Enhancing Broiler Welfare and Foot Pad Quality through the Use of Medicinal Plant-Based Pellets as Bedding Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bedding Material Production and Composition
2.2. Experimental Design, Chicken, and Their Husbandry
2.3. Foot Pad Dermatitis Score
- 0: Complete absence of foot pad skin lesions.
- 1: Single lesion with light-colored erythema and mildly enlarged skin scales.
- 2: Enlarged dark lesion with brownish exudate.
- 3: Visible necrotic skin lesion of the foot pad with loss of epidermis and dark skin around it, with small lesions also observed on the pads of individual toes.
2.4. Gas Measurements
2.5. Statistical Analysis
3. Results
3.1. Production Performance and Carcass Yield
3.2. FPD Score
3.3. Total Count of Aerobic Mesophilic Bacteria, Yeasts, and Molds in Feet Tissues
3.4. Concentration of Harmful Gasses in Poultry Houses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Brenes, A.; Roura, E. Essential oils in poultry nutrition: Main effects and modes of action. Anim. Feed Sci. Technol. 2010, 158, 1–14. [Google Scholar] [CrossRef]
- El-Hack, M.E.A.; El-Saadony, M.T.; Saad, A.M.; Salem, H.M.; Ashry, N.M.; Ghanima, M.M.A.; Shukry, M.; Swelum, A.A.; Taha, A.E.; El-Tahan, A.; et al. Essential oils and their nanoemulsions as green alternatives to antibiotics in poultry nutrition: A comprehensive review. Poult. Sci. 2022, 101, 101584. [Google Scholar] [CrossRef] [PubMed]
- Jamil, M.; Aleem, A.T.; Shaukat, A.; Khan, A.; Mohsin, M.; Rehman, T.; Abbas, R.Z.; Saleemi, M.K.; Khatoon, A.; Babar, W.; et al. Medicinal plants as an alternative to control poultry parasitic diseases. Life 2022, 12, 449. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.J.; Wang, J.; He, T.F.; Liu, H.S.; Piao, X.S. Effects of natural capsicum extract on growth performance, nutrient utilization, antioxidant status, immune function, and meat quality in broilers. Poult. Sci. 2021, 100, 101301. [Google Scholar] [CrossRef] [PubMed]
- Damaziak, K.; Riedel, J.; Gozdowski, D.; Niemiec, J.; Siennicka, A.; Róg, D. Productive performance and egg quality of laying hens diets supplemented with garlic and onion extracts. J. Appl. Poult. Res. 2017, 26, 337–349. [Google Scholar] [CrossRef]
- Agah, M.; Mirakzehi, M.; Saleh, H. Effects of olive leaf extract (Olea europea L.) on growth performance, blood metabolites and antioxidant activities in broiler chicken under heat stress. J. Anim. Plant Sci. 2019, 29, 657–666. [Google Scholar]
- Ahmad, M.; Chand, N.; Khan, R.U.; Ahmad, N.; Khattak, I.; Naz, S. Dietary supplementation of milk thistle (Silybum marianum): Growth performance, oxidative stress, and immune response in natural summer stressed broiler. Trop. Anim. Health Prod. 2020, 52, 711–715. [Google Scholar] [CrossRef]
- Mahasneh, Z.M.H.; Abuajamieh, M.; Abedal-Majed, M.A.; Al-Qaisi, M.; Abdelqader, A.; Sl-Fataftah, A.R.A. Effects of medical plants on alleviating the effects of heat stress on chicken. Poult. Sci. 2024, 103, 103391. [Google Scholar] [CrossRef] [PubMed]
- Skomorucha, I.; Sosnówka-Czajka, E. Effect of water supplementation with herbal extracts on broiler chicken welfare. Ann. Anim. Sci. 2013, 13, 849–857. [Google Scholar] [CrossRef]
- Irawan, A.; Hidayat, C.; Jayanegara, A.; Ratriyanto, A. Essential oils as growth-promoting additives on performance, nutrient digestibility, cecal microbes, and serum metabolities of broiler chickens: A meta-analysis. Anim. Biosci. 2021, 34, 1499–1513. [Google Scholar] [CrossRef]
