
D | 0.51 | −0.3 | −0.1 | 1 | ||||||||||||||
E | 0.63 | 0.13 | −0.2 | 0.18 | 1 | |||||||||||||
F | 0.27 | 0.37 | 0.17 | 0.21 | 0.12 | 1 | ||||||||||||
G | 0.87 | 0.15 | 0.83 | 0.36 | 0.62 | 0.09 | 1 | |||||||||||
H | 0.77 | 0.21 | 0.68 | 0.34 | 0.60 | 0.11 | 0.91 | 1 | ||||||||||
I | 0.81 | 0.33 | 0.75 | 0.45 | 0.48 | 0.23 | 0.78 | 0.75 | 1 | |||||||||
J | 0.68 | 0.65 | 0.62 | 0.21 | 0.31 | 0.44 | 0.51 | 0.53 | 0.61 | 1 | ||||||||
K | 0.32 | −0.3 | 0.46 | 0.26 | 0.24 | −0.1 | 0.56 | 0.51 | 0.33 | 0.12 | 1 | |||||||
L | −0.1 | 0.12 | −0.2 | −0.1 | 0.06 | 0.21 | −0.3 | −0.3 | −0.2 | −0.1 | −0.6 | 1 | ||||||
M | 0.18 | 0.52 | 0.11 | −0.1 | −0.1 | 0.35 | −0.1 | −0.1 | −0.1 | 0.35 | −0.5 | 0.12 | 1 | |||||
N | 0.19 | 0.36 | 0.12 | −0.1 | 0.04 | 0.32 | 0.02 | 0.07 | 0.15 | 0.48 | −0.3 | 0.08 | 0.43 | 1 | ||||
O | −0.4 | 0.21 | −0.5 | −0.3 | −0.5 | 0.18 | −0.6 | −0.6 | −0.3 | 0.04 | −0.7 | 0.28 | 0.44 | 0.48 | 1 | |||
U | −0.2 | 0.25 | −0.3 | −0.2 | −0.3 | 0.19 | −0.4 | −0.2 | −0.1 | 0.21 | −0.4 | −0.1 | 0.41 | 0.53 | 0.62 | 1 | ||
P | 0.18 | 0.33 | 0.17 | −0.1 | −0.2 | 0.27 | −0.1 | −0.1 | 0.33 | 0.53 | −0.1 | 0.02 | 0.25 | 0.47 | 0.41 | 0.43 | 1 | |
R | −0.2 | 0.48 | −0.3 | −0.2 | −0.3 | 0.38 | −0.5 | −0.4 | −0.1 | 0.26 | −0.7 | 0.28 | 0.54 | 0.48 | 0.76 | 0.53 | 0.38 | 1 |
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | U | P | R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarecki, W.; Borza, I.M.; Rosan, C.A.; Vicas, S.I.; Domuța, C.G. Soybean Response to Seed Inoculation with Bradyrhizobium japonicum and/or Nitrogen Fertilization. Agriculture 2024, 14, 1025. https://doi.org/10.3390/agriculture14071025
Jarecki W, Borza IM, Rosan CA, Vicas SI, Domuța CG. Soybean Response to Seed Inoculation with Bradyrhizobium japonicum and/or Nitrogen Fertilization. Agriculture. 2024; 14(7):1025. https://doi.org/10.3390/agriculture14071025
Chicago/Turabian StyleJarecki, Wacław, Ioana Maria Borza, Cristina Adriana Rosan, Simona Ioana Vicas, and Cristian Gabriel Domuța. 2024. "Soybean Response to Seed Inoculation with Bradyrhizobium japonicum and/or Nitrogen Fertilization" Agriculture 14, no. 7: 1025. https://doi.org/10.3390/agriculture14071025
APA StyleJarecki, W., Borza, I. M., Rosan, C. A., Vicas, S. I., & Domuța, C. G. (2024). Soybean Response to Seed Inoculation with Bradyrhizobium japonicum and/or Nitrogen Fertilization. Agriculture, 14(7), 1025. https://doi.org/10.3390/agriculture14071025