The Adsorption Characteristics of Phosphorus-Modified Corn Stover Biochar on Lead and Cadmium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of Phosphorus-Modified Biochar
2.2. Adsorption Experiment
2.2.1. Kinetic Adsorption
2.2.2. Isothermal Adsorption Experiment
2.2.3. Competitive Adsorption
2.2.4. Effect of Initial pH
2.3. Analysis Method
2.4. Data Analysis
3. Results and Discussion
3.1. Structural Characterization of Biochar
3.1.1. Pore Structure of Biochar
3.1.2. Surface Structure of Biochar
3.1.3. FTIR and XRD
3.2. Adsorption Experiment Analysis
3.2.1. Adsorption Dynamics
3.2.2. Adsorption Isotherm
3.2.3. Competitive Adsorption
3.2.4. Effect of Initial pH
3.3. Mechanism Analysis
3.3.1. FTIR and XRD
3.3.2. XPS Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaushik, P.; Khandelwal, R.; Rawat, N.; Sharma, M.K. Environmental hazards of heavy metal pollution and toxicity: A review. Flora Fauna 2022, 28, 315–327. [Google Scholar] [CrossRef]
- Peng, H.B.; Gao, P.; Chu, G.; Pan, B.; Peng, J.H.; Xing, B.S. Enhanced adsorption of Cu (II) and Cd (II) by phosphoric acid-modified biochars. Environ. Pollut. 2017, 229, 846–853. [Google Scholar] [CrossRef]
- Wang, J.W.; Zhang, Y.S.; Liu, Z.; Gu, Y.Z.; Norris, P.; Xu, H.; Pan, W.P. Coeffect of air pollution control devices on trace element emissions in an ultralow emission coal-fired power plant. Energy Fuels 2019, 33, 248–256. [Google Scholar] [CrossRef]
- Jiang, Q.; Xie, W.L.; Han, S.Y.; Wang, Y.F.; Zhang, Y. Enhanced adsorption of Pb (II) onto modified hydrochar by polyethyleneimine or H3PO4: An analysis of surface property and interface mechanism. Colloid Surf. A 2019, 583, 123962. [Google Scholar] [CrossRef]
- Liu, X.J.; Lai, D.G.; Wang, Y. Performance of Pb (II) removal by an activated carbon supported nanoscale zero-valent iron composite at ultralow iron content. J. Hazard. Mater. 2019, 361, 37–48. [Google Scholar] [CrossRef]
- Hopkins, D.; Hawboldt, K. Biochar for the removal of metals from solution: A review of lignocellulosic and novel marine feedstocks. J. Environ. Chem. Eng. 2020, 8, 103975. [Google Scholar] [CrossRef]
- Zhou, Y.W.; Qin, S.Y.; Verma, S.; Sar, T.; Sarsaiya, S.; Ravindran, B.; Liu, T.; Sindhu, R.; Patel, A.K.; Binod, P. Production and beneficial impact of biochar for environmental application: A comprehensive review. Bioresour. Technol. 2021, 337, 125451. [Google Scholar] [CrossRef]
- Li, B.; Yang, L.; Wang, C.Q.; Zhang, Q.P.; Liu, Q.C.; Li, Y.D.; Xiao, R. Adsorption of Cd (II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere 2017, 175, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Sizmur, T.; Fresno, T.; Akgül, G.; Frost, H.; Moreno-Jiménez, E. Biochar modification to enhance sorption of inorganics from water. Bioresour. Technol. 2017, 246, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.P.; Zhao, Y.C.; Ma, S.M.; Zhu, B.B.; Zhang, J.Y.; Zheng, C.G. Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust. Environ. Sci. Technol. 2016, 50, 12040–12047. [Google Scholar] [CrossRef]
- Bakshi, S.; Banik, C.; Rathke, S.J.; Laird, D.A. Arsenic sorption on zero-valent iron-biochar complexes. Water Res. 2018, 137, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Son, E.B.; Poo, K.M.; Chang, J.S.; Chae, K.J. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Sci. Total Environ. 2018, 615, 161–168. [Google Scholar] [CrossRef]