- Damaziak, K.; Stelmasiak, A.; Konieczka, P.; Adamek-Urbańska, D.; Gozdowski, D.; Pogorzelski, G.; Zdanowska-Sąsiadek, Ż. Water extract of yarrow (Achillea millefolium L.) leaf improves production parameters, tissue antioxidant status and intestinal microbiota activity in turkeys. Anim. Feed Sci. Technol. 2022, 288, 115309. [Google Scholar]
- Dumas, M.D.; Polson, S.W.; Ritter, D.; Ravel, J.; Gelb, J.; Morgan, R.; Wommack, K.E. Impacts of poultry house environment on poultry litter bacterial community composition. PLoS ONE 2011, 6, e24785. [Google Scholar] [CrossRef] [PubMed]
- Soliman, E.S.; Ali, A.A.; Gafaar, R.E.M. Impact of heating systems on air and litter quality in broiler house, performance, behavior, and immunity in broiler chickens. Adv. Anim. Vet. Sci. 2021, 9, 301–314. [Google Scholar] [CrossRef]
- Dunlop, M.W.; Moss, A.F.; Groves, P.J.; Wilkinson, S.J.; Stuetz, R.M.; Selle, P.H. The multidimensional causal factors of ‘wet litter’ in chicken-meat production. Sci. Total Environ. 2016, 15, 766–776. [Google Scholar] [CrossRef] [PubMed]
- Larbi, M.B. On-Farm assessment of broiler welfare in Tunisia using Welfare Quality® Broiler Protocol. Pak. J. Zool. 2024, 85, 1–7. [Google Scholar] [CrossRef]
- Butterworth, A. Animal welfare indicators and their use in society. In Welfare of Production Animals: Assessment and Management of Risks. Food Safety Assurance and Veterinary Public Health; Smulders, H., Algers, B., Eds.; Wageningen Academic Publisher: Wageningen, The Netherlands, 2009; pp. 371–389. [Google Scholar]
- Shepherd, E.M.; Fairchild, B.D. Footpad dermatitis in poultry. Poult. Sci. 2010, 89, 2043–2051. [Google Scholar] [CrossRef] [PubMed]
- Kyvsgaard, N.C.; Jansen, H.B.; Ambrosen, T.; Toft, N. Temporal changes and risk factors for foot-pad dermatitis in Danish broilers. Poult. Sci. 2013, 92, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tellez, G.; Escobar, J. Identification of biomarkers for footpad dermatitis development and wound healing. Front. Cell. Infect. Microbiol. 2016, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Kaukonen, E.; Norring, M.; Valros, A. Evaluating the effects of bedding materials and elevated platforms on contact dermatitis and plumage cleanliness of commercial broilers and on litter conditions in broiler houses. Br. Poult. Sci. 2017, 58, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Kheravii, S.; Swick, R.; Choct, M.; Wu, S.B. Potential of pelleted wheat straw as an alternative bedding materials for broiler. Poult. Sci. 2017, 96, 1641–1647. [Google Scholar] [CrossRef]
- Nagaraj, M.; Wilson, C.A.P.; Saenmahayak, B.; Hess, J.B.; Bilgili, S.F. Efficacy of a litter amendment to reduce pododermatitis in broiler chickens. J. Appl. Poult. Res. 2007, 16, 255–261. [Google Scholar] [CrossRef]
- Toledo, T.S.; Roll, A.A.P.; Rutz, F.; Dallmann, H.M.; Prá, M.A.D.; Leite, F.P.L.L.; Roll, V.F.B. An assessment of the impacts of litter treatments on the litter quality and broiler performance: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0232853. [Google Scholar] [CrossRef]
- Gontar, Ł.; Sitarek-Andrzejczyk, M.; Kochański, M.; Buła, M.; Drutowska, A.; Zych, D.; Markiewicz, J. Dynamics and diversity of microbal contamination in poultry bedding materials containing parts of medical plants. Materials 2022, 15, 1290. [Google Scholar] [CrossRef] [PubMed]
- Ostaszewska, T.; Dąbrowski, K.; Wegner, A.; Krawiec, M. The effects of feeding on muscle growth dynamic and the proliferation of myogenic progenitor cells during Pike Perch development (Sander lucioperca). J. World Aquacult. Soc. 2008, 39, 184–195. [Google Scholar] [CrossRef]
- Statistica, Inc. Statistica (Data Analysis Software System), 2014, Version 12. Available online: www.statsoft.com (accessed on 1 April 2024).
- Biesek, J.; Banaszak, M.; Wlaźlak, S.; Adamski, M. Use of coffee hysks—Comparison of pellet bedding quality, performance features, and some welfare indicators of broiler chickens. BMC Vet. Res. 2023, 19, 182. [Google Scholar] [CrossRef] [PubMed]
- Svihus, B. The gizzard: Function, influence of diet structure and effects on nutrient availability. World’s Poult. Sci. J. 2011, 67, 207–224. [Google Scholar] [CrossRef]
- Idan, F.; Chad, P.; Scott, B.; Charles, S. Effects of pellet diameter and crumble size on the growth performance and relative gizzard weight of broilers. J. Appl. Poult. Res. 2023, 32, 100331. [Google Scholar] [CrossRef]
- Lačina, B.Z.; Stefanović, O.D.; Vasić, S.M.; Radojević, I.D.; Dekić, M.S.; Čomić, L.R. Biological activities of the extracts from wild growing Origanum vulgare L. Food Control 2013, 33, 498–504. [Google Scholar] [CrossRef]
- Botsoglou, N.A.; Florou-Paneri, P.; Christaki, E.; Fletouris, D.J.; Spais, A.B. Effect of dietary oregano essential oil on performance of chicken and on iron-induced lipid oxidation of breast, thigh and abdominal fat tissues. Br. Poult. Sci. 2002, 43, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Cross, D.E.; McDevott, R.M.; Hillma, K.; Acamovic, T. The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in chicken from 7 to 28 days of age. Br. Poult. Sci. 2007, 48, 496–506. [Google Scholar] [CrossRef]
- Abdel-Wareth, A.A.A.; Kehraus, S.; Hippenstiel, F.; Südekum, K.H. Effects of thyme and oregano on growth performance of broilers from 4 to 42 days of age and on microbial counts in crop, small intestine and caecum of 42-day-old broilers. Anim. Feed Sci. Technol. 2012, 178, 198–202. [Google Scholar] [CrossRef]
- Halle, I.; Thomann, R.; Bauermann, U.; Henning, M.; Köhler, P. Effects of a graded supplementation of herbs and essential oils in broiler feed growth and carcass traits. Landbauforshc. Volkenr. 2024, 54, 219–229. [Google Scholar]
- Amad, A.; Männer, K.; Wendler, K.; Neumann, K.; Zentek, J. Effects of a phytogenic feed additive on growth performance and ileal nutrient digestibility in broiler chicken. Poult. Sci. 2011, 90, 2811–2816. [Google Scholar] [CrossRef] [PubMed]
- Alves, T.A.; Pinherio, P.F.; Praça-Fontes, M.M.; Andrade-Vieira, L.F.; Corrêa, K.B.; Alves, T.A.; Cruz, F.A.; Júnior, V.L.; Ferreira, A.; Soares, T.C.B. Toxicity of thymol, carvacrol and their respective phenoxyacetic acids in Lactuca sativa and Sorghum bicolor. Ind. Crop. Prod. 2018, 114, 59–67. [Google Scholar] [CrossRef]
- Jong, I.C.; Harn, J.; Gunnink, H.; Hindle, V.A.; Lourens, A. Footpad dermatitis in Dutch broiler flocks: Prevalence and factors of influence. Poult. Sci. 2012, 91, 1569–1574. [Google Scholar] [CrossRef] [PubMed]