- Martinez, C.E.; Jacobson, A.R.; Astrid, R.; Mcbride, M.B. Lead phosphate minerals: Solubility and dissolution by model and natural ligands. Environ. Sci. Technol. 2004, 38, 5584–5590. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.F.; Liu, Y.G.; Gu, Y.L.; Xu, Y.; Zeng, G.M.; Hu, X.J.; Liu, S.B.; Wang, X.; Liu, S.M.; Li, J. Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresour. Technol. 2016, 212, 318–333. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhang, H.; Cai, J.; Zhang, X.; Zhang, J.J.; Shao, J.A. Evaluation and prediction of cadmium removal from aqueous solution by phosphate-modified activated bamboo biochar. Bioresour. Technol. 2018, 32, 4469–4477. [Google Scholar] [CrossRef]
- Gao, R.L.; Fu, Q.L.; Hu, H.Q.; Wang, Q.; Liu, Y.H.; Zhu, J. Highly-effective removal of Pb by co-pyrolysis biochar derived from rape straw and orthophosphate. J. Hazard. Mater. 2019, 371, 191–197. [Google Scholar] [CrossRef]
- Zhou, N.; Chen, H.G.; Feng, Q.J.; Yao, D.H.; Chen, H.L.; Wang, H.Y.; Zhou, Z.; Li, H.Y.; Tian, Y.; Lu, X.Y. Effect of phosphoric acid on the surface properties and Pb (II) adsorption mechanisms of hydrochars prepared from fresh banana peels. J. Clean Prod. 2017, 165, 221–230. [Google Scholar] [CrossRef]
- Zhang, H.; Shao, J.G.; Zhang, S.H.; Zhang, X.; Chen, H.P. Effect of phosphorus-modified biochars on immobilization of Cu (II), Cd (II), and As (V) in paddy soil. J. Hazard. Mater. 2020, 390, 121349. [Google Scholar] [CrossRef]
- Egüés, I.; Sanchez, C.; Mondragon, I.; Labidi, J. Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks. Bioresour. Technol. 2012, 103, 239–248. [Google Scholar] [CrossRef]
- Yakout, S.M. Physicochemical characteristics of biochar produced from rice straw at different pyrolysis temperature for soil amendment and removal of organics. Proc. Natl. Acad. Sci. India A 2017, 87, 207–214. [Google Scholar] [CrossRef]
- Zhang, J.H.; Huang, B.; Chen, L.; Li, Y.; Li, W.; Luo, Z.X. Characteristics of biochar produced from yak manure at different pyrolysis temperatures and its effects on the yield and growth of highland barley. Chem. Spec. Bioavailab. 2018, 30, 57–67. [Google Scholar] [CrossRef]
- Chen, Y.N.; Zeng, Z.P.; Li, Y.P.; Liu, Y.H.; Chen, Y.R.; Wu, Y.X.; Zhang, J.C.; Li, H.; Xu, R.; Wang, S. Glucose enhanced the oxidation performance of iron-manganese binary oxides: Structure and mechanism of removing tetracycline. J. Colloid Interface Sci. 2020, 573, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhang, Z.X.; Ma, S.W.; Ma, S.W.; Wang, B.; Cui, M.S.; Lu, Q.; Yang, Y.P. Effects of NH4H2PO4-loading and temperature on the two-stage pyrolysis of biomass: Analytical pyrolysis-gas chromatography/mass spectrometry study. J. Biobased Mater. Bioenergy 2020, 14, 76–82. [Google Scholar] [CrossRef]