- Mayne, R.K.; Else, R.W.; Hocking, R.W. High litter moisture alone is sufficient to cause footpad dermatitis in growing turkeys. Br. Poult. Sci. 2007, 48, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Taira, K.; Nagai, T.; Obi, T.; Takase, K. Effect of litter moisture on the development of footpad dermatitis in broiler chickens. J. Vet. Med. Sci. 2014, 76, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Zamuz, S.; Munekata, P.E.S.; Dzuvor, C.K.O.; Zhang, W.; Sant’Ana, A.S.; Lorenzo, J.M. The role of phenolic compounds against Listeria monocytogenes in food. A review. Trends Food Sci. Technol. 2021, 110, 385–392. [Google Scholar] [CrossRef]
- Roy, P.K.; Song, M.G.; Park, S.Y. The inhibitory effect of quercetin on biofilm formation of Listeria monocytogenes mixed culture and repression of virulence. Antioxidants 2022, 11, 1733. [Google Scholar] [CrossRef] [PubMed]
- Hippenstiel, F.; Abdel-Wareth, A.; Kehraus, S.; Südekum, K. Effects of selected herbs and essential oils, and their active components on feed intake and performance of broilers—A review. Arch. Geflügelkunde 2011, 75, 226–234. [Google Scholar]
- Bossolé, I.H.N.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef]
- Giannenas, I.; Bonos, E.; Christaki, E.; Florou-Paneri, P. Essential oils and their applications in animal nutrition. Med. Aroma. Plant. 2013, 2, 1000140. [Google Scholar]
- Seow, Y.X.; Yeo, C.R.; Chung, H.L.; Yuk, H.G. Plant essential oils as active antimocrobial agents. Crit. Rev. Food Sci. Nutr. 2014, 54, 625–644. [Google Scholar] [CrossRef] [PubMed]
- Alves, F.C.B.; Barbosa, L.N.; Andrade, B.F.M.T.; Albano, M.; Furtado, F.B.; Pereira, A.F.M.; Rall, V.L.M.; Júnior, A.F. Short communication: Inhibitory activities of the lantibiotic nisin combined with phenolic compounds against Staphylococcus aureus and Listeria monocytogenes in cow milk. J. Dairy Sci. 2016, 99, 1831–1836. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, S.Y.; Deng, Q.; Li, G.; Su, G.; Liu, J.; Wang, H.M.D. Extraction and characterization of phenolic compounds with antioxidant and antimicrobal activities from pickled radish. Food Chem. Toxicol. 2020, 136, 111050. [Google Scholar] [CrossRef] [PubMed]
- Petrisor, G.; Motelica, L.; Craciun, L.N.; Oprea, O.C.; Ficai, D.; Ficai, A. Melissa officinalis: Composition, pharmacological effects and derived release systems—A review. Int. J. Mol. Sci. 2022, 23, 3591. [Google Scholar] [CrossRef] [PubMed]
- Galovičová, L.; Borotová, P.; Valková, V.; Vukovic, N.L.; Vukic, M.; Štefánikova, J.; Ďuranová, H.; Kowalczewski, P.Ł.; Čmiková, N.; Kačaniová, M. Thymus vulgaris essential oil and its biological activity. Plants 2021, 10, 1959. [Google Scholar] [CrossRef] [PubMed]
- Dhama, K.; Karthik, K.; Tiwari, R.; Shabbir, Z.; Barbuddhe, S.; Malik, S.V.S.M.; Singh, R.K. Listeriosis in animals, its public health significance (food-borne zoonosis) and advances in diagnosis and control: A comprehensive review. Vet. Q. 2015, 35, 211–235. [Google Scholar] [CrossRef] [PubMed]
- Dahshan, H.; Merwad, A.M.A.; Mohamed, T.S. Listeria species in broiler poultry farms: Potential public health hazards. J. Microbiol. Biotech. 2016, 26, 1551–1556. [Google Scholar] [CrossRef]
- Cavani, R.; Rubio, M.S.; Alves, K.A.P.; Pizauro, L.J.L.; Cardozo, M.V.; Silva, P.L.; Silva, I.J.O.; Avila, F.A. Macroscopic, histological, and microbiological characterization of contact lesions at the tibiotarsal region of broilers. Food Sci. Anim. Resour. 2022, 42, 313–320. [Google Scholar] [CrossRef]
- Zikic, D.; Djukic-Stojcic, M.; Bjedov, S.; Peric, L.; Stojanovic, S.; Uscebrka, G. Effect of litter on development and severity of foot pad dermatitis and behavior of broiler chickens. Braz. J. Poult. Sci. 2017, 19, 247–254. [Google Scholar] [CrossRef]
- Opengart, K.; Bilgili, S.F.; Warren, G.L.; Baker, K.T.; Moore, J.D.; Dougherty, S. Incidence, severity, and relationship of broiler footpad lesions and gaint scores of market-age broilers raised under commercial conditions in the south eastern United States. J. Appl. Poult. Res. 2018, 27, 424–432. [Google Scholar] [CrossRef]
- Louton, H.; Bergmann, S.; Piller, A.; Erhard, M.; Stracke, J.; Spindler, B.; Schmidt, P.; Schulte-Landwehr, J.; Schwarzer, A. Automatic scoring system for monitoring foot pad dermatitis in broilers. Agriculture 2022, 12, 221. [Google Scholar] [CrossRef]
- Costantino, A.; Fabrizio, E.; Villagrá, A.; Estellés, F.; Calvet, S. The reduction of gas concentrations in broiler houses through ventilation: Assessment of the thermal and electrical energy consumption. Biosyst. Eng. 2020, 199, 135–148. [Google Scholar] [CrossRef]
Material Type | Bedding Material Composition | |||||
---|---|---|---|---|---|---|
Ingredient 1 | Ingredient 2 | Ingredient 3 | ||||
Plant | Content % | Plant | Content % | Plant | Content % | |
Straw chaff 1 | triticale straw | 100 | - | - | - | - |
Straw pellets 1 | triticale straw | 100 | - | - | - | - |
P1 | triticale straw | 70 | oregano | 24 | summer savory | 6 |
P2 | triticale straw | 70 | summer savory | 18 | oregano | 12 |
P3 | triticale straw | 70 | summer savory | 18 | lemon balm | 12 |
P4 | triticale straw | 70 | summer savory | 18 | salvia | 12 |
P5 | triticale straw | 70 | summer savory | 18 | thyme | 12 |
P6 | triticale straw | 70 | oregano | 24 | thyme | 6 |
Parameter | Experimental Group | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Straw Chaff 1 | Straw Pellet 1 | P1 | P2 | P3 | P4 | P5 | P6 | General Mean | SEM | ||