- Chen, Y.N.; Li, M.L.; Li, Y.P.; Liu, Y.H.; Chen, Y.R.; Li, H.; Li, L.S.Z.; Xu, F.T.; Jiang, H.J.; Chen, L. Hydroxyapatite modified sludge-based biochar for the adsorption of Cu2+ and Cd2+: Adsorption behavior and mechanisms. Bioresour. Technol. 2021, 321, 124413. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.L.; Hu, H.Q.; Fu, Q.L.; Li, Z.H.; Xing, Z.Q.; Ali, U.; Zhu, J.; Liu, Y.H. Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: Speciation transformation, risk evaluation and mechanism inquiry. Sci. Total Environ. 2020, 730, 139119. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Duan, C.J.; Xu, C.Y.; Geng, Z.C. Efficient removal of Cd (II) by phosphate-modified biochars derived from apple tree branches: Processes, mechanisms, and application. Sci. Total Environ. 2022, 819, 152876. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Y.; Shao, H.B.; Sun, J.N. Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and 31P NMR analysis. Sci. Total Environ. 2016, 569, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, A.C.; Mecabô, A.; Fagundes, T.; Rodrigues, C.A. Adsorption of Cr (VI) using Fe-crosslinked chitosan complex (Ch-Fe). J. Hazard. Mater. 2010, 179, 192–196. [Google Scholar] [CrossRef]
- Çelekli, A.; Ilgün, G.; Bozkurt, H. Sorption equilibrium, kinetic, thermodynamic, and desorption studies of Reactive Red 120 on Chara contraria. Chem. Eng. J. 2012, 191, 228–235. [Google Scholar] [CrossRef]
- Feng, J.; Zou, L.Y.; Wang, Y.T.; Li, B.W.; He, X.F.; Fan, Z.J.; Ren, Y.M.; Lv, Y.Z.; Zhang, M.L.; Chen, D. Synthesis of high surface area, mesoporous MgO nanosheets with excellent adsorption capability for Ni (II) via a distillation treating. J. Colloid Interface Sci. 2015, 438, 259–267. [Google Scholar] [CrossRef]
- Zhang, L.M.; Ren, Y.F.; Xue, Y.H.; Cui, Z.W.; Wei, Q.H.; Han, C.; He, J.Y. Preparation of biochar by mango peel and its adsorption characteristics of Cd (II) in solution. RSC Adv. 2020, 59, 35878–35888. [Google Scholar] [CrossRef]
- Xiao, J.; Hu, R.; Chen, G.C. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb (II). J. Hazard. Mater. 2020, 387, 121980. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.C.; Dong, X.L.; Ime, I.M.; Gao, B.; Ma, L.Q. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 2014, 105, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.Q.; Xiao, D. Adsorption of cadmium ion from aqueous solution by ground wheat stems. J. Hazard. Mater. 2009, 164, 1359–1363. [Google Scholar] [CrossRef]
- Chen, H.Y.; Yang, X.J.; Liu, Y.L.; Lin, X.M.; Wang, J.J.; Zhang, Z.; Li, N.; Li, Y.T.; Zhang, Y.L. KOH modification effectively enhances the Cd and Pb adsorption performance of N-enriched biochar derived from waste chicken feathers. Waste Manag. 2021, 130, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Li, W.Y.; Wang, J.J.; Xu, H.J.; Liu, Y.L.; Zhang, Z.; Li, Y.T.; Zhang, Y.L. Adsorption of cadmium and lead ions by phosphoric acid-modified biochar generated from chicken feather: Selective adsorption and influence of dissolved organic matter. Bioresour. Technol. 2019, 292, 121948. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.J.; Shao, X.H.; Shaghaleh, H.; Gao, W.; Hamoud, Y.A. Adsorption of Pb2+ and Cd2+ in Agricultural Water by Potassium Permanganate and Nitric Acid-Modified Coconut Shell Biochar. Agronomy 2023, 13, 1813. [Google Scholar] [CrossRef]
- Chen, Z.L.; Zhang, J.Q.; Huang, L.; Yuan, Z.H.; Li, Z.J.; Liu, M.C. Removal of Cd and Pb with biochar made from dairy manure at low temperature. J. Integr. Agric. 2019, 18, 201–210. [Google Scholar] [CrossRef]
- Zhang, C.H.; Yang, D.S.; Liu, W.; Dong, Y.B.; Zhang, L.P.; Lin, H. Insight into the impacts of pyrolysis time on adsorption behavior of Pb2+ and Cd2+ by Mg modified biochar: Performance and modification mechanism. Environ. Res. 2023, 239, 117215. [Google Scholar] [CrossRef]
Sample | SBET (m2·g−1) | Vtot (mL·g−1) | Mean Pore Width (nm) |
---|---|---|---|
BC550 | 5.70 | 0.015 | 3.15 |
1PBC350 | 29.92 | 0.014 | 0.69 |
1PBC550 | 277.77 | 0.246 | 6.82 |
1PBC750 | 208.80 | 0.110 | 2.13 |
2PBC350 | 22.90 | 0.034 | 2.51 |
2PBC550 | 272.27 | 0.162 | 3.48 |
2PBC750 | 190.87 | 0.731 | 7.20 |
C0 mg·g−1 | PFO | PSO | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
qe mg·g−1 | K1 h−1 | Radj2 | RMSE | qe mg·g−1 | K2 × 10−2 mg·g−1h−1 | Radj2 | RMSE | |||
Pb2+ | BC550 | 200 | 22.50 | 0.988 | 0.954 | 1.749 | 26.50 | 0.048 | 0.958 | 1.669 |
1PBC750 | 129.95 | 0.962 | 0.986 | 5.062 | 136.91 | 0.052 | 0.989 | 4.519 | ||
1PBC550 | 139.92 | 0.951 | 0.993 | 3.836 | 145.35 | 0.055 | 0.997 | 2.691 | ||
2PBC550 | 145.48 | 0.954 | 0.998 | 3.607 | 151.17 | 0.066 | 0.997 | 2.819 | ||
2PBC750 | 139.93 | 0.952 | 0.940 | 3.358 | 163.24 | 0.075 | 0.998 | 2.404 | ||
Cd2+ | BC550 | 20 | 3.961 | 0.996 | 0.898 | 0.441 | 4.256 | 0.436 | 0.942 | 0.332 |
1PBC750 | 11.98 | 0.961 | 0.963 | 0.784 | 12.604 | 0.576 | 0.979 | 0.635 | ||
1PBC550 | 12.654 | 0.963 | 0.988 | 0.437 | 13.309 | 0.509 | 0.989 | 0.453 | ||
2PBC550 | 14.533 | 0.949 | 0.993 | 0.396 | 14.949 | 0.875 | 0.995 | 0.462 | ||
2PBC750 | 13.642 | 0.957 | 0.986 | 0.533 | 13.642 | 0.623 | 0.982 | 0.611 |
Biochar | Langmuir Model | Freundlich Model | |||||||
---|---|---|---|---|---|---|---|---|---|
Qm mg·g−1 | KL L·mg−1 | Radj2 | RMSE | KF mg−1−N·g−1·L−N | N | Radj2 | RMSE | ||
Pb2+ | BC550 | 31.300 | 0.0149 | 0.916 | 3.016 | 3.208 | 2.788 | 0.829 | 4.301 |
1PBC750 | 223.887 | 0.0037 | 0.876 | 30.756 | 4.4748 | 1.379 | 0.849 | 34.019 | |
1PBC550 | 255.611 | 0.0066 | 0.855 | 34.090 | 8.3446 | 1.625 | 0.804 | 39.587 | |
2PBC550 | 284.171 | 0.0125 | 0.913 | 27.769 | 16.7185 | 1.962 | 0.848 | 36.716 | |
2PBC750 | 279.376 | 0.0072 | 0.884 | 31.203 | 9.4461 | 1.657 | 0.835 | 37.235 | |
Cd2+ | BC550 | 25.799 | 0.0994 | 0.938 | 1.646 | 4.0210 | 2.128 | 0.975 | 1.632 |
1PBC750 | 31.723 | 0.1347 | 0.964 | 1.614 | 6.4303 | 2.361 | 0.928 | 2.264 | |
1PBC550 | 33.464 | 0.1665 | 0.935 | 2.371 | 7.7205 | 2.482 | 0.896 | 2.994 | |
2PBC550 | 34.154 | 0.2308 | 0.927 | 2.709 | 9.5197 | 2.698 | 0.905 | 3.081 | |
2PBC750 | 34.090 | 0.1458 | 0.922 | 2.576 | 7.1397 | 2.359 | 0.889 | 3.083 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Chen, L.; Zhang, Y.; Zhang, Y.; Li, Z.; Yang, K.; Chen, L. The Adsorption Characteristics of Phosphorus-Modified Corn Stover Biochar on Lead and Cadmium. Agriculture 2024, 14, 1118. https://doi.org/10.3390/agriculture14071118
Zhou L, Chen L, Zhang Y, Zhang Y, Li Z, Yang K, Chen L. The Adsorption Characteristics of Phosphorus-Modified Corn Stover Biochar on Lead and Cadmium. Agriculture. 2024; 14(7):1118. https://doi.org/10.3390/agriculture14071118
Chicago/Turabian StyleZhou, Lina, Lin Chen, Yuqing Zhang, Yu Zhang, Zhifan Li, Kun Yang, and Limei Chen. 2024. "The Adsorption Characteristics of Phosphorus-Modified Corn Stover Biochar on Lead and Cadmium" Agriculture 14, no. 7: 1118. https://doi.org/10.3390/agriculture14071118