IBW, g (1 d) | 41.3 a | 41.4 a | 41.3 a | 41.1 a | 41.2 a | 41.1 a | 41.5 a | 41.8 a | 41.3 | 3.70 | 0.12 |
BW 42 d (g) | 3772 c,# | 3672 ab,* | 3714 bc | 3699 abc | 3619 a,* | 3612 a,* | 3676.0 ab,* | 3711 bc | 3684 | 152 | 0.003 |
FI, kg | 5.0 a | 4.9 a | 4.9 a | 4.6 a | 4.7 a | 4.8 a | 5.0 a | 5.0 a | 4.9 | 1.14 | 0.330 |
FCR, kg/kg | 1.52 a | 1.56 ab | 1.53 ab | 1.60 b,* | 1.55 ab | 1.54 ab | 1.55 ab | 1.54 ab | 1.55 | 0.080 | 0.001 |
Mortality, % | 5.70 a | 7.30 a | 8.70 a | 13.7 b | 9.30 ab | 9.70 ab | 7.00 a | 7.30 a | 8.60 |
Parameter | Experimental Group | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Straw Chaff 1 | Straw Pellet 1 | P1 | P2 | P3 | P4 | P5 | P6 | General Means | SEM | ||
Carcass weight, g | 2784 a | 2753 a | 2730 a | 2752 a | 2701 a | 2723 a | 2738 a | 2799 a | 2747 | 139 | 0.480 |
Carcass yield, % | 75.0 a | 75.9 a | 75.4 a | 74.6 a | 75.0 a | 75.4 a | 75.0 a | 75.9 a | 75.3 | 1.80 | 0.468 |
Breast meat, % | 32.9 a | 32.9 a | 32.8 a | 31.7 a | 33.2 a | 32.9 a | 32.1 a | 31.4 a | 32.5 | 2.40 | 0.687 |
Leg meat, % | 19.7 a | 20.2 a | 19.9 a | 20.1 a | 19.7 a | 19.8 a | 19.4 a | 19.8 a | 19.8 | 0.900 | 0.930 |
Gizzard, % | 0.730 a | 0.710 a | 0.680 a | 0.720 a | 0.700 a | 0.640 a | 0.680 a | 0.670 a | 0.691 | 0.130 | 0.915 |
Liver, % | 0.910 a | 0.970 a | 1.01 a | 0.940 a | 0.970 a | 0.990 a | 1.02 a | 0.970 a | 0.974 | 1.340 | 1.000 |
Heart, % | 0.320 a | 0.330 a | 0.350 a | 0.330 a | 0.340 a | 0.330 a | 0.340 a | 0.330 a | 0.333 | 0.201 | 0.842 |
Abdominal fat, % | 1.49 a | 1.74 a | 1.39 a | 1.54 a | 1.65 a | 1.41 a | 1.53 a | 1.57 a | 1.54 | 0.742 | 0.474 |
Parameter FPD, Score | Experimental Group | p-Value * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Straw Chaff 1 | Straw Pellet 1 | P1 | P2 | P3 | P4 | P5 | P6 | |||
N | 292 | 287 | 284 | 279 | 285 | 279 | 295 | 292 | ||
0 | (n) | 223 | 262 | 273 | 252 | 244 | 256 | 256 | 264 | |
(%) | 76.4 a | 91.3 bc | 96.1 c | 90.3 bc | 85.6 ab | 91.8 bc | 86.8 ab | 90.4 bc | <0.001 | |
CI (%) | 71.1–81.1 | 87.4–94.3 | 93.2–98.1 | 86.2–93.5 | 81.0–89.5 | 87.9–94.7 | 82.4–90.4 | 86.4–93.5 | ||
1 | (n) | 57 | 21 | 11 | 25 | 25 | 21 | 30 | 14 | |
(%) | 19.5 b | 7.30 a | 3.90 a | 9.00 a | 9.00 a | 7.50 a | 10.2 a | 4.80 a | <0.001 | |
CI (%) | 15.1–24.5 | 4.60–10.9 | 1.90–6.80 | 5.90–12.9 | 6.10–12.9 | 4.70–11.2 | 7.10–14.2 | 2.60–7.90 | ||
2 | (n) | 10 | 4 | 0 | 2 | 11 | 2 | 8 | 11 | |
(%) | 3.40 a | 1.40 a | 0.000 | 0.700 a | 3.90 a | 0.700 a | 2.70 a | 3.80 a | 0.101 | |
CI (%) | 1.70–6.20 | 0.400–3.50 | 0.000–1.3 | 0.100–2.60 | 1.90–6.80 | 0.000–2.60 | 1.20–5.30 | 1.90–6.60 | ||
3 | (n) | 2 | 0 | 0 | 0 | 5 | 0 | 1 | 3 | |
(%) | 0.700 a | 0.000 | 0.000 | 0.000 | 1.80 a | 0.000 | 0.300 a | 1.00 a | 0.061 | |
CI (%) | 0.100–2.50 | 0.000–1.30 | 0.000–1.30 | 0.000–1.30 | 0.600–4.00 | 0.000–1.30 | 0.000–1.90 | 0.20–3.00 |
Parameter FPD, Score | Experimental Group | p-Value * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Straw Chaff 1 | Straw Pellet 1 | P1 | P2 | P3 | P4 | P5 | P6 | |||
N | 288 | 284 | 277 | 269 | 277 | 275 | 286 | 282 | ||
0 | (n) | 161 | 236 | 261 | 201 | 223 | 248 | 231 | 243 | |
(%) | 55.9 a | 83.1 bc | 94.2 d | 74.7 b | 80.5 bc | 90.2 cd | 80.8 bc | 86.2 c | <0.001 | |
CI (%) | 50.0–61.7 | 78.2–87.3 | 90.8–96.7 | 69.1–79.8 | 75.3–85.0 | 86.0–93.4 | 75.7–85.2 | 81.8–90.0 | ||
1 | (n) | 77 | 34 | 16 | 53 | 38 | 23 | 31 | 30 | |
(%) | 26.7 b | 12.0 a | 5.80 a | 19.7 ab | 13.7 a | 8.40 a | 10.8 a | 10.6 a | <0.001 | |
CI (%) | 21.7–32.2 | 8.40–16.3 | 3.30–9.20 | 15.1–25.0 | 9.90–18.3 | 5.40–12.3 | 7.50–15.0 | 7.30–14.8 | ||
2 | (n) | 46 | 13 | 0 | 15 | 14 | 4 | 22 | 9 | |
(%) | 16.0 d | 4.60 bc | 0.000 | 5.60 bc | 5.10 bc | 1.50 ab | 7.70 cd | 3.20 abc | <0.001 | |
CI (%) | 11.9–20.7 | 2.50–7.70 | 0.000–1.30 | 3.20–9.00 | 2.80–8.30 | 0.400–3.70 | 4.90–11.4 | 1.50–6.00 | ||
3 | (n) | 4 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | |
(%) | 1.40 a | 0.400 a | 0.000 | 0.000 | 0.70 a | 0.000 | 0.70 a | 0.000 | <0.067 | |
CI (%) | 0.40–3.50 | 0.000–1.90 | 0.000–1.30 | 0.000–1.30 | 0.10–2.60 | 0.000–1.30 | 0.10–2.50 | 0.000–1.30 |
Parameter FPD, Score | Experimental Group | p-Value * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Straw Chaff 1 | Straw Pellet 1 | P1 | P2 | P3 | P4 | P5 | P6 | |||
N | 283 | 278 | 273 | 260 | 272 | 265 | 281 | 271 | ||
0 | (n) | 116 | 196 | 230 | 191 | 189 | 218 | 208 | 192 | |
(%) | 41.0 a | 70.5 b | 84.2 d | 73.5 bc | 69.5 b | 82.3 cd | 74.0 bcd | 70.8 b | <0.001 | |
CI (%) | 35.2–47.0 | 64.8–75.8 | 79.4–88.4 | 67.7–78.7 | 63.6–74.9 | 77.1–86.7 | 68.5–79.0 | 65.0–76.2 | ||
1 | (n) | 86 | 56 | 41 | 46 | 64 | 39 | 52 | 62 | |
(%) | 30.4 b | 20.1 ab | 15.0 a | 17.7 a | 23.5 ab | 14.7 a | 18.5 a | 22.9 ab | <0.001 | |
CI (%) | 25.2–36.1 | 15.7–25.4 | 11.0–19.7 | 13.3–22.9 | 18.6–28.9 | 10.8–23.6 | 14.2–23.6 | 18.1–28.4 | ||
2 | (n) | 59 | 21 | 2 | 20 | 17 | 8 | 17 | 17 | |
(%) | 20.8 c | 7.60 b | 0.700 a | 7.70 b | 6.30 b | 3.00 ab | 6.00 b | 6.30 b | <0.001 | |
CI (%) | 16.3–26.1 | 4.70–11.3 | 0.100–2.60 | 4.80–11.6 | 6.30–9.80 | 1.30–5.80 | 3.60–9.50 | 3.70–9.90 | ||
3 | (n) | 22 | 5 | 0 | 3 | 2 | 0 | 4 | 0 | |
(%) | 7.80 b | 1.80 a | 0.000 | 1.20 a | 0.70 a | 0.000 | 1.40 a | 0.000 | <0.001 | |
CI (%) | 4.90–11.5 | 0.600–4.10 | 0.000–1.30 | 0.200–3.30 | 0.100–2.60 | 0.000–1.30 | 0.400–3.60 | 0.000–1.30 |
Parameter | FPD, Score | Experimental Group | |||||||
---|---|---|---|---|---|---|---|---|---|
Straw Chaff 1 | Straw Pellet 1 | P1 | P2 | P3 | P4 | P5 | P6 | ||
Salmonella sp. | S0 | – | – | – | – | – | – | – | – |
S1 | – | – | – | + | – | – | – | – | |
S2 | + | + | – | 3.51 | – | – | – | – | |
S3 | – | + | na | na | na | na | na | na | |
Candida sp. | S0 | – | – | – | – | 2.81 | – | – | – |
S1 | + | – | – | – | 2.96 | – | – | – | |
S2 | + | – | – | + | 3.51 | – | + | – | |
S3 | + | + | na | na | na | na | na | na | |
Aspergillus sp. | S0 | – | – | – | – | – | – | – | – |
S1 | – | – | – | – | – | – | – | – | |
S2 | – | – | – | – | – | – | – | – | |
S3 | – | – | na | na | na | na | na | na |
Parameter | Experimental Group | General Mean | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Straw Chaff 1 | Straw Pellet 1 | P1 | P2 | P3 | P4 | P5 | P6 | |||||
CO2 | 7 days | 797 a | 810 a | 791 a | 810 a | 768 a | 772 a | 761 a | 794 a | 788 | 18.8 | 0.573 |
14 days | 751 a | 747 a | 773 a | 770 a | 755 a | 759 a | 756 a | 746 a | 757 | 9.93 | 0.999 | |
21 days | 693 a | 666 a | 689 a | 680 a | 680 a | 670 a | 668 a | 694 a | 680 | 11.2 | 0.998 | |
28 days | 727 a | 750 a | 768 a | 795 a | 782 a | 757 a | 734 a | 734 a | 756 | 24.4 | 0.651 | |
35 days | 689 a | 701 a | 753 a | 772 a | 771 a | 759 a | 737 a | 731 a | 739 | 30.9 | 0.942 | |
42 days | 774 a | 779 a | 809 a | 812 a | 820 a | 777 a | 759 a | 745 a | 784 | 26.8 | 0.989 | |
H2S | 7–42 days | -- | -- | -- | -- | -- | -- | -- | -- | |||
NH3 | 7–42 days | -- | -- | -- | -- | -- | -- | -- | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damaziak, K.; Gontar, Ł.; Łukasiewicz-Mierzejewska, M.; Kochański, M.; Riedel, J.; Wójcik, W.; Gozdowski, D.; Niemiec, J. Enhancing Broiler Welfare and Foot Pad Quality through the Use of Medicinal Plant-Based Pellets as Bedding Material. Agriculture 2024, 14, 1091. https://doi.org/10.3390/agriculture14071091
Damaziak K, Gontar Ł, Łukasiewicz-Mierzejewska M, Kochański M, Riedel J, Wójcik W, Gozdowski D, Niemiec J. Enhancing Broiler Welfare and Foot Pad Quality through the Use of Medicinal Plant-Based Pellets as Bedding Material. Agriculture. 2024; 14(7):1091. https://doi.org/10.3390/agriculture14071091
Chicago/Turabian StyleDamaziak, Krzysztof, Łukasz Gontar, Monika Łukasiewicz-Mierzejewska, Maksymilian Kochański, Julia Riedel, Wojciech Wójcik, Dariusz Gozdowski, and Jan Niemiec. 2024. "Enhancing Broiler Welfare and Foot Pad Quality through the Use of Medicinal Plant-Based Pellets as Bedding Material" Agriculture 14, no. 7: 1091. https://doi.org/10.3390/agriculture14071091
APA StyleDamaziak, K., Gontar, Ł., Łukasiewicz-Mierzejewska, M., Kochański, M., Riedel, J., Wójcik, W., Gozdowski, D., & Niemiec, J. (2024). Enhancing Broiler Welfare and Foot Pad Quality through the Use of Medicinal Plant-Based Pellets as Bedding Material. Agriculture, 14(7), 1091. https://doi.org/10.3390/agriculture14071